高二数学反证法
高二 选修反证法

所以假设不成立,
从而______________________. x ≠a且 x ≠b
可能出现矛盾四种情况:
• • • • 与题设矛盾; 与反设矛盾; 与公理、定理矛盾; 在证明过程中,推出自相矛盾的结论.
例 2
用反证法证明 : 如果a b 0, 那么 a b .
反设
归谬
结论
反证法:
• 要证明某一结论A是正确的,但不直接 证明,而是先去证明 A 的反面(非 A ) 是错误的,从而断定A是正确的. • 即反证法就是通过否定命题的结论而 导出矛盾来达到肯定命题的结论、完 成命题的论证的一种数学证明方法. • 反证法常证唯一性命题、否定性命题、 绝对性命题以及正面证明有困难的其 它问题.
反馈练习
用反证法证明,若(x-a)(x-b)≠0,则x ≠a且x ≠b. x=a 或_________, x=b 证明 假设_________
(x-a)(x-b)=0 x=a 由于____________ 时,_________________,
与 (x-a)(x-b)≠0矛盾,
x=b 时,_________________, (x-a)(x-b)=0 又_________
反证法
小故事
路边苦李
古时候有个人叫王戎,7岁那年 的某一天和小伙伴在路边玩,看见 一棵李子树上的果实多得把树枝都 快压断了,小伙伴们都跑去摘,只 有王戎站着没动。他说:“李子是 苦的,我不吃。”小伙伴摘来一尝, 李子果然苦的没法吃。
小伙伴问王戎:“这就怪了!你又 没有吃,怎么知道李子是苦的啊?”
2 2
2、若函数 (x)=a f x bx c不是偶函数,则b 0。
2
人教课标版高中数学选修1-2:《反证法》教案-新版

2.2.2 反证法一、教学目标1.核心素养培养学生用反证法证明简单问题的推理技能,进一步培养分析能力、逻辑思维能力及解决问题的能力2.学习目标(1)理解反证法的概念(2)体会反证法证明命题的思路方法及反证法证题的步骤(3)会用反证法证明简单的命题3.学习重点对反证法的概念和三个步骤的理解与掌握.4.学习难点理解“反证法”证明得出“矛盾的所在”即矛盾依据.二、教学设计(一)课前设计【学习过程】1.预习任务任务1预习教材P42—P43,思考:什么是反证法?你以前学过反证法吗?任务2反证法证明问题的步骤是什么?值得注意的问题哪些?2.预习自测1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()①结论相反的判断,即假设②原命题的条件③公理、定理、定义等④原结论A.①②B.①②④C.①②③D.②③答案:C【知识点:三角形内角和的性质,命题的否定,反证法】由反证法的定义可知应选C.2.如果两个实数之和为正数,则这两个数()A.一个是正数,一个是负数B.两个都是正数C.两个都是非负数D.至少有一个是正数答案:D3.已知a+b+c>0,ab+bc+ca>0,abc>0,用反证法求证a>0,b>0,c>0时的假设为()A.a<0,b<0,c>0B.a≤0,b>0,c>0C.a,b,c不全是正数D.abc<0答案:C4.否定“至多有两个解”的说法中,正确的是()A.有一个解B.有两个解C.至少有两个解D.至少有三个解答案:D(二)课堂设计1.知识回顾著名的“道旁苦李”的故事:王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友摘了李子一尝,原来是苦的.他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这棵树上却结满了李子,所以李子一定是苦的.”王戎的论述运用了什么推理思想?王戎的推理方法是:假设李子不苦,则因树在“道”边,李子早就被别人采摘而没有了,这与“多李”产生矛盾.所以假设不成立,李为苦李.2.问题探究问题探究一反证法的概念●活动一1.什么是反证法?引例:证明:在一个三角形中至少有一个角不小于60°.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个不小于60°.∆的三个内角∠A,∠B,∠C都小于60°,证明:假设ABC则有∠A <60°,∠B < 60°,∠C <60°,∠A+∠B+∠C<180°这与三角形内角和等于180°相矛盾.所以假设不成立,所求证的结论成立.先假设结论的反面是正确的,然后通过逻辑推理,推出与公理、已证的定理、定义或已知条件相矛盾,说明假设不成立,从而得到原结论正确.这种证明方法就是——反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.反证法也称归谬法●活动二1.常用词语的反义词从上面的引例可以看出:用反证法证明问题时,都是得到一系列矛盾结果,会出现一些反义词,因此,同学们要注意常见词语的反义词,你知道哪些反义词呢?下面是一些常见反义词:问题探究二反证法的证题的基本步骤●活动一反证法的证明过程从前面的引例中你可以总结出反证法证明问题有哪些步骤?反证法的证明过程:否定结论——推出矛盾——肯定结论,即分三个步骤:反设—归谬—存真反设——假设命题的结论不成立;归谬——从假设出发,经过一系列正确的推理,得出矛盾;存真——由矛盾结果,断定反设不成立,从而肯定原结论成立.●活动二归谬矛盾的方法思考一下,归谬矛盾的方法有哪些?归谬矛盾主要有以下方法:(1)与已知条件矛盾.(2)与假设矛盾或自相矛盾.(3)与已有公理、定理、定义、事实矛盾.●活动三反证法证明问题的适用范围同学们知道用反证法证明问题的范围有哪些吗?是不是所有的问题反证法都适用?反证法证明问题的适用范围(1)否定性命题;(2)限定式命题;(3)无穷性命题;(4)逆命题;(5)某些存在性命题;(6)全称肯定性命题;(7)一些不等量命题的证明;(8)基本命题;(9)结论以“至多……”“至或少……”的形式出现的命题等.问题探究三反证法可以解决哪些问题?●活动一用反证法证明否(肯)定式命题例1 设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.【知识点:函数的零点,命题的否定,反证法;数学思想:函数与方程】详解:假设f(x)=0有整数根n,则an2+bn+c=0(n∈Z).而f(0),f(1)均为奇数,即c 为奇数,a+b为偶数,则an2+bn=-c为奇数,即n(an+b)为奇数.∴n,an+b均为奇数.又a+b为偶数,∴an-a为奇数,即a(n-1)为奇数,∴n-1为奇数,这与n为奇数矛盾.∴f(x)=0无整数根.点拔:(1)此题为否定形式的命题,直接证明很困难,可选用反证法.证题的关键是根据f(0),f(1)均为奇数,分析出a,b,c的奇偶情况,并应用.(2)对某些结论为肯定形式或者否定形式的命题的证明,从正面突破较困难时,可用反证法.通过反设将肯定命题转化为否定命题或将否定命题转化为肯定命题,然后用转化后的命题作为条件进行推理,推出矛盾,从而达到证题的目的.●活动二用反证法证明“唯一性”命题例2 若函数f(x)在区间[a,b]上的图象连续不断开,f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有一个零点.【知识点:函数的零点,函数的单调性,命题的否定,反证法】详解:由于f(x)在[a,b]上的图象连续不断开,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f (x )在(a ,b )内至少存在一个零点,设零点为m ,则f (m )=0,假设f (x )在(a ,b )内还存在另一个零点n ,且n ≠m .,使f (n )=0,若n >m ,则f (n )>f (m ),即0>0,矛盾;若n <m ,则f (n )<f (m ),即0<0,矛盾.因此假设不正确,即f (x )在(a ,b )内有且只有一个零点.点拔:证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”、“只有一个”、“唯一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其唯一性就较简单明了.●活动三 用反证法证明“至多、至少”问题例3 已知x ,y >0,且x +y >2.求证:1+x y ,1+y x 中至少有一个小于2.【知识点:不等式的性质,不等式的证明,命题的否定,反证法】详解: 假设1+x y ,1+y x 都不小于2,即1+x y ≥2,1+y x ≥2.∵x >0,y >0,∴1+x ≥2y,1+y ≥2x .∴2+x +y ≥2(x +y ).即x +y ≤2,这与已知x +y >2矛盾.∴1+x y ,1+y x 中至少有一个小于2.点拔:反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个等.例4 设二次函数2()f x x px q =++,求证:(1),(2),(3)f f f 中至少有一个不小于12. 【知识点:不等式的性质,绝对值不等式的性质,不等式的证明,命题的否定,反证法】 详解:假设(1),(2),(3)f f f 都小于12,则 .2)3()2(2)1(<++f f f (1)另一方面,由绝对值不等式的性质,有2)39()24(2)1()3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确.点拔:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行.议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况.试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?●活动四利用反证法证题时,假设错误而致误例5 已知a,b,c是互不相等的非零实数.求证:三个方程ax2+2bx+c=0,bx2+2cx+a =0,cx2+2ax+b=0至少有一个方程有两个相异实根.【错解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac<0,Δ2=4c2-4ab<0,Δ3=4a2-4bc<0,相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2<0,即(a-b)2+(b-c)2+(c-a)2<0,此不等式不能成立,所以假设不成立,即三个方程中至少有一个方程有两个相异实根.【知识点:方程的根,反证法】【错因分析】上面解法的错误在于认为“方程没有两个相异实根就有Δ<0”,事实上,方程没有两个相异实根时Δ≤0.【正解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,即(a-b)2+(b-c)2+(c-a)2≤0,(*)由题意a,b,c互不相等,所以(*)式不能成立.所以假设不成立,即三个方程中至少有一个方程有两个相异实根.点拔:用反证法证题要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.3.课堂总结【知识梳理】(1)反证法:假设原命题的反面正确,根据已知条件及公理、定理、定义,按照严格的逻辑推理导出矛盾.从而说明假设不正确,得出原命题正确.(2)反证法是间接证明的一种方法,在证明否定性命题、唯一性命题和存在性命题时运用反证法比较简便.(3)反证法的基本步骤是:①反设——假设命题的结论不成立,即假设原结论的反面为真;②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾的结果;③存真——由矛盾结果,断定反设不真,从而肯定结论成立.【难点突破】用反证法证题时,应注意的事项:(1)周密考察原命题结论的否定事项,防止否定不当或有所遗漏.(2)推理过程必须完整,否则不能说明命题的真伪性.(3)在推理过程中,要充分使用已知条件,否则推不出矛盾,或者不能断定推出的结果是错误的.(4)反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个.(5)归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.4.随堂检测1.用反证法证明“如果a>b,那么3a>3b”的假设内容应是()A.3a=3bB.3a<3bC.3a≤3bD.3a≥3b答案:C【知识点:不等式的性质,绝对值不等式的性质,不等式的证明,命题的否定,反证法】“大于”的对立面为“小于等于”,故应假设“3a ≤3b ”.2.否定“任何一个三角形的外角都至少有两个钝角”时正确的说法为( )A .存在一个三角形,其外角最多有一个钝角B .任何一个三角形的外角都没有两个钝角C .没有一个三角形的外角有两个钝角D .存在一个三角形,其外角有两个钝角答案:A【知识点:三角形的性质,命题的否定,反证法】原命题的否定为:存在一个三角形,其外角最多有一个钝角.3.用反证法证明命题:若a 、b 是实数,且|a -1|+|b -1|=0,则a =b =1时,应作的假设是________.答案:a ≠1或b ≠1.【知识点:命题的否定,反证法】∵“a =b =1”的否定为“a ≠1或b ≠1”,故应填a ≠1或b ≠1.4.证明方程2x =3有且仅有一个实根.【知识点:命题的否定,反证法】证明:∵2x =3,∴x =32,∴方程2x =3至少有一个实根.设x 1,x 2是方程2x =3的两个不同实根,则⎩⎨⎧2x 1=3, ①2x 2=3, ② 由①-②得2(x 1-x 2)=0,∴x 1=x 2,这与x 1≠x 2矛盾.故假设不正确,从而方程2x =3有且仅有一个实根.三、智能提升★基础型 自主突破1.(2013·海口高二检测)用反证法证明命题:三角形三个内角至少有一个不大于60°时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°答案:B三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°,故B正确.2.实数a,b,c不全为0等价于()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0答案:D【知识点:命题的否定,反证法】实数a,b,c不全为0,即a,b,c至少有一个不为0,故应选D.3.(1)已知p3+q3=2,求证p+q≤2.用反证法证明时,可假设p+q≥2.(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下结论正确的是()A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确答案:D【知识点:命题的否定,反证法】(1)的假设应为p+q>2;(2)的假设正确.答案是D4.下列命题不适合用反证法证明的是()A.同一平面内,分别与两条相交直线垂直的两条直线必相交B.两个不相等的角不是对顶角C.平行四边形的对角线互相平分D.已知x,y∈R,且x+y>2,求证:x,y中至少有一个大于1答案:C【知识点:命题的否定,反证法】A中命题条件较少,不易正面证明;B中命题是否定性命题,其反设是显而易见的定理;D 中命题是至少性命题,其结论包含两种情况,而反设只有一种情况,适合用反证法证明.5.命题“三角形中最多只有一个内角是直角”的否定是_____________.答案:三角形中最少有两个内角是直角【知识点:三角形的性质,命题的否定,反证法】“最多”的反面是“最少”,故本题的否定是:三角形中最少有两个内角是直角.能力型 师生共研1.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c 中( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2答案:C【知识点:基本不等式,命题的否定,反证法】假设都大于-2,则1116a b c b c a+++++>-,又()112a a a a ⎡⎤+=--+≤-=-⎢⎥-⎣⎦,同理12b b +≤-,12c c +≤-, 故1116a b c b c a+++++≤-,矛盾.即a +1b ,c +1a ,b +1c 中至少有一个不大于-2,所以答案C . 2.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________. 答案:a 、b 不全为0【知识点:命题的否定,反证法】“a 、b 全为0”即“a =0且b =0”,因此它的反设为“a ≠0或b ≠0,3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.答案:③①②【知识点:三角形的性质,命题的否定,反证法】4.甲乙丙三位同学中,有一位同学做了一件好事,这时候老师问他们三人,是谁做的?甲说:"丙做的.”丙说:“不是我做的.”乙也说:“不是我做的.”如果知道他们三个人中,有两人说了假话,有一人说真话,你能判断出是谁做的吗?【知识点:推理与证明,命题的否定,反证法】解:每人讲的话中都有一句真话,一句假话.乙说:“我没有做这件事,丙也没有做这件事.”说明乙丙两人中有一人做了这件事,甲一定没做而甲说:“我没有做这件事,乙也没有做这件事.”前一句是真的,后一句一定是假的.所以,是乙做的这件好事!5.用反证法证明:无论m 取何值,关于x 的方程x 2-5x +m =0与2x 2+x +6-m =0至少有一个有实数根.【知识点:推理与证明,命题的否定,反证法】解:假设存在实数m ,使得这两个方程都没有实数根,则⎩⎨⎧ Δ1=25-4m <0,Δ2=1-8(6-m )<0,解得⎩⎪⎨⎪⎧ m >254,m <478,无解.与假设存在实数m 矛盾.故无论m 取何值,两个方程中至少有一个方程有实数根.6.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.【知识点:不等式的证明,命题的否定,反证法】证明: 假设a <0,由abc >0得bc <0,由a +b +c >0,得b +c >-a >0,于是ab +bc +ca =a (b +c )+bc <0,这与已知矛盾.又若a =0,则abc =0,与abc >0矛盾,故a >0,同理可证b >0,c >0.探究型 多维突破1.若x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,则a ,b ,c 中是否至少有一个大于0?请说明理由.【知识点:推理与证明,实数非负性,命题的否定,反证法】解:假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +π2+y 2-2z +π3+z 2-2x +π6=(x -1)2+(y -1)2+(z -1)2+π-3,因为π-3>0,且无论x ,y ,z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,所以a +b +c >0.这与假设a +b +c ≤0矛盾.因此,a,b,c中至少有一个大于0.2.如下图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;(2)用反证法证明:直线ME与BN是两条异面直线.【知识点:线面垂直,面面垂直,异面直线,命题的否定,反证法】解:(1)如图,取CD的中点G,连接MG,NG,∵ABCD,DCEF为正方形,且边长为2,∴MG⊥CD,MG=2,NG=2.∵平面ABCD⊥平面DCEF,∴MG⊥平面DCEF.∴MG⊥GN.∴MN=MG2+GN2=6.(2)证明假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN∩平面DCEF=EN.由已知,两正方形ABCD和DCEF不共面,故AB⊄平面DCEF.又AB∥CD,∴AB∥平面DCEF,∴EN∥AB,又AB∥CD∥EF.∴EF∥NE,这与EF∩EN=E矛盾,故假设不成立.∴ME与BN不共面,它们是异面直线.(四)自助餐1.用反证法证明命题“若a,b∈N,ab可以被7整除,则a,b中至少有一个能被7整除”,其假设正确的是()A.a,b都能被7整除B.a,b都不能被7整除C.a不能被7整除D.a,b中有一个不能被7整除答案:B【知识点:推理与证明,命题的否定,反证法】“至少有一个”的否定是“一个也没有”.所以选B.2.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形的内角中最多有一个钝角”的反面是“三角形的内角中没有钝角”,其中正确的叙述有()A.0个B.1个C.2个D.3个答案:B【知识点:推理与证明,命题的否定,反证法】①错,应为a≤b.②对.③错,应为三角形的外心在三角形内或三角形的边上.④错,应为三角形的内角中有2个或3个钝角.即选B.3.设正实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于()A.1 3B.1 2C.3 4D.2 5答案:A【知识点:推理与证明,命题的否定,反证法】假设a,b,c中至少有一个数不小于x的反命题成立,即假设a,b,c都小于x,即a<x,b<x,c<x,∴a+b+c<3x.∵a+b+c=1,∴3x>1.∴x>13,若取x=13就会产生矛盾.故选A.4.下列命题错误的是()A.三角形中至少有一个内角不小于60°B.四面体的三组对棱都是异面直线C.闭区间[a,b]上的单调函数f(x)至多有一个零点D.设a、b∈Z,若a、b中至少有一个为奇数,则a+b是奇数答案:D【知识点:推理与证明,命题的否定,反证法】a+b为奇数⇔a、b中有一个为奇数,另一个为偶数,故D错误.因此选D.5.已知α∩β=l,a⊂α,b⊂β,若a,b为异面直线,则()A.a,b都与l相交B.a,b中至少有一条与l相交C.a,b中至多有一条与l相交D.a,b都不与l相交答案:B【知识点:推理与证明,命题的否定,反证法】逐一从假设选项成立入手分析,易得B是正确选项,故选B.6.以下各数不能构成等差数列的是()A.3,4,5B.2,3, 5C.3,6,9D.2,2, 2答案:B【知识点:推理与证明,命题的否定,反证法】假设2,3,5成等差数列,则23=2+5,即12=7+210,此等式不成立,故2,3,5不成等差数列.7.“任何三角形的外角都至少有两个钝角”的否定应是________.答案:存在一个三角形,其外角最多有一个钝角【知识点:命题的否定,反证法】“存在一个三角形,其外角最多有一个钝角”.“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.8.设二次函数f(x)=ax2+bx+c(a≠0)中,a、b、c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.【知识点:函数的奇偶性,推理与证明,命题的否定,反证法】证明设f(x)=0有一个整数根k,则ak2+bk=-c.①又∵f(0)=c,f(1)=a+b+c均为奇数,∴a+b为偶数,当k为偶数时,显然与①式矛盾;当k为奇数时,设k=2n+1(n∈Z),则ak2+bk=(2n+1)·(2na+a+b)为偶数,也与①式矛盾,故假设不成立,所以方程f(x)=0无整数根.9.如图,已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a.求证:b与c是异面直线.【知识点:线面平行,线线平行,推理与证明,命题的否定,反证法】证明:证明:假设b,c不是异面直线,则①b∥c;②b∩c=B.①若b∥c,∵a∥c,∴a∥b,与a∩b=A矛盾,∴b∥c不成立.②若b∩c=B,∵c⊂β,∴B∈β.又A∈β,A∈b,∴b⊂β.又b⊂α,∴α∩β=b.又α∩β=a,∴a与b重合.这与a∩b=A矛盾.∴b∩c=B不成立.∴b与c是异面直线.10.若下列方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.【知识点:判别式,不等式组的解法,命题的否定,反证法】解:设三个方程均无实根,则有⎩⎨⎧ Δ1=16a 2-4(-4a +3)<0,Δ2=(a -1)2-4a 2<0,Δ3=4a 2-4(-2a )<0,解得⎩⎪⎨⎪⎧ -32<a <12,a <-1,或a >13,-2<a <0,所以-32<a <-1. 所以当a ≥-1,或a ≤-32时,三个方程至少有一个方程有实根.11.已知函数f (x )=x 22x -2,如果数列{a n }满足a 1=4,a n +1=f (a n ),求证:当n ≥2时,恒有a n <3成立.【知识点:推理与证明,命题的否定,反证法】证明:法一(直接证法) 由a n +1=f (a n )得a n +1=a 2n 2a n -2, ∴1a n +1=-2a 2n +2a n =-2⎝ ⎛⎭⎪⎫1a n -122+12≤12, ∴a n +1<0或a n +1≥2;(1)若a n +1<0,则a n +1<0<3,∴结论“当n ≥2时,恒有a n <3”成立;(2)若a n +1≥2,则当n ≥2时,有a n +1-a n =a 2n 2a n -2-a n =-a 2n +2a n 2(a n -1)=-a n (a n -2)2(a n -1)≤0, ∴a n +1≤a n ,即数列{a n }在n ≥2时单调递减;由a 2=a 212a 1-2=168-2=83<3, 可知a n ≤a 2<3,在n ≥2时成立.综上,由(1)、(2)知:当n ≥2时,恒有a n <3成立.法二:(用反证法) 假设a n ≥3(n ≥2),则由已知得a n +1=f (a n )=a 2n 2a n -2, ∴当n ≥2时,a n +1a n=a n 2a n -2=12·⎝ ⎛⎭⎪⎫1+1a n -1≤12⎝ ⎛⎭⎪⎫1+12=34<1,(∵a n -1≥3-1), 又易证a n >0,∴当n ≥2时,a n +1<a n ,∴当n >2时,a n <a n -1<…<a 2;而当n =2时,a 2=a 212a 1-2=168-2=83<3,∴当n ≥2时,a n <3;这与假设矛盾,故假设不成立,∴当n≥2时,恒有a n<3成立.三、数学视野边际分析法是这一时期产生的一种经济分析方法,同时形成了经济学的边际效用学派,代表人物有瓦尔拉(L.Walras)、杰文斯(W.S.Jevons)、戈森(H.H.Gossen)、门格尔(C.Menger)、埃奇沃思(F.Y.Edgeworth)、马歇尔(A.Marshall)、费希尔(I.Fisher)、克拉克(J.B.Clark)以及庞巴维克(E.von Bohm-Bawerk)等人.边际效用学派对边际概念作出了解释和定义,当时瓦尔拉斯把边际效用叫做稀缺性,杰文斯把它叫做最后效用,但不管叫法如何,说的都是微积分中的“导数”和“偏导数”.西方经济学中,边际分析方法是最基本的分析方法之一,是一个比较科学的分析方法.西方边际分析方法的起源可追溯到马尔萨斯.他在1814年曾指出微分法对经济分析所可能具有的用途.1824年,汤普逊(W.Thompson)首次将微分法运用于经济分析,研究政府的商品和劳务采购获得最大利益的条件.功利主义创始人边沁(J.Bentham)在其最大快乐和最小痛苦为人生追求目标的信条中,首次采用最大和最小术语,并且提出了边际效应递减的原理.边际分析法是把追加的支出和追加的收入相比较,二者相等时为临界点,也就是投入的资金所得到的利益与输出损失相等时的点.如果组织的目标是取得最大利润,那么当追加的收入和追加的支出相等时,这一目标就能达到.边际分析法的数学原理很简单.对于离散discrete情形,边际值marginal value为因变量变化量与自变量变化量的比值;对于连续continuous情形,边际值marginal value为因变量关于某自变量的导数值.所以边际的含义本身就是因变量关于自变量的变化率,或者说是自变量变化一个单位时因变量的改变量.在经济管理研究中,经常考虑的边际量有边际收入MR、边际成本MC、边际产量MP、边际利润MB等.。
高二数学反证法

高二数学反证法(20200806104323)

反证法

学习导航
学习目标
结合实例
―了―解→
反证法是间接证明 的一种方法
―理―解→
反证法的 思维过程
―掌―握→
运用反证法证 明数学问题
重点难点 重点:了解反证法及其思考过程、特点. 难点:根据问题特点,结合反证法的思考过程、特点解决 有关问题.
新知初探思维启动
1.反证法 假设原命题_不__成__立__ ,经过正确的推理,最后得出矛盾,因 此说明__假__设____错误,从而证明了__原__命__题___成立,这种证明 方法叫做反证法.
则n≠m. 若n>m,则f(n)>f(m),即0>0,矛盾; 若n<m,则f(n)<f(m),即0<0,矛盾. 因此假设不正确,即f(x)在(a,b)内有且只有一个零点. 【名师点评】 证明“有且只有一个”的问题,需要证明两 个命题,即存在性和唯一性.本例用直接证法中的综合法证 明了存在性,反证法证明了唯一性.
证明:假设存在一个实数 λ,使{an}是等比数列,则有 a22=
a1a3,即
(23λ-
3)2=
λ(49λ-
4)⇔4λ2- 9
4λ+
9=4λ2- 9
பைடு நூலகம்4λ⇔
9=
0,
矛盾.所以对任意实数 λ,{an}不是等比数列.
本部分内容讲解结束
用反证法证明问题时,常用正面词语的否定形式如下
表:
正面词语
否定
正面词语
否定
等于 小于 大于
不等于
都是 不都是(至少有一个不是)
不小于(大于或等于) 至多有一个
至少有两个
不大于(小于或等于) 至少有一个
一个也没有
是
不是
想一想 1.用反证法证明命题“若 p,则 q”时,为什么证出非 q 假, 就说明“若 p,则 q”就真?
2.2.2 反证法

2.2.2反证法1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.基础梳理1.定义:一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒t,t 与假设矛盾,或与某个真命题矛盾.从而判定┐q为假,推出q为真的方法,叫做反证法.2.反证法常见的矛盾类型:反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与假设矛盾或与数学公理、定理、公式、定义或与公认的简单事实矛盾等.想一想:(1)反证法的实质是什么?(2)反证法属于直接证明还是间接证明?其证明过程属合情推理还是演绎推理?(1)解析:反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的.(2)解析:反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.自测自评1.用反证法证明命题“三角形的内角中至少有一个大于60°”时,反设正确的是(A)A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°解析:“至少有一个”的否定是“一个都没有”,则反设为“三个内角都不大于60°”.2.有以下结论:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p +q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是(D)A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确解析:用反证法证明问题时,其假设是原命题的否定,故①的假设应为“p+q>2”;②的假设为“两根的绝对值不都小于1”,故①假设错误.②假设正确.3.“实数a,b,c不全大于0”等价于(D)A.a,b,c均不大于0B.a,b,c中至少有一个大于0C.a,b,c中至多有一个大于0D.a,b,c中至少有一个不大于0解析:“不全大于零”即“至少有一个不大于0”,它包括“全不大于0”.故选D.基础巩固1.(2014·微山一中高二期中)用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是(C)A.a2=b2B.a2<b2C.a2≤b2D.a2<b2,且a2=b22.否定“至多有两个解”的说法中,正确的是(D)A.有一个解B.有两个解C.至少有两个解D.至少有三个解3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为(B)A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.4.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠1能力提升5.下列命题不适合用反证法证明的是(C)A.同一平面内,分别与两条相交直线垂直的两条直线必相交B.两个不相等的角不是对顶角C.平行四边形的对角线互相平分D.已知x,y∈R,且x+y>2,求证:x,y中至少有一个大于1.解析:选项A中命题条件较少,不足以正面证明;选项B中命题是否定性命题,可以反证法证明;选项D中命题是至少性命题,可以反证法证明.选项C不适合用反证法证明.故选C.6.设a、b、c∈R+,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的(C)A.充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:首先若P 、Q 、R 同时大于零,则必有PQR >0成立.其次,若PQR >0,且P 、Q 、R 不都大于0,则必有两个为负,不妨设P <0,Q <0,即a +b -c <0,b +c -a <0,∴b <0与b ∈R +矛盾,故P 、Q 、R 都大于0.故选C.7.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得 a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:08.有下列叙述:①“a >b ”的反面是“a <b ”;②“x =y ”的反面是“x >y 或x <y ”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有__________(填序号).解析:“x =y ”的反面是“x ≠y ”,即是“x >y 或x <y ”,所以②正确;“a >b ”的反面是“a ≤b ”;“三角形的外心在三角形外”的反面是“三角形的外心不在三角形外”;“三角形最多有一个钝角”的反面是“三角形至少有两个钝角”.所以这三个都错.答案:②9.如果非零实数a ,b ,c 两两不相等,且2b =a +c .证明:2b =1a+1c不成立. 证明:假设2b =1a +1c 成立,则2b =a +c ac =2b ac,∴b 2=ac . 又∵b =a +c 2,∴⎝ ⎛⎭⎪⎫a +c 22=ac ,即a 2+c 2=2ac ,即(a -c )2=0, ∴a =c ,这与a ,b ,c 两两不相等矛盾,∴2b =1a +1c不成立. 10.已知函数f (x )=a x+x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负实根. 证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0.所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0,所以x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,故函数f (x )在(-1,+∞)上为增函数.(2)设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1.又0<ax0<1,所以0<-x0-2x0+1<1,即12<x0<2.与假设x0<0矛盾,故f(x)=0没有负实根.。
高二数学反证法试题

高二数学反证法试题1.用反证法证明:“若a,b两数之积为0,则a,b至少有一个为0”,应假设( )A.a,b没有一个为0B.a,b只有一个为0C.a,b至多有一个为0D.a,b两个都为0【答案】A【解析】解:因为用反证法证明就是对结论的否定,因此“若a,b两数之积为0,则a,b至少有一个为0”,应假设a,b没有一个为0,选A2.用反证法证明命题时,对结论:“自然数中至少有一个是偶数”正确的假设为()A.都是奇数B.都是偶数C.中至少有两个偶数D.中至少有两个偶数或都是奇数【答案】A【解析】解:因为用反证法证明命题时,对结论:“自然数a,b,c中至少有一个是偶数”正确的反设就是a,b,c都是奇数,选A3.用反证法证明:如果,那么.【答案】见解析。
【解析】本试题主要是考查了运用反证法思想解决正难则反的命题的云集用。
根据已知条件,如果,那么.,那么利用等价命题可知为假设,则,然后证明。
假设,则.容易看出,下面证明:要证:,只需证:,只需证:上式显然成立,故有。
综上,。
而这与已知条件相矛盾,因此假设不成立,也即原命题成立。
4.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设()A.三个内角都不大于60°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°【答案】B【解析】解:因为用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,假设就是对结论否定,因此为三个内角都大于60°,选B5.设实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于________.【解析】解:因为实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于,假设都小于,那么相加起来就小于1,与题意相互矛盾。
6.用反证法证明命题"如果a>b,那么a3>b3"时,下列假设正确的是A.B.C.D.【答案】B【解析】解:因为反证法证明命题时,就是对结论加以否定即可。
人教A选修2-211-12学年高二数学:2.2.2 反证法 课件(人教A版选修2-2)

[例3] 已知:一点A和平面α. 求证:经过点A只能有一条直线和平面α垂直. [分析]
[解析] 根据点A和平面α的位置关系,分 两种情况证明. (1)如图1,点A在平面α内,假设经过点A 至少有平面α的两条垂线AB、AC,那么AB、 AC是两条相交直线,它们确定一个平面β, 平面β和平面α相交于经过点A的一条直线a.
[点评] 1.本题的解答依赖于等差和等比 数列的概念和性质,体现了特殊化思想、 分类讨论思想和正难则反的思维策略.对 代数的推理能力要求较高. 2.结论中含有“不”、“不是”、“不 可能”、“不存在”等词语的命题,此类 问题的反面比较具体,适于应用反证法.
3.反证法属逻辑方法范畴,它的严谨体 现在它的原理上,即“否定之否定等于肯 定”,其中:第一个否定是指“否定结论 (假设)”;第二个否定是指“逻辑推理结 果否定了假设”.反证法属“间接解题方 法”,书写格式易错之处是“假设”易错 写成“设”.
2.命题“三角形中最多只有一个内角是 直角”的结论的否定是 ( ) A.两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角 [答案] C [解析] “最多只有一个”即为“至多一 个”,反设应为“至少有两个”,故应选 C.
3.如果两个实数之和为正数,则这两个 数( ) A.一个是正数,一个是负数 B.两个都是正数 C.至少有一个正数 D.两个都是负数 [答案] C [解析] 假设两个数都是负数,则两个数 之和为负数,与两个数之和为正数矛盾, 所以两个实数至少有一个正数,故应选C.
[分析] 本题中,含有“至少存在一个” 词,可考虑使用反证法.
[证明]
1 假设不存在 x∈[-1,1]上一个 x 满足|f(x)|≥2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。