高三数学一轮复习教案:函数与方程 必修一

合集下载

高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考考点预览
■ ·考点梳理· ■ 1. 函数的零点 (1)函数零点的定义 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点. (2)几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交 点⇔函数y=f(x)有零点.
思考:上述等价关系在研究函数零点、方程的根及 图象交点问题时有什么作用?
思考:若函数y=f(x)在区间(a,b)内有零点,则y= f(x)在区间[a,b]上的图象是否一定是连续不断的一条曲 线,且有f(a)·f(b)<0呢?
提示:不一定.由图(1)、(2)可知.
3.二分法 (1)二分法的定义 对于在区间[a,b]上连续不断且ff((aa))··ff((bb)<0 的函数y= f(x),通过不断地把函数f(x)的零点所在的区间一分为二 , 使区间的两端点逐步逼近零点,进而得到零点的近似值 的方法叫做二分法. (2)用二分法求函数零点近似解的步骤 第一步:确定区间[a,b],验证f(a)·f(b)<0 ,给定精 确度ε;
观察图象可以发现它们有4个交点,即函数y=f(x)- log3|x|有4个零点.
3. [2012·徐州模拟]根据下面表格中的数据,可以判
定方程ex-x-2=0的一个根所在的区间为________.
x
-1 0 1 2
3
ex 0.37 1 2.72 7.39 20.09
x+2 1 2 3 4
5
答案:(1,2)
3. 二分法是求方程的根的近似值的一种计算方法.其 实质是通过不断地“取中点”来逐步缩小零点所在的范 围,当达到一定的精确度要求时,所得区间的任一点就是 这个函数零点的近似值.
4. 要熟练掌握二分法的解题步骤,尤其是初始区间的 选取和最后精确度的判断.

高中数学老教材教案

高中数学老教材教案

高中数学老教材教案
第一课:函数与方程
1.1 学习目标:了解函数的概念,掌握基本的函数图像与性质,能够解决简单的函数方程。

1.2 教学内容:
(1)函数的定义与符号表示
(2)函数的图像与性质
(3)函数方程的解法
1.3 教学重点与难点:
重点:函数的定义、函数图像与性质、函数方程的解法
难点:函数的概念理解、函数方程的解法
1.4 教学过程:
(1)引入:通过举例引入函数的概念,让学生了解什么是函数。

(2)讲解:介绍函数的定义和符号表示,然后讲解函数的图像与性质。

(3)练习:让学生进行简单的函数图像绘制和性质分析。

(4)总结:对函数的概念和性质进行总结,并让学生进行相关练习。

1.5 作业布置:
(1)课后完成相关练习题目
(2)预习下节课的内容
1.6 教学反思:
通过本节课的教学,学生理解了函数的概念和性质,掌握了相关的解题方法。

但在教学过
程中,应该注意让学生更加深入地理解函数的概念,加强与实际问题的联系,提高学生的
学习兴趣和主动性。

以上是一份高中数学教案范本,希望对您有所帮助。

高考数学一轮复习教案

高考数学一轮复习教案

高考数学一轮复习教案教案标题:高考数学一轮复习教案教案目标:1. 确保学生对高考数学考试的各个知识点有全面的了解和掌握。

2. 帮助学生提高解题能力,培养分析和推理的能力。

3. 强化学生的数学思维和解题策略,提高应试能力。

教学内容:本教案主要围绕高考数学考试的各个知识点展开复习,包括代数、函数、几何、概率与统计等内容。

教学步骤:第一步:复习代数知识1. 复习一元二次方程的求根公式和应用。

2. 复习指数与对数的性质和运算法则。

3. 复习不等式的性质和解法。

第二步:复习函数知识1. 复习函数的定义和性质。

2. 复习函数的图像与性质,包括一次函数、二次函数、指数函数和对数函数等。

3. 复习函数的运算法则和复合函数的求解。

第三步:复习几何知识1. 复习平面几何的基本概念和性质。

2. 复习三角函数的定义和性质,包括正弦、余弦和正切等。

3. 复习平面几何中的相似三角形和勾股定理等。

第四步:复习概率与统计知识1. 复习概率的基本概念和计算方法。

2. 复习统计学中的数据收集、整理和分析方法。

3. 复习概率与统计在实际问题中的应用。

第五步:解题技巧和策略的讲解1. 教授解题的基本思路和步骤,包括审题、分析、解答和检查等。

2. 引导学生掌握解题中常用的技巧和策略,如代入法、逆向思维和分类讨论等。

3. 提供一些典型例题和解题方法的讲解和练习。

第六步:模拟考试和反馈1. 安排模拟考试,模拟高考数学试卷的形式和要求。

2. 收集学生的答卷并进行批改,给予详细的评价和建议。

3. 针对学生的错误和不足,进行有针对性的指导和讲解。

教学评估:1. 教师对学生的参与度和理解程度进行观察和评估。

2. 模拟考试的成绩和学生的答卷质量作为评估指标。

3. 学生对教学内容的反馈和问题的解答情况作为评估依据。

教学资源:1. 高考数学教材和辅助教材。

2. 高考数学模拟试卷和真题。

3. 多媒体设备和投影仪等。

教学延伸:1. 鼓励学生进行自主学习和拓展阅读,加深对数学知识的理解和应用能力。

高考数学一轮复习教学案函数及其表示(含解析)

高考数学一轮复习教学案函数及其表示(含解析)

第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。

高考数学一轮复习函数与方程

高考数学一轮复习函数与方程
3.二分法的定义
对于在区间[a,b]如图象连续不断且f(a)f(b)<0的函数y=f(x),通过不
断地把它的零点所在区间 一分为二 ,使所得区间的两个端点逐步逼近零

点,进而得到零点近似值的方法叫做二分法.
目录
4.用二分法求函数y=f(x)零点x0的近似值的一般步骤
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0;
目录

(多选)有如下说法,其中正确的有


A.函数f(x)的零点为x0,则函数f(x)的图象经过点(x0,0)时,函数值一定
变号
B.连续不断的函数,相邻两个零点之间的所有函数值保持同号
C.函数f(x)在区间[a,b]上连续,若满足f(a)·f(b)<0,则方程f(x)=0
在区间[a,b]上一定有实根
c)(x-a)的两个零点分别位于区间 (

A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
解析:A 函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b
<c,则a-b<0,a-c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f
知,当直线y=2mx的斜率在kOA,kOB之间时,有三个交点,即kOA<2m<
1
1
1
1
kOB,因为kOA=- ,kOB=1,所以- <2m<1,解得- <m< .
3
3
6
2
答案 (2)A
目录
|解题技法|
利用函数零点求参数(范围)的方法
目录
考向2 探究函数多个零点(方程根)问题
− 2 −2, ≤ 0,

高考数学第一轮复习教案-专题2函数概念与基本初等函数

高考数学第一轮复习教案-专题2函数概念与基本初等函数
函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因 为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数 才是同一函数. (3)反函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.

高三数学第一轮复习教案

高三数学第一轮复习教案作为一位杰出的教职工,常常需要用到教案,教案有助于学生知道并掌控系统的知识。

教案要怎么写呢?这里给大家分享一些关于高三数学第一轮复习教案,方便大家学习。

高三数学第一轮复习教案教学准备教学目标数列求和的综合运用教学重难点数列求和的综合运用教学进程典例分析3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式(2)求{|an|}的前n项和Tn4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=5.已知方程(___2-2___+m)(___2-2___+n)=0的四个根组成一个首项为的等差数列,则|m-n|=6.数列{an}是等差数列,且a1=2,a1+a2+a3=12(1)求{an}的通项公式(2)令bn=an___n,求数列{bn}前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有值,并求出它的值.已知数列{an},an∈N______,Sn=(an+2)2(1)求证{an}是等差数列(2)若bn=an-30,求数列{bn}前n项的最小值0.已知f(___)=___2-2(n+1)___+n2+5n-7(n∈N______)(1)设f(___)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列(2设f(___)的图象的顶点到___轴的距离构成数列{dn},求数列{dn}的前n项和sn.11.购买一件售价为5000元的商品,采取分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每个月利息按复利运算(上月利息要计入下月本金),那么每期应对款多少?(精确到1元)12.某商品在最近100天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)=-t/3+109/3(0≤t≤100)求这种商品的日销售额的值注:对于分段函数型的运用题,应注意对变量___的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过比较,肯定值高三数学复习计划一、背景分析最近3年高考数学命题很安稳,坚持了稳中求改、稳中创新的原则。

新人教A版版高考数学一轮复习第二章函数概念与基本初等函数函数与方程教案文

一、知识梳理1.函数的零点函数零点的概念对于函数y =f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y =f(x)(x∈D)的零点方程的根与函数零点的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点函数零点的存在性定理函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,若f(a)·f (b)<0,则y=f(x)在(a,b)内存在零点2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数两个一个零个有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.二、习题改编1.(必修1P92A组T5改编)函数f(x)=ln x—错误!的零点所在的大致范围是()A.(1,2)B.(2,3)C.错误!和(3,4)D.(4,+∞)答案:B2.(必修1P88例1改编)f(x)=e x+3x的零点个数是()A.0 B.1C.2D.3答案:B3.(必修1P92A组T4改编)函数f(x)=x错误!—错误!错误!的零点个数为.答案:1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.()(3)二次函数y=ax2+bx+c(a≠0)在b2—4ac<0时没有零点.()(4)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.()答案:(1)×(2)×(3)√(4)√二、易错纠偏错误!(1)忽略限制条件致误;(2)错用零点存在性定理致误.1.函数f(x)=(x—1)ln(x—2)的零点个数为()A.0 B.1C.2D.3解析:选B.由x—2>0,得x>2,所以函数f(x)的定义域为(2,+∞),所以当f(x)=0,即(x—1)ln(x—2)=0时,解得x=1(舍去)或x=3.2.已知函数f(x)=2ax—a+3,若∃x0∈(—1,1),使得f(x0)=0,则实数a的取值范围是.解析:依题意可得f(—1)·f(1)<0,即(—2a—a+3)(2a—a+3)<0,解得a<—3或a>1.答案:(—∞,—3)∪(1,+∞)函数零点所在区间的判断(师生共研)(一题多解)函数f(x)=log3x+x—2的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】法一(定理法):函数f(x)=log3x+x—2的定义域为(0,+∞),并且f(x)在(0,+∞)上单调递增,图象是一条连续曲线.由题意知f(1)=—1<0,f(2)=log32>0,f(3)=2>0,根据零点存在性定理可知,函数f(x)=log3x+x—2有唯一零点,且零点在区间(1,2)内.法二(图象法):函数f(x)的零点所在的区间转化为函数g(x)=log3x,h(x)=—x+2图象交点的横坐标所在的范围.作出两个函数的图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.【答案】B错误!判断函数零点所在区间的方法方法解读适合题型定理法利用函数零点的存在性定理进行判断能够容易判断区间端点值所对应函数值的正负图象法画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断容易画出函数的图象设f(x)=3x—x2,则在下列区间中,使函数f(x)有零点的区间是()A.[0,1] B.[1,2]C.[—2,—1] D.[—1,0]解析:选D.因为f(x)=3x—x2,所以f(—1)=3—1—1=—错误!<0,f(0)=30—0=1>0,所以f(—1)·f(0)<0.函数零点个数的判断(师生共研)(一题多解)函数f(x)=错误!的零点个数为()A.3B.2C.1D.0【解析】法一(方程法):由f(x)=0,得错误!或错误!解得x=—2或x=e.因此函数f(x)共有2个零点.法二(图形法):函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点.【答案】B错误!判断函数零点个数的3种方法(1)方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)定理法:利用定理不仅要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)图形法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.已知函数f(x)=错误!则f(x)的零点个数为()A.0 B.1C.2D.3解析:选C.当x>1时,令f(x)=ln(x—1)=0,得x=2;当x≤1时,令f(x)=2x—1—1=0,得x=1.故选C.函数零点的应用(师生共研)设函数f(x)=错误!(1)若a=1,则f(x)的最小值为;(2)若f(x)恰有2个零点,则实数a的取值范围是.【解析】(1)若a=1,则f(x)=错误!作出函数f(x)的图象如图所示.由图可得f(x)的最小值为—1.(2)当a≥1时,要使f(x)恰有2个零点,需满足21—a≤0,即a≥2,所以a≥2;当a<1时,要使f(x)恰有2个零点,需满足错误!解得错误!≤a<1.综上,实数a的取值范围为错误!∪[2,+∞).【答案】(1)—1(2)错误!∪[2,+∞)错误!利用函数零点求参数取值范围的方法及步骤(1)常用方法(2)一般步骤1.函数f(x)=2x—错误!—a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)解析:选C.由题意,知函数f(x)在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以错误!即错误!解得0<a<3,故选C.2.已知函数f(x)=错误!若函数g(x)=f(x)—m有3个零点,则实数m的取值范围是.解析:画出函数f(x)=错误!的图象,如图所示.由于函数g(x)=f(x)—m有3个零点,结合图象得0<m<1,即m∈(0,1).答案:(0,1)3.若函数f(x)=4x—2x—a,x∈[—1,1]有零点,则实数a的取值范围是.解析:因为函数f(x)=4x—2x—a,x∈[—1,1]有零点,所以方程4x—2x—a=0在[—1,1]上有解,即方程a=4x—2x在[—1,1]上有解.方程a=4x—2x可变形为a=错误!错误!—错误!,因为x∈[—1,1],所以2x∈错误!,所以错误!错误!—错误!∈错误!.所以实数a的取值范围是错误!.答案:错误!核心素养系列5直观想象——用图形快速解决的常见几类题直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括:借助空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述分析数学问题,建立形与数的联系,构建数学问题的直观模型,探索解决问题的思路.一、利用图形研究函数的性质【解析】由已知条件得f(x+2)=f(x),则y=f(x)是以2为周期的周期函数,1正确;当—1≤x≤0时,0≤—x≤1,f(x)=f(—x)=错误!错误!,函数y=f(x)的部分图象如图所示:由图象知2正确,3不正确;当3<x<4时,—1<x—4<0,f(x)=f(x—4)=错误!错误!,因此4正确,故正确命题的序号为124.【答案】124错误!作出函数图象,由图象观察可得函数的定义域、值域、最值、单调性、奇偶性、极值点等性质,并将这些性质用于转出条件求得结论.二、利用图形解不等式使log2(—x)<x+1成立的x的取值范围是.【解析】在同一直角坐标系内作出y=log2(—x),y=x+1的图象,知满足条件的x∈(—1,0).【答案】(—1,0)错误!f(x),g(x)之间大小不等关系表现为图象中的上下位置关系,画出两个函数的图象,根据函数图象的交点和图象的相对位置确定所求不等式的解集.三、利用图形求解不等式中的参数范围若不等式|x—2a|≥错误!x+a—1对x∈R恒成立,则a的取值范围是.【解析】作出y=|x—2a|和y=错误!x+a—1的简图,依题意知应有2a≤2—2a,故a≤错误!.【答案】错误!错误!对含有参数的函数不等式问题,一般将不等式化简,整理、重组、构造两个函数,一个含有参数,一个不含参数,研究两个函数的性质,画出两个函数的图象,观察参数的变化如何带动含参函数图象的变化,根据两函数图象的相对位置确定参数满足的不等式,解不等式得出参数a的取值范围.四、利用图形研究零点问题已知函数f(x)=2x+x,g(x)=log3x+x,h(x)=x—错误!的零点依次为a,b,c,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】在同一直角坐标系下分别画出函数y=2x,y=log3x,y=—错误!的图象,如图,观察它们与y=—x的交点可知a<b<c,故选A.【答案】A错误!零点的个数等价于两函数图象交点的个数,零点的范围、大小可以转化为交点的横坐标的范围、大小,参数的取值范围通过图象的变化寻找建立不等式求解.1.函数f(x)=|x—2|—ln x在定义域内的零点的个数为()A.0 B.1C.2D.3解析:选C.由题意可知f(x)的定义域为(0,+∞),在同一直角坐标系中画出函数y1=|x—2|(x>0),y2=ln x(x>0)的图象,如图所示.由图可知函数f(x)在定义域内的零点个数为2.2.已知函数f(x)=错误!若f(a2)<f(2—a),则实数a的取值范围是.解析:函数f(x)的图象如图所示,由图象知函数f(x)在(—∞,+∞)上单调递增,所以a2<2—a,解得—2<a<1,故实数a的取值范围是(—2,1).答案:(—2,1)[基础题组练]1.(2020·福州期末)已知函数f(x)=错误!则函数y=f(x)+3x的零点个数是()A.0 B.1C.2D.3解析:选C.令f(x)+3x=0,则错误!或错误!解得x=0或x=—1,所以函数y=f(x)+3x 的零点个数是2.故选C.2.下列函数中,在(—1,1)内有零点且单调递增的是()A.y=log错误!xB.y=2x—1C.y=x2—错误!D.y=—x3解析:选B.函数y=log错误!x在定义域上单调递减,y=x2—错误!在(—1,1)上不是单调函数,y=—x3在定义域上单调递减,均不符合要求.对于y=2x—1,当x=0∈(—1,1)时,y=0且y=2x—1在R上单调递增.故选B.3.(2020·甘肃酒泉敦煌中学一诊)方程log4x+x=7的解所在区间是()A.(1,2)B.(3,4)C.(5,6)D.(6,7)解析:选C.令函数f(x)=log4x+x—7,则函数f(x)是(0,+∞)上的单调递增函数,且是连续函数.因为f(5)<0,f(6)>0,所以f(5)·f(6)<0,所以函数f(x)=log4x+x—7的零点所在区间为(5,6),所以方程log4x+x=7的解所在区间是(5,6).故选C.4.(2020·内蒙古月考)已知函数f(x)=x2—2|x|—m的零点有两个,则实数m的取值范围为()A.(—1,0)B.{—1}∪(0,+∞)C.[—1,0)∪(0,+∞)D.(0,1)解析:选B.在同一直角坐标系内作出函数y=x2—2|x|的图象和直线y=m,可知当m>0或m=—1时,直线y=m与函数y=x2—2|x|的图象有两个交点,即函数f(x)=x2—2|x|—m有两个零点.故选B.5.已知函数f(x)=x e x—ax—1,则关于f(x)的零点叙述正确的是()A.当a=0时,函数f(x)有两个零点B.函数f(x)必有一个零点是正数C.当a<0时,函数f(x)有两个零点D.当a>0时,函数f(x)只有一个零点解析:选B.f(x)=0⇔e x=a+错误!(x≠0),在同一直角坐标系中作出y=e x与y=错误!的图象,观察可知A,C,D选项错误,选项B正确.6.已知函数f(x)=错误!+a的零点为1,则实数a的值为.解析:由已知得f(1)=0,即错误!+a=0,解得a=—错误!.答案:—错误!7.(2020·新疆第一次适应性检测)设a∈Z,函数f(x)=e x+x—a,若x∈(—1,1)时,函数有零点,则a的取值个数为.解析:根据函数解析式得到函数f(x)是单调递增的.由零点存在性定理知若x∈(—1,1)时,函数有零点,需要满足错误!⇒错误!—1<a<e+1,因为a是整数,故可得到a的可能取值为0,1,2,3.答案:48.已知f(x)=x2+(a2—1)x+(a—2)的一个零点比1大,一个零点比1小,则实数a的取值范围是.解析:法一:设方程x2+(a2—1)x+(a—2)=0的两根分别为x1,x2(x1<x2),则(x1—1)(x2—1)<0,所以x1x2—(x1+x2)+1<0,由根与系数的关系,得(a—2)+(a2—1)+1<0,即a2+a—2<0,所以—2<a<1.故实数a的取值范围为(—2,1).法二:函数f(x)的图象大致如图,则有f(1)<0,即1+(a2—1)+a—2<0,得a2+a—2<0,所以—2<a<1.故实数a的取值范围是(—2,1).答案:(—2,1)9.设函数f(x)=ax2+bx+b—1(a≠0).(1)当a=1,b=—2时,求函数f(x)的零点;(2)若对任意b∈R,函数f(x)恒有两个不同的零点,求实数a的取值范围.解:(1)当a=1,b=—2时,f(x)=x2—2x—3,令f(x)=0,得x=3或x=—1.所以函数f(x)的零点为3或—1.(2)依题意,f(x)=ax2+bx+b—1=0有两个不同的实根,所以b2—4a(b—1)>0恒成立,即对于任意b∈R,b2—4ab+4a>0恒成立,所以有(—4a)2—4×(4a)<0⇒a2—a<0,解得0<a<1,因此实数a的取值范围是(0,1).10.已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)—f(x)=2x—1.(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)—mx的两个零点分别在区间(—1,2)和(2,4)内,求m的取值范围.解:(1)由f(0)=2得c=2,又f(x+1)—f(x)=2x—1,得2ax+a+b=2x—1,故错误!解得a=1,b=—2,所以f(x)=x2—2x+2.(2)g(x)=x2—(2+m)x+2,若g(x)的两个零点分别在区间(—1,2)和(2,4)内,则满足错误!⇒错误!解得1<m<错误!.所以m的取值范围为错误!.[综合题组练]1.(一题多解)函数f(x)=2x—错误!零点的个数为()A.0 B.1C.2D.3解析:选B.法一:当x<0时,f(x)=2x—错误!>0恒成立,无零点;又易知f(x)=2x—错误!在(0,+∞)上单调递增,最多有一个零点.又f错误!=错误!—2<0,f(1)=2—1>0,所以有一个零点.故选B.法二:在同一平面直角坐标系中,作出函数y=2x和y=错误!的图象,如图所示.函数f(x)=2x—错误!的零点等价于2x=错误!的根等价于函数y=2x和y=错误!的交点.由图可知,有一个交点,所以有一个零点.故选B.2.已知命题p:“m=2”是“幂函数f(x)=(m2—m—1)x m在区间(0,+∞)上为增函数”的充要条件;命题q:已知函数f(x)=ln x+3x—8的零点x0∈[a,b],且b—a=1(a,b∈N*),则a+b=5.则下列命题为真命题的是()A.p∧qB.(﹁p)∧qC.﹁qD.p∧(﹁q)解析:选A.对于命题p,若幂函数f(x)=(m2—m—1)x m在区间(0,+∞)上为增函数,则错误!解得m=2,所以命题p是真命题,﹁p是假命题.对于命题q,函数f(x)=ln x+3x—8在(0,+∞)上单调递增,且f(2)=ln 2—2<0,f(3)=ln 3+1>0,所以零点x0∈[a,b],且b—a=1(a,b∈N*),则a=2,b=3,a+b=5,所以命题q为真命题,﹁q为假命题.所以p∧q 是真命题,(﹁p)∧q,﹁q,p∧(﹁q)都是假命题.故选A.3.设函数f(x)=错误!(x>0).(1)作出函数f(x)的图象;(2)当0<a<b,且f(a)=f(b)时,求错误!+错误!的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围.解:(1)如图所示.(2)因为f(x)=错误!=错误!故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,由0<a<b且f(a)=f(b),得0<a<1<b,且错误!—1=1—错误!,所以错误!+错误!=2.(3)由(1)中函数f(x)的图象可知,当0<m<1时,方程f(x)=m有两个不相等的正根.所以m的取值范围是(0,1).4.(创新型)已知函数f(x)=—x2—2x,g(x)=错误!(1)求g(f(1))的值;(2)若方程g(f(x))—a=0有4个实数根,求实数a的取值范围.解:(1)利用解析式直接求解得g(f(1))=g(—3)=—3+1=—2.(2)令f(x)=t,则原方程化为g(t)=a,易知方程f(x)=t在t∈(—∞,1)上有2个不同的解,则原方程有4个解等价于函数y=g(t)(t<1)与y=a的图象有2个不同的交点,作出函数y=g (t)(t<1)的图象,如图,由图象可知,当1≤a<错误!时,函数y=g(t)(t<1)与y=a有2个不同的交点,即所求a的取值范围是错误!.。

第07讲函数与方程(课件)-2024年高考数学一轮复习(新教材新高考)

范围是________.
【答案】 −∞, −1
2
当 < 0时,令′ = 0,解得 = 0或 = − ,
【解析】因为 = 3 + 3 2 − 4,所以′ = 3 2 + 6 = 3 + 2
当 = 0时,有 = 3 2 − 4 = 0,解得 = ± 2 3,
公共点.
N
Q
Z
R
N
(3)函数零点存在定理
如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有
f(a)f(b)<0
(a,b) 内至少有一个零点,即存
__________,那么,函数y=f(x)在区间
在c∈(a,b),使得 f(c)=0 ,这个c也就是方程f(x)=0的解.
2.二分法
2
−∞, −
=
2
2
2
−∞, −
2

当 ∈ 0, − ,′ > 0, 在区间 0, − 上单调递增;
当 > 0时,由′ = 0,解得 = 0或 = − ,
2
且有 0 = −4, −
> 0,
, 存在一个正数零点,所以不符合题意;
2 3
,0
3
2
2 3
3
2024
高考一轮复习
第07讲 函数与方程
导师:稻壳儿
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
网络构建
知识梳理
题型归纳
真题感悟
01
考情分析
考点要求
考题统计
考情分析

2020年数学(理)一轮复习: 函数与方程


返回
2.函数 f(x)=exx2-+x2-x,2,x<x≥0 0, 的零点个数是____2____. 解析:当 x<0 时,令 f(x)=0,即 x2+2x=0,解得 x=-2 或 x=0(舍去),所以当 x<0 时,只有一个零点;当 x≥0 时, f(x)=ex-x-2,而 f′(x)=ex-1,显然 f′(x)≥0,所以 f(x) 在[0,+∞)上单调递增,又 f(0)=e0-0-2=-1<0,f(2)= e2-4>0,所以当 x≥0 时,函数 f(x)有且只有一个零点.综 上,函数 f(x)只有 2 个零点.
B.[1,+∞)
C.(0,1)
D.(-∞,1]
返回
[解析] (1)画出函数 f(x)的大致图象如 图所示.因为函数 f(x)在 R 上有两个零点, 所以 f(x)在(-∞,0]和(0,+∞)上各有一个 零点.当 x≤0 时,f(x)有一个零点,需 0<a≤1;当 x>0 时, f(x)有一个零点,需-a<0,即 a>0.综上,0<a≤1,故选 A.
>f13=13
1 3

结合图象可得13<x0<12.
返回
( C)
返回
3.(2019·河北武邑中学调研)函数f(x)=3x-7+ln x的零点位 于区间(n,n+1)(n∈N)内,则n=____2____. 解析:因为f(x)在(0,+∞)上单调递增,且f(2)=-1+ln 2< 0,f(3)=2+ln 3>0,所以函数f(x)的零点位于区间(2,3)内, 故n=2.
返回
[规律探求]
考法(一)是根据函数零点的个数及零点存在情况求参数 范围,解决此类问题通常先对解析式变形,然后在同一 坐标系内画出函数的图象,数形结合求解. 考法(二)是根据函数零点所在区间求参数,解决此类问题 看 应先判断函数的单调性,再利用零点存在性定理,建立 个 参数所满足的不等式,解不等式,即得参数的取值范围. 性 考法(三)是求函数零点的和,求函数的多个零点(或方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修Ⅰ—08 函数与方程
1、函数的零点与方程的根:一般地,对于函数
()f x ,如果存在实数c ,当x c =时,()0f c =,那么把x c = 叫做函数()f x 的零点.解方程()0f x =,即得()f x 的所有零点.
2、二分法的基本思想:
(1)先找到a b 、,使(),()f a f b 异号,说明在区间()a b 、内一定有零点,然后求()2
a b f +. (2)假设()0,()0,f a f b a b <><,如果()2a b f +=0,该点就是零点;如果()2
a b f +<0,则在区间(,)2a b b +内有零点,如果()2a b f +>0,则在区间(,)2
a b a +内有零点, (3)按上述方法再求该区间中点的函数值,这样就可以不断接近零点.通过每次把()f x 的零点所在小
区间收缩一半的方法,使区间的两个端点逐步逼近函数的零点,以求得零点的近似值,这种方法叫做二分法.
3、函数的零点存在性:
如果函数()f x 在区间(,)a b 上是连续不间断的,且()()0f a f b ⋅<,则函数()f x 在区间(,)a b 上
存在实数c ,当x c =时,
()0f c =, x c =称为函数()f x 在区间(,)a b 上的一个零点.它只能判定函数在区间上有零点,但不能判定具体个数.
例1、 已知函数
2()log f x x =,问方程()0f x =在区间1,44⎡⎤⎢⎥⎣⎦上有没有实数根,为什么?
例2、 用二分法求函数
3()3f x x =-的一个正实数零点(精确到0.1).
例3、 若函数2()f x x ax b =++的两零点为—2和3,则方程(2)0f x -=的解是 .
例4、 已知二次函数2()f x ax bx c =++.若,a b c >>且(1)0f =,试证明()f x 必有两个零点.。

相关文档
最新文档