用方程解行程问题

合集下载

方程法解行程问题

方程法解行程问题

【例6】 (★★★★☆) A、B两地相距22. 4千米.有一支游行队伍从A地出发,向B地匀速前 1. 公式:路程=速度×时间 进;当游行队伍队尾离开A地时,甲、乙两人分别从A、B两地同时出 ⑴ 一般都利用路程相等. 发.乙向A地步行;甲骑车先追向队头,追上队头后又立即骑向队尾, ⑵ 未知数,时间或者速度. 到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第 2. 有关方程. 5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时, ⑴ 未知数要尽量少. 甲恰好第一次到达B地,那么此时乙距A地还有___千米. ቤተ መጻሕፍቲ ባይዱ 方程要尽量简单. 【今日讲题】 例3,例4,例5
【例2】 (★★★) 康仔、阿学两人同时从A地出发前往B地,康仔每分钟走80米,阿学每 分钟走60米.康仔到达B地后,休息了半个小时,然后返回A地,康仔 离开B地15分钟后与正向B地行走的阿学相遇.A、B两地相距_____米.
【例3】 (★★★☆) 甲、乙两人分别从A、B两地同时相向出发,往返跑步,第一次相遇地 点距离AB的中点100米,甲到B地、乙到A地后立即返回,乙的速度保 持不变,甲的速度变为原来的2倍,第二次相遇恰好在AB的中点,那 么,A、B两地相距_______米。
1
【例4】 (★★★☆) A、B两地相距285千米,有甲、乙、丙3人,甲、乙从A地,丙从B地 同时出发相向而行,已知甲每小时行36千米,乙每小时行30千米,丙 每小时行24千米,问几个小时后,丙正好处于甲、乙之间的中点?
【例5】 (★★★☆) 甲与乙、丙两人相距280米. 甲、乙、丙每分钟依次走90米、80米、72 米. 如果他们同时同向出发,那么经过几分钟,甲与乙、丙的距离相 等?
行程问题——方程与比例方法(二)

(完整版)二元一次方程组的运用1(行程问题)

(完整版)二元一次方程组的运用1(行程问题)
等量关系1:火车完全过桥路程=桥的长度+火车的长度
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1:火车完全过桥路程=桥的长度+火车的长度 等量关系2:火车在桥=120 整理,得 X+y=120
3(x-y)=120
x-y=40
解得
x=80 y=40
答:巡逻车的速度是80千米/时,犯 罪团伙的车的速度是40千米/时.
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1: 快车行的路程+慢车行的
客车路程
路程=两列火车的车长和
货车路程
例6:客车和货车分别在两条平行的铁轨上行驶,客车长450米,货车 长600米,如果两车相向而行,那么从两车车头相遇到车尾离开共需21
秒钟;如果客车从后面追赶货车,那么从客车车头追上货车车尾到客车 车尾离开货车车头共需1分45秒,求两车的速度。
作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两
辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油
站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻
车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车
和犯罪团伙的车的速度各是多少?
解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,
货车路程
客车路程
等量关系1:快车行的路程+慢车行的路程=两列火车的车长和
等量关系2:快车行的路程-慢车行的路程=两列火车的车长和

用方程解决行程问题

用方程解决行程问题

1、一辆汽车从南京开往上海要行使360千米,开始按计划以每小时45千米的速度行驶。

途中因汽车故障修车2小时。

如按时赶往上海,修好后的汽车每小时必须行75千米。

问:汽车在离南京多远处出了故障?2、小明家离学校3千米。

他每天骑车以每分钟200米的速度上学,正好准时到。

有一天他出发几分钟后因交通阻塞耽误4分钟。

为了准时到校,后面的路必须每分钟多行100米。

求小明是在离家多远的地方遇阻塞的?】3、汽车以每小时45千米的速度从甲地出发,4小时后到达乙地。

汽车出发1小时候返回甲地取东西,然后立即从甲地出发,为了能在原来的时间内到达乙地,汽车从甲地驶向乙地的速度是多少?4、甲乙两地相距272千米,客车从甲地开往乙地,每小时行驶64千米,半小时后货车从乙地开往甲地每小时行驶56千米,货车开出几小时后和客车相遇?5、甲乙两人分别从相距1980米的两处出发相向而行,甲每分钟步行120米,乙骑车每分钟行225米。

甲出发5分钟后,乙骑车出发,求甲出发几分钟后和乙相遇?6、客货两车从甲乙两地相对开出,客车每小时行68千米,货车每小时行35千米,货车途中因修车停留半小时,共经历4.5小时两车相遇,求甲乙两地的距离。

7、一汽车从A地去B地送货,去时每小时行40千米,返回时因空车每小时行60千米,往返共用7.5小时,求AB两地的距离。

8、轮船上所带燃料最多可以用9小时,顺水是轮船每小时行15千米,逆水时轮船每小时行12千米,轮船最多行多少千米就要往回开?9、ABC三地在一条直线上,AB两地相距1000米,甲乙两人从A地同时向C地行走,甲每分钟走35米,乙每分钟走45米,经过几分钟B地在甲乙两人的中点上10、两列客车从A、B相向而行,甲车每小时行30千米,乙车每小时行25千米。

相遇时,甲比乙多行15千米,求A、B两地相距多少千米?11、两列客车从A、B两地相向而行,甲车每小时行30千米,乙车每小时行25千米。

两车几小时以后在离中点10千米的地方相遇?12、两辆汽车分别从相距580千米的两地相对开出,甲车每小时行45千米,2小时后乙车才出发,乙车每小时行35千米。

列方程解应用题50道

列方程解应用题50道

列方程解应用题50道一、行程问题(10道)1. 甲、乙两地相距300千米,一辆汽车从甲地开往乙地,平均每小时行60千米,行了x小时后,距离乙地还有70千米。

求汽车行驶的时间x。

- 解析:汽车行驶的路程为速度乘以时间,即60x千米。

总路程是300千米,此时距离乙地还有70千米,那么汽车行驶的路程就是300 - 70 = 230千米。

可列方程60x=230,解得x = 23/6小时。

2. 一辆客车和一辆货车同时从相距540千米的两地相对开出,客车每小时行65千米,货车每小时行55千米。

经过x小时两车相遇,求x的值。

- 解析:两车相对而行,它们的相对速度是两车速度之和,即65 + 55 = 120千米/小时。

经过x小时相遇,根据路程=速度×时间,可列方程(65 + 55)x=540,120x = 540,解得x = 4.5小时。

3. 小明和小亮在400米的环形跑道上跑步,小明每秒跑5米,小亮每秒跑3米,他们同时从同一点出发,同向而行,经过x秒小明第一次追上小亮,求x。

- 解析:同向而行时,小明第一次追上小亮时,小明比小亮多跑了一圈,即400米。

小明每秒比小亮多跑5 - 3 = 2米。

可列方程(5 - 3)x = 400,2x = 400,解得x = 200秒。

4. 甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,经过x小时两人还相距10千米,A、B两地相距100千米,求x。

- 解析:甲、乙两人x小时一共走了(8 + 6)x千米,此时两人还相距10千米,而A、B两地相距100千米,可列方程(8+6)x+10 = 100,14x+10 = 100,14x = 90,解得x = 45/7小时。

5. 一辆汽车以每小时45千米的速度从A地开往B地,另一辆汽车以每小时55千米的速度从B地开往A地,两车同时出发,经过x小时相遇,A、B两地相距400千米,求x。

一元一次方程解应用题(行程问题)

一元一次方程解应用题(行程问题)

1、甲乙两站相距318千米,一列慢车从甲站开往乙站,每小时行48千米,慢车开了1小时后,一列快车从乙站开往甲站,每小时行72千米,慢车开了几小时与快车相遇?2、甲乙两人从A地前往B地,乙比甲晚出发40分钟,结果在甲行到离B地还差5千米处,乙追上甲,已知甲每小时行6千米,比乙每小时少行2千米,求AB两地间的路程。

3、一船从甲地沿河顺流而下,9小时到达乙地,按原路返回,则需11小时,已知水流速度是2千米/时,求甲乙两地间的距离。

4、一辆汽车用40千米/时的速度由甲地驶向乙地,车行了3小时后,因遭雨平均速度被迫每小时减少10千米,结果到达乙地的时间比预计时间晚了45分钟,求甲乙两地间的距离。

5、甲骑自行车从A地B地,2小时后,乙步行由A地向B地走去,乙出发2小时后,甲到达B 地,此时乙距B地32千米,乙继续前进,甲在B地休息2小时30分钟后沿原路返回,经过1小时与乙在P地相遇,求此时乙距B地多远?6、一个通讯员骑自行车需要在规定的时间内,把信送到某地,如果每小时走15千米,就早到24分钟;如果每小时走12千米,就要迟到15分钟,问原定时间是多少?他去某地的路程有多远?7、一辆卡车从甲地开往乙地,出发3小时后,一辆轿车也从甲地开往乙地,轿车比卡车晚20分钟到达乙地,已知卡车速度是20千米/时,轿车速度比卡车速度快2倍,求甲乙两地间的距离。

8、甲乙两辆汽车,甲车以每小时40千米的速度从A地出发到B 地,当行了全程的时,乙车从A地以同样的速度出发,这时甲在原地休息了15分钟,乙接到命令要与甲同时到达B地,此时乙车速度每小时增加20千米。

求AB两地间的距离。

9、甲在南北方向的街道上,由南往北走,乙在东西的大路上由西往东走,甲的出发地点距离交叉点1120米,乙的出发地点在交叉点,二人同时出发56分钟后,甲行过交叉点,此时二人所在位置与交叉点距离相等。

已知甲乙的速度比是15:13,求甲乙二人的速度。

10、A、B两地相距630千米,甲乙两人从A地到B地,甲骑摩托车,乙开汽车,甲出发1小时后,乙也从A地出发,又2小时后,在途中遇到甲,两人继续以原速度前进,乙到B地后立即沿原路返回,途中又与甲相遇,已知从甲乙第一次相遇到第二次相遇共用6小时,求甲乙二人的速度。

列方程解应用题-行程问题专题

列方程解应用题-行程问题专题

列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速【典型例题】例1、某队伍长450 ,以的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A城顺流而下,乙船到B地时接到通知,需立即返回到C地执行任务,甲船继续顺流航行。

已知甲、乙两船在静水中的速度都是,水流速度为每小时,A、C两地间的距离为。

如果乙船由A地经B地再到达C地,共用了4 ,问乙船从B地到C地时甲船驶离B地有多远?例3、甲、乙两人在400 长的环形跑道上练习百米赛跑,甲的速度是14 ,乙的速度是16 。

(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。

列方程解应用题行程问题

列方程解应用题行程问题

列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速∴ 顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速∴ 顺水速度-逆水速度=2×水速【典型例题】例1、 某队伍长450m ,以s m 5.1的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是s m 3,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A 城顺流而下,乙船到B 地时接到通知,需立即返回到C 地执行任务,甲船继续顺流航行。

已知甲、乙两船在静水中的速度都是h km 5.7,水流速度为每小时km 5.2,A 、C 两地间的距离为km 10。

如果乙船由A 地经B 地再到达C 地,共用了4h ,问乙船从B 地到C 地时甲船驶离B 地有多远?例3、甲、乙两人在400m长的环形跑道上练习百米赛跑,甲的速度是14m,乙的速度是16m。

(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。

初中列方程解应用题(行程问题)专题

初中列方程解应用题(行程问题)专题

初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。

我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度。

行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。

原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手.下面我们将行程问题归归类,由易到难,逐步剖析.1. 单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。

甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100。

【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间。

【列出方程】310080=-x x 。

例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40.求火车的速度和长度。

【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:【等量关系式】火车min 1行驶的路程=桥长+火车长;火车s 40行驶的路程=桥长—火车长 【列出方程组】⎩⎨⎧-=+=yx y x 100040100060举一反三:1.小明家和学校相距km 15。

小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。

2.根据我省“十二五"铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用方程解行程问题
例1、A、B两地相距259KM,甲从A地开往B地,每时行38KM,半小时后,乙车从B地开往A地,每时行42KM,乙车开出几小时后和甲车相遇?
习题一:
1、甲、乙两地相距716千米,客车从甲地开往乙地,每时行58千米,2小时后,货车从乙地开往甲地,每时行62千米。

货车开出几小时后与客车相遇?
2、小军和小明分别从相距1860米的两地相向出发,小军出发5分钟后小明才出发,已知小军每分钟行120米,小明每分钟行300米。

小明出发几分钟后与小军相遇?
3、甲乙两地相距446千米,快慢两车同时从甲乙两地相对开出。

快车每时行68千米,慢车每时行35千米,中途慢车因修车停留半小时。

求共经过了几小时两车才能相遇?
例2、一辆汽车从甲地开往乙地,平均每小时行20千米,到达乙地后又以每时30千米的速度返回甲地,往返共用7.5小时。

求甲乙两地间的路程。

习题二:
1、汽车从甲地送货到乙地,每时行30千米。

到达后立即返回,每时行40千米。

往返一次共用7时。

求甲乙两地间的路程。

2、一架飞机的燃料最多可用9小时,飞机去时顺风,
每时行可飞行1500千米,返回时逆风,每时飞行1200千米。

这架飞机最多飞出多少千米就要往回飞?
3、师徒二人加工一批零件,师傅每时加工35个,徒弟每时加工28个,师傅先加工了这批零件的一半后,余下的由徒弟一人加工。

二人共用了18小时完成任务。

这批零件共有多少个?
习题三:
1、A、B、C三地在一条线上,如图所示:
A、B两地相距2千米,甲乙两人分别从AB两地同时出发向C地去,甲每分钟走35米,乙每分钟走45米,经过几分钟B地在甲乙两人的中点处?
2、东西两镇相距60千米。

甲骑车要4小时行完全程,乙骑车要5小时行完全程。

现在两人同时从东镇到西镇去,经过几小时后乙余下的路程是甲余下路程的4 倍?
3、老师今年32岁,学生今年8岁,再过几年老师的年龄是学生年龄的3倍?
例4、快慢两车同时从A地到B 地,快车每时行54千米,慢车每时行48千米。

途中快车因故障停留3小时,结果两车同时到达B 地。

求A、B两地间的距离。

习题四:
1、甲每分钟行120米,乙每分钟行80米。

两人同时出发从A
地到B 地,当乙到达B地时,甲已在B 地停留了2分钟。

A、B两地相距多少米?
2、甲乙二人同时从学校骑车到县城,甲每时行15千米,乙每时行20千米。

途中乙因修车停留24分钟,结果二从同时到达县城。

学校到县城有多少千米?
3、兄弟二人同时从家往学校走,哥哥每分钟走90米,弟弟每分钟走70米。

出发1分钟后,哥哥发现少带了铅笔盒,就原路返回,取笔盒后立即赶往学校,结果与弟弟同时到达学校。

他们家离学校有多远?
例5、一位同学在360米长的环形跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米。

求他后一半路程跑了多少时间?
习题五:
1、小明在420米的环形跑道上跑了一圈,已知他前一半时间每秒跑8米,后一半时间每秒跑6米。

求他后一半路程跑了多少时间?
2、小华在240米的跑道上跑了一个来回,已知他前一半时间每秒跑6 米,后一半时间每秒跑4 米。

求他返回时用了多少秒?
3、甲乙两地相距205千米,小王开车从甲地出发,计划5 小时到达乙地。

他前一半时间每小时行36千米,为了按时到达乙地,后一半时间必须每时行多少千米?。

相关文档
最新文档