波利亚解题实例
波利亚“怎样解题表”在解题中的应用——以一道圆锥曲线压轴题为例

波利亚“怎样解题表”在解题中的应用——以一道圆锥曲线压轴题为例摘要:数学解题教学,重在教会学生解题的方法,帮助学生养成良好的解题习惯。
本文通过波利亚的“怎样解题表”的解题的四个步骤: 阐明问题、制定计划、实施计划、回顾和反思,演绎解决一道圆锥曲线压轴题的具体过程,并给出一些解题教学建议。
关键词:波利亚解题表;解题方法;圆锥曲线《义务教育数学课程标准(2011年版)》提出“让学生在现实情境中体验什么是数学”。
初中数学教学注重培养学生的问题解决能力。
数学教育家波利亚指出:“中学数学教学的首要任务是加强问题解决的训练。
”这种“解题”不同于“题海战术”。
他认为,问题解决应该作为培养学生数学能力和教他们思考的一种手段,方法。
[1]波利亚《怎样解题》中为人们提供了一套系统的解题途径,这有利于人们掌握解题过程的一般规律,也有利于数学教师探索解题教学的一般规律。
笔者结合2015年课标全国卷(Ⅱ)的圆锥曲线压轴题论述“怎样解题表”在数学解题教学中的应用。
一、问题的由来——2015年课标全国卷(Ⅱ)的圆锥曲线压轴题案例:已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。
(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(1/3m,m),延长线段OM与C交与点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由。
二、寻觅依据——波利亚解题“解题四部曲”本研究通过圆锥曲线问题来激发学生对数学问题解决的兴趣,转变学生对待数学解题的态度,培养学生的解题思维。
为了提高学生解决问题的能力,波利亚把解决数学问题的过程分为四个阶段:阐明问题、制定计划、实施计划、回顾和反思。
[2]对每个阶段要考虑的问题,思维活动,具体要做什么,有什么建议,都进行了很详细的叙述,多方面地考虑到了学生在解题过程中会面临的问题。
“弄清问题”是我们拿到一道题首先要考虑的问题,理解题目,找出未知量,分析已知条件,找出已知条件与未知量之间的联系,需要的话还可引进相关符号,让学生充分理解题目的含义。
基于波利亚数学解题思想的解题教学——以圆锥曲线的“最值问题”为例

解题研究2023年12月上半月㊀㊀㊀基于波利亚数学解题思想的解题教学以圆锥曲线的 最值问题 为例◉哈尔滨师范大学㊀刘思宁㊀吴丽华㊀㊀摘要:本文中以高考中圆锥曲线的 最值问题 为例,探析波利亚解题思想在数学解题教学中的应用,寻找能够启发学生数学思维的解题教学方法.关键词:波利亚;解题教学;圆锥曲线㊀㊀圆锥曲线是高中数学的重要内容,也是高考数学重点考查的内容.这部分内容对于学生来说比较吃力,故本文中以圆锥曲线的 定值㊁最值问题 为例,探析波利亚解题思想在圆锥曲线解题教学中的应用.1波利亚的解题理论一个好的解法是如何想出来的? 这是大部分学生在完成数学作业中一直困惑的问题.波利亚[1]在«怎样解题»中的每一个问题就像是解决问题思维过程的慢镜头动作 ,也像是我们解决问题时内心的独白.第1步:理解题意[2].理解问题的含义是波利亚 如何解决问题表 的第一步,即检查问题.学生应该熟悉问题,并回忆起相关的知识,以找到未知的数量㊁已知的数据和条件,并用数学符号表达条件给出的信息.第2步:拟定方案.拟定方案是问题解决的中心环节,关键是要找到已知条件和所求问题之间的密切关联,从而形成一个可行的解题方案.学生要根据头脑中原有的数学知识结构找到与所求问题之间的桥梁.第3步:执行方案.方案拟定完成,这个阶段学生要做的是认真写下解题过程,确保条件充分使用,在解决过程中准确无误,思路清晰.第4步:回顾.回顾是检查问题解决活动的过程,也是问题解决活动中一个重要也很容易被忽视的环节.我们得出的解决问题的方法,要经得起 特殊 的检验,哪怕有特殊个体出现也适用才行,因为,我们找到的解决方法需要能重复使用,甚至能解决其他领域的问题.解答完后还需要复盘,找到可以改进的地方.2解题教学方法探析笔者试图将解题教学策略应用在圆锥曲线的综合问题中,以近年来圆锥曲线常考的问题,如轨迹方程,圆锥曲线有关的最值问题为例.图1例题㊀如图1,已知点F (1,0)为抛物线y 2=4x 的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得әA B C 的重心G 在x 轴上,直线A C 交x 轴于点Q ,且Q 在点F 的右侧.记әA F G ,әC Q G 的面积分别为S 1,S 2.求S 1S 2的最小值.解题分析:第1步:理解题目.教师:未知是什么?学生:S 1S 2的最小值.教师:已知是什么?学生:焦点F (1,0);抛物线方程y 2=4x ;әA B C 的重心G 在x 轴上;Q 在点F 的右侧.教师:条件是什么?学生:过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得әA B C 的重心G 在x 轴上,直线A C 交x 轴于点Q ,且Q 在点F 的右侧.记әA F G ,әC Q G 的面积分别为S 1,S 2.教师:是否满足条件?学生:满足条件.①根据三角形重心性质构建三角形面积之比;②通过相似三角形和三角形的性质将面积比转化为底边之比;③利用面积和纵坐标之间的关系,借助基本不等062023年12月上半月㊀解题研究㊀㊀㊀㊀式㊁最值求解方法㊁韦达定理,求得比值的最小值.教师:要确定条件是否充分?是否多余?是否矛盾?学生:条件应该是充分的.①已知点G 为三角形的重心,可得әA F G 和әC Q G 与әA B C 面积比值.设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),这里y 1>0,将面积之比转化为边长之比,再由边长之比转化为坐标之比.②由三角形重心坐标公式,得y 1+y 2+y 3=0,将直线与椭圆方程联立,通过韦达定理进一步得出S 1S 2.③根据最值知识点求解问题.点评:题目当中所蕴含的条件比较多,需要学生对其进行一一分析,体会条件与条件的关系.第2步:制定计划.教师:本题与以前做过的题目相类似吗?由此能联想到什么学生:有过类似的题目.能联想到三角形高线性质㊁焦点弦㊁最值的求解问题等.教师:解决此类问题有什么常用方法?学生:有几何问题代数化法,利用函数求最值等.教师:能以其他方法叙述这道题目吗?学生:①抛物线上三点A ,B ,C 形成三角形,三角形的重心在x 轴上;②根据重心的相关性质,将面积之比转化为点的纵坐标之比,得出S 1S 2;③利用换元法简化算式,化简后结合函数的单调性求解.点评:结合题目给出的条件,从已知推未知,梳理思路,建立联系.第3步:执行计划.教师:上述解题思路是正确的吗?学生:是正确的.根据三角形重心,得出әA F G 和әC Q G 与әA B C 面积的关系,再转化为纵坐标之比;根据三角形重心坐标公式,找出纵坐标y 1,y 2,y 3的关系进行转化;针对问题建立关于参数的函数式,利用函数单调性或者求极值的方法求最值,并结合换元法来简化计算.教师:能否证明它是正确的?学生:延长A G ,交线段B C 于点P ,由әA B C 的重心为点G ,可得A G ʒG P =2ʒ1,所以S әB G C =13S әA B C .同理,可得S әA G C =13S әA B C ,S әC G Q =|C Q ||A C |S әA G C .又因为|C Q ||A C |=|y 3||y 3|+y 1,所以S әC G Q =S 2=|y 3||y 3|+y 1S әA B C 3.又|A F ||A B |=y 1|y 2|+y 1,所以S әA F G =S 1=|A F ||A B | S әA B C 3=y 1|y 2|+y 1 S әA B C 3.故S 1S 2=y 1|y 2|+y 1 |y 3|+y 1|y 3|.根据三角形重心坐标公式,可知y 1+y 2+y 3=0.因为直线A C 交x 轴于点Q ,且Q 在点F 的右侧,所以只需点C 在点B 的右侧,即y 3<y 2,y 3=-y 1-y 2.将过F 的直线A B 与抛物线方程联立,由韦达定理,得y 1y 2=-4,所以S 1S 2=y 1|y 2|+y 1 |y 3|+y 1|y 3|=2y 21+y 1 y 2|y 1+y 2| (y 1-y 2),化简,可得S 1S 2=2y 21-4y 21-y 22=2y 14-4y 21y 14-16.令y 21=t ,则有S 1S 2=2t 2-4t t 2-16=2+32-4t t 2-16=2-4ˑt -8t 2-16.令t -8t 2-16=u ,对u 求导,得u ᶄ=-t 2+16t -16(t 2-16)2.令u ᶄ=0,根据条件可知t >4,所以t =8+43,可知所求的t 为u 的最大值点,此时S 1S 2最小,将t =8+43代入可求得S 1S 2的最小值等于1+32.点评:整个解题过程建立在数形结合的基础之上,这个过程需要学生有一定的运算能力,通过最值问题的求解提升学生的数学运算核心素养和推理论证能力.第4步:回顾.教师:此题主要考查了哪些知识点?解决最值问题可以从哪些变量入手?学生:三角形面积的比值的最小值问题,其中涉及了抛物线㊁直线方程㊁重心性质㊁韦达定理等基础知识,考查了运算求解与转换化归的思想.求函数最值常用配方法㊁单调性法㊁判别式法㊁基本不等式法㊁导数法和换元法等搭配使用.点评:本题所涉及的知识点较多,运用的方法也比较多元,计算量大,需要学生有很强的逻辑思维才能完成.通过此题的练习,学生在解圆锥曲线最值问题的求解方面会有很大突破.在解决问题的过程中,教师需要把握教学目标,巩固学生对已学知识的认知结构,丰富学生对问题的认知体验,培养学生解决问题的能力和兴趣.以波利亚[1]的«怎样解题»为依据,教师也应立足主题,充分发挥主题的价值,并运用到实际教学中.参考文献:[1]波利亚.怎样解题[M ].涂泓,冯承天,译.上海:上海科技教育出版社,2002.[2]周晨晨.浅谈波利亚四步解题法在数学解题中的应用 以一道高考圆锥曲线题为例[J ].数学学习与研究,2020(5):133G134.Z16。
用波利亚思想教学生解题案例及反思

45。得到的. 师:以前做过类似的题吗? 生:似乎没有. 师:对于要求的" 0 ) * 的面积,你会什么? 生 :已知三角形的三个顶点的坐标时,会求三角形
的面积!现在不知道点)、* 的坐标. 师 :好 ,前进了一步!现在问题转化为求点)、* 的坐
著 名 数 学 教 育 家 波 利 亚 在 《怎 样 解 题 》一 书 中 指 出 : “一 个 好 的 教 师 应 该 懂 得 并 且 传 授 给 学 生 下 述 看 法 :没 有 任 何 问 题 是 可 以 解 决 得 十 全 十 美 的 ,总 剩 下 些 工 作 要 做 .经 过 充 分 的 探 讨 与 钻 研 ,我 们 能 够 改 进 这 个 解 答 ,而 且 在 任 何 情 况 下 ,我 们 总 能 提 高 自 己 对 这 个 解 答 的 理 解
2. 罗增儒.数学解题学引论[M].西安 :陕西师范大学 出版社,1997.
3. 刘 春 书 . 寻 思 维 起 点 揭 问 题 本 质 — 对一道中 考题变式分析及探索[J ].中学数学(下),2017(4).
初中 版 十 •?农 *? 9 3
1 解法探究
2017年 9 月
2 ! T )的直线与曲线湘交于点" 、# ,其中曲线!是由函
一 、教 学 实 录 师:题目需要求什么问题? 生:题目要求$ 0 * + 的面积. 师:题目已知什么条件?你能复述吗? 生 :题 目 已 知 过 点 '(- 4 % 1 ,4 " 1 ) 、)(2 " 2 ,
解题的前提是观察和分析题目,关键是联想和类比,而基 本的数学结构形式是联想和类比的基础.在解决本文问 题 时 构 造 的 基 本 几 何 图 形 有 圆 、直 角 三 角 形 、相似三角 形.初中数学中常用的构造方法有:构造方程,构造恒等 式 ,构造函数,构造几何图形,构造对偶式,构造不等式, 构 造 数 学 模 型 等 .构 造 法 是 一 种 灵 活 的 、创 造 性 的 解 题 方 法 ,它没有固定的程序和模式,构造法解题贵在创新, 这非常有利于培养学生的创新意识和创新精神,值得我 们重视.
例说波利亚“怎样解题表”在中学数学中的应用-2019年精选文档

例说波利亚“怎样解题表”在中学数学中的应用本文从波利亚的“怎样解题表”出发,结合具体的例子,在具体的例子中一步一步地讲解波利亚的“怎样解题表”在解数学题时的步骤和思想,来回答一个好的解法是如何想出来的.下面是实践波利亚解题表的一个示例.例已知点P(3,4) 是椭圆+ = 1 (a > b > 0)上的一点,F1,F2 是椭圆的两焦点,若PF1⊥PF2,试求椭圆方程.讲解第一,弄清问题.问题1 你要求解的是什么?要求解的是椭圆方程,在思维中的位置用一个单点F象征地表示出来(图1-1).问题2 有哪些已知条件?一方面是题目条件中给出的点P(3,4) ,椭圆上PF1⊥PF2;另一个方面是已经在平面几何中学习过的直角三角形的一些性质和椭圆中半焦距c和长半轴a,短半轴b之间的关系,即a2 - b2 = c2. 把已知的两个量添到图示处(图1-1)就得到了新添的两个点P ,Q(其中Q表示PF1⊥PF2);它们与F之间有条鸿沟,表示要求解的问题和已知的量没有直接的联系,我们的任务就是要将要求解的量F和已知的量联系起来.第二,拟定计划.问题3 怎样才能求出F?我们已经知道了椭圆经过点P和一个Rt△PF1F2 ,如果能够确定椭圆方程中的两个参数a和b,那么我们就能够求解椭圆的方程了,于是问题转化成求a和b.(1) 我们在图示上添加进两个新的点a和b,用斜线把它们和F连接起来,以此来表示a,b这两个量和F之间的联系(图1-2即式(1)的几何图示),这样我们就把问题转化为确定a和b的值了.问题4 怎样求得a和b?我们根据已知条件Rt△PF1F2,再结合整个图形,我们可以知道直角三角形斜边的中线等于斜边的一半,也就是说坐标原点到点P的距离等于半焦距c. 我们在图示上(图1-2)再添加两个点半焦距c,和L(L表示线段OP的长度,其中O表示坐标原点),连接c和L,表示c和L有相等的关系. 连接Q和c,Q和L,表示c和L相等的关系是由Q推出来的. 连接P和L,表示L的长度是由点P的坐标确定的,从而c = L = = 5. 我们要求解的是a和b 的值,因此很自然地想到在椭圆中还隐藏着这样的关系:a2 - b2 = c2,于是我们连接a和c,b和c(图1-3),表示c和a,b有 a2 - b2 = c2的关系,再连接a和b表示b可以用a表示,即b2 = a2 - 25. 这时椭圆方程可以写成:+ = 1. 同时我们还应注意到点P在椭圆上还没有用到,因此我们连接P和a(图1-3),表示把P点的坐标代入椭圆方程 + = 1. 一个未知数,一个方程恰好可以解出a,从而椭圆的方程就确定了.至此,我们已在F与P ,Q之间建立起了一个不中断的联络网,解题思路全部沟通.第三,实现计划.连接OP(图1-3).∵ PF1⊥PF2∴ PF1F2 是直角三角形,∴|OP| =|F1F2| = c.又|OP| = = 5.∴ c = 5,∴椭圆的方程为: + = 1.∵点P(3,4) 在椭圆上,∴ += 1,解得a2 = 45或 a2 = 5(舍去),故所求的椭圆方程为+ = 1.第四,回顾.(1) 正面校验每一步,推理是合理的,有效的,计算是精确的. 本题也可作特殊性检验,即按照两点之间的距离公式分别求解出线段PF1和 PF2的长度,再验证△PF1F2能否成为直角三角形;同时验证|PF1| + |PF2|是否等于 2a.(2) 还能用其他的方法得到这个结果吗?,条条大道路罗马,万事都不是绝对的,我们应该在信念上坚信每道题目都是有多种解法的,那么本例有没有其他解法呢?有,下面是本例的另解.如图1-1所示,令F1(-c,0), F2(c,0).∵ PF1⊥PF2∴ k ∪k =-1,即∪= -1,解得c = 5.∴椭圆的方程为: + = 1(以下步骤同上述解答).(3) “能将本例的方法用于其他的问题吗?能,我们看到解决本例的关键在于分析已知条件后得到:|OP| = |F1F2| = c,或者k ∪k =-1. 可见,这是解决本例的“泉眼”,勤于分析已知条件,对于培养解数学题的“灵感”是非常有必要的.小结回顾这个解题过程,“怎样解题表”包含四部分内容:弄清问题、拟订计划、实现计划、回顾.波利亚说:“ 弄清问题是为好念头的出现做准备;制订计划是试图引发它;在引发之后,我们实现它;回顾此过程和求解的结果,是试图更好地利用它.” 解题的过程实际上是一个不断地变更问题的过程(如上文中分析的将求F转化成求a和b,再将求a和b转化为求c),通过不断地变更问题,引入新的量,从而在未知量和已知量之间建立起“桥梁”,使得未知量和已知量最终处于“通路”的状态.注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”。
波利亚的解题过程

波利亚的解题过程 SANY GROUP system office room 【SANYUA16H-波利亚解题“怎样解题”思路剖析例题例题:如图11所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.(1)求证:BC与⊙O相切.(2)若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长.(一)通过审题,弄清问题,培养学生分析已知条件的习惯审题过程就是要审清题目数量关系,知道该道题讲的是什么,并能找出已知条件,使题目的条件、问题及其关系在学生头脑中建立起完整的印象,为正确分析数量关系和解答问题创造良好的前提条件。
对题中揭示数量关系的关键句要反复推敲,理解它的真实含义,对题中揭示数量关系的关键句要反复推敲,理解它的真实含义。
讲解第一步、弄清问题:1.(1)问中求证的是什么?(2)中未知数是什么你能复述它吗?答:(1)中求证BC与⊙O相切,(2)中要求我们求AD的长。
2.已知数据是什么?你能复述它吗?可以用数学语言来叙述题意吗可以画张图吗答:已知:AB是⊙O的直径(如上图11),AD是弦,∠DBC=∠A.则我们由图可知∠ADB是⊙O的圆周角,等于90°,那么∠A+∠ABD=90°。
(2)中已知OC是BD的垂直平分线,垂足为E,BD=6,CE=43.条件是什么?答:AB是⊙O的直径(如上图11),AD是弦,∠DBC=∠A4.满足上述条件(1)是否可能成立?能否求出AD的长答:满足上述条件(1)能成立。
但不能求出AD的长,如果要求出AD的长那么我们还有加上一下条件即可:OC是BD的垂直平分线,垂足为E,BD=6,CE=45.要确定未知数,条件是否充分?答:要确定未知数,如上所述是充分的。
6.是否需要引入适当的符号?如果需要,分别有哪些?有什么含义答:一般情况下做这些几何类型的题目为了方便书写和理解我们都会适当引入符号,但这题相对比较简单易懂,就不需要引入了,如果在很多线,很复杂的图形中就必须得引入。
波利亚解题方法1

例:如果一条直线平行于一个平面,那么垂直于这条直线的
平面必垂直于这个平面.
讲解
第一步、弄清问题:
你要求证的是什么?
要求证的是平面与平面垂直.
已知些什么?
一条直线平行于一个平面,另一个平面垂直于这条直线. 可以用数学语言来叙述题意吗?可以画张图吗?
已知: 直线a∥平面α,直线a⊥平面β.求证:平面α⊥平面β.
第二步、拟定计划:
怎样证明两个平面垂直?
要证明平面α⊥平面β,只要在其中一个平面内找到另一个平面的垂线即可。
怎样找到另一个平面的垂线呢?
由直线a⊥平面β,根据直线和直线平行的性质定理,只要在平面α内找到一条和直线a平行的直线,这直线必定垂直于平面β。
怎样在平面α内找到这条直线呢?
而由直线和平面平行的性质定理可知,只须过直线a任意作一个平面γ和平面α相交于直线b,则交线b⊥平面β, 由此可证明结论成
立.
解题计划:直线a∥平面α,可找平面α内的直线b,a∥b 可得直线b⊥平面β,b⊥平面β且平面α经过直线b结论可得证。
第三步、实现计划:
证明:过直线a任作一个平面γ,和平面α相交于直b,
因为直线a∥平面α,a∥b,直线a⊥平面β,所以b⊥平面β而平面α过直线b,则平面α⊥平面β.
第四步、回顾:
回顾解题过程可以看到,解题首先要弄清题意,从中捕捉有用的信息,同时又要及时提取记忆中的有关识,来拟定出
一个成功的计划。
此题我们在思维策略上是二层次解决问题,首先根据直线和平面平行的性质定理找到直线b,然后根据
直线和直线平行的性质定理及平面与平面垂直的判定定理
得证。
波利亚的解题过程

波利亚解题“怎样解题”思路剖析例题例题:如图11所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.(1)求证:BC与⊙O相切.(2)若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长.(一)通过审题,弄清问题,培养学生分析已知条件的习惯审题过程就是要审清题目数量关系,知道该道题讲的是什么,并能找出已知条件,使题目的条件、问题及其关系在学生头脑中建立起完整的印象,为正确分析数量关系和解答问题创造良好的前提条件。
对题中揭示数量关系的关键句要反复推敲,理解它的真实含义,对题中揭示数量关系的关键句要反复推敲,理解它的真实含义。
讲解第一步、弄清问题:1.(1)问中求证的是什么?(2)中未知数是什么你能复述它吗?答:(1)中求证BC与⊙O相切,(2)中要求我们求AD的长。
2.已知数据是什么?你能复述它吗?可以用数学语言来叙述题意吗可以画张图吗答:已知:AB是⊙O的直径(如上图11),AD是弦,∠DBC=∠A.则我们由图可知∠ADB是⊙O的圆周角,等于90°,那么∠A+∠ABD=90°。
(2)中已知OC是BD的垂直平分线,垂足为E,BD=6,CE=43.条件是什么?答:AB是⊙O的直径(如上图11),AD是弦,∠DBC=∠A4.满足上述条件(1)是否可能成立?能否求出AD的长答:满足上述条件(1)能成立。
但不能求出AD的长,如果要求出AD的长那么我们还有加上一下条件即可:OC是BD的垂直平分线,垂足为E,BD=6,CE=45.要确定未知数,条件是否充分?答:要确定未知数,如上所述是充分的。
6.是否需要引入适当的符号?如果需要,分别有哪些?有什么含义答:一般情况下做这些几何类型的题目为了方便书写和理解我们都会适当引入符号,但这题相对比较简单易懂,就不需要引入了,如果在很多线,很复杂的图形中就必须得引入。
7.把条件的各个部分分开,你能否把它们写下来?答:能。
AB是⊙O的直径AD是弦,∠DBC=∠AOC是BD的垂直平分线,垂足为E,BD=6,CE=4(1)已知:AB是⊙O的直径,AD是弦,∠DBC=∠A.求证:BC与⊙O相切.(2)已知:AB是⊙O的直径,AD是弦,∠DBC=∠A.BC与⊙O相切,OC是BD的垂直平分线,垂足为E,BD=6,CE=4求解:AD的长效果:通过以上的审题和分析已知条件,使学生弄清了题意并数学化,同时大脑中有了一个平面模型,更清晰地了解题目。
波利亚解题表中提示语应用的几个例证

2k +2 (。 k一1 1
坐 { 标 l
I
= = =一
1 +
IY= 一
2k ( 一2 k一1 1
图1
比较 X 两 个 式 子 , 、Y 作如 下 变 形
8 l 一8
数 学教 学
21年 第 8 00 期
双 曲线 中蝶形 面积 的最值
2 80 江苏省宿迂中学 陈炳堂 20 3
,●● ●●,、●●- ./
一
、
问题的由来
1 如 1 F 椭 《+5 1 ~ 6 图 , 为 圆 :~(> 点 n
.
6
7
曼 . 善 与 的 学罂 手 教 好 帮 皇 >)焦 ,B 为 点 弦A 上 0 点A、 ,8 的 D 趣 令 人 爱 不释 手 . 味 读 饶 D 来有 F … … 磊 葛 矣 舅z … … 一 一~ 一
的轨 迹正 好 是 以 AB 为直径 的 圆X - = 8( 4Y 如
图 1 )
例 2 已知 k∈R , 两 条 动 直 线 k 求 x— Y+
2k+1 =0 ( ) 和 +k +2k ) 的交点 P y ( 一1 =0
的轨迹 方 程 .
分析 1 根据题意联立方程组解 出交 点 P的 :
1
1
例3 ( 人教第三版必修 ̄P 3 例题 2 假设 17 ) 你 家 订 了一 份 报 纸,送 报 人 可 能 在早 上 63 :0—
73 之 间把报纸送到 你家,你父亲离开家去工 :0
作 的 时 间 在 早 上 7O ^8 O 间,问 你 父 亲 在 :0 一 :0之
以 种 况的 率 这 情 概 是专× × 专 专:言三 相 ,者
1+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用波利亚的解题方法解题 在△ABC 中,C B A ∠∠∠,,所对的边分别是c b a ,,,且,43
cos cos ,10===a b
B A
c p 为
ABC V 内切圆上的动点.求点p 到顶点C B A ,,的距离的平方和的最小值与最大值。
【分析】:
第一步:理解题意。
本题的条件是(i)c=10,(ii),43
cos cos ==a b
B A
(iii)P 是ABC V 内切圆上的动点,所
求的结论是要求出P 点到A ,B ,C 三顶点的距离的平方和的最值。
由此可得,这是一道关于图形的最值问题。
第二步:拟订计划.
设想以前未曾遇到过这个问题,但曾见过也解过与此密切相关的两类问题: 第一,已知三角形某些边角之间的数量关系,要求判断这三角形的形状或解出它。
第二,在一确定的三角形中的某曲线上有一动点,求这点到三角形顶点或三边的距离和平方和的最小值。
于是原问题可分列为两个较为简单的问题:
① a ,b ,c 为ABC V 的三边,且c=10,,43
cos cos ==a b B A ,试确定△ABC 的形
状及其大小。
② 确定的ABC V 的内切圆上有一动点P ,试求PA 2+PB 2+PC 2的最小值与最大
值。
对①小题,ABC V 已具备了三个条件式,这类问题据以前的经验,只要对数式进行适当的推算,三角形不难解出来.对于②小题,在确定了三角形的形状大小以后,因涉及内切圆上一个动点,拟引入直角坐标系,即能利用解析法列出目标函数,其最值也可用一般的代数三角方法顺利求出。
至此,一个比较完整的解题计划可以说是拟定了。
第三步:实现计划: 由,cos cos a b B A
=用正弦定理做代换,得,sin sin cos cos A B
B A =
即B B A A cos sin cos sin ⋅=⋅或A B 2sin 2sin =, 因为,34
cos cos =B A
知B A ≠,且B A ,是三角形内角,
所以,22B A -=π即,2π
=+A B
所以ABC V 是直角三角形.
再由c=10,43
=a b 及222c b a =+,可解得a=6,b=8.
如图1,建立直角坐标系,使直角△ABC 的三个顶点
为A (8,0),B (0,6),C (0,0).在直角ABC V 中,有,2,2=+=+r r c b a
所以,内切圆的圆心为),2,2(O '方程为4)2()2(22=-+-y x .
设圆上的任一点为P (x,y ),则有 S=222PC PB PA ++
因P 是内切圆上的点,故o ≤z ≤4,于是当z=4时,有最小值72,当x=o 时,有最大值88。
第四步:回顾讨论.
对于上面解题过程的运算检验无误后可考虑:
x=O 时,P 点运动到BC 上的M ,此时的所求平方和最大值为88;当x=4时,P 点运动到过M 的直径的另一端点N ,此时得所求平方和最小值为72.
此外,能否用别的方法来导出结果呢对第①小题也可一开始用余弦定理作代换,对第②小题除选择不同的位置建立坐标系外,圆上的动点P 也可以利用参数式表示,于是有好几种解法(略).
本题虽然是一道不复杂的综合题,但善于解题的人也会从中获得一些有益的经验.
(1)如果本题前部分不用正弦或余弦定理作代换,后半部分不使用解析法,虽仍能设法确定三角形并推导出目标函数,但解题过程的繁杂呈度明显上升.这说明,对于同样的素材(题设条件),选用不同的加工方法(解题方法),其繁简程度是有显着区别的.
(2)从上题的解答中,我们可以认识到图形中的最值常在动点位于某些特殊位置时产生.
(3)数形结合,会使计算大为简化,并且可能揭露问题.。