一元一次不等式的解法 优秀课教案
一元一次不等式优秀教案

一元一次不等式【课时安排】2课时【第一课时】【教课目的】一、教课知识点。
(一)知道什么是一元一次不等式?(二)会解一元一次不等式。
二、能力训练要求。
(一)概括一元一次不等式的定义。
(二)经过详细实例,概括解一元一次不等式的基本步骤。
三、感情与价值观要求。
经过察看一元一次不等式的解法,对照解一元一次方程的步骤,让学生自己概括解一元一次不等式的基本步骤。
【教课要点】1.一元一次不等式的观点及判断。
2.会解一元一次不等式。
【教课难点】当不等式的两边都乘以或除以同一个负数时,不等号的方向要改变。
【教课方法】自觉发现——概括法。
教师经过详细实例让学生察看、概括、独立发现解一元一次不等式的步骤。
并针对常有错误进行指导,使他们在此后的解题中能惹起注意,自觉更正错误。
【教课准备】投电影两张。
【教课过程】一、创建问题情境,引入新课。
[师]在前面我们学习了不等式的基天性质,不等式的解,不等式的解集,解不等式的内容。
而且知道依据不等式的基天性质,能够把一些不等式化成“x >a”或“ x< a”的形式。
那么,什么样的不等式才能够运用不等式的基天性质而被化成“x >a”或“ x<a”的形式呢?又需要哪些步骤呢?本节课我们将进行这方面的研究。
二、讲解新课。
(一)一元一次不等式的定义。
[师]大家已经学习过一元一次方程的定义,你们还记得吗?[生]记得。
只含有一个未知数,未知数的指数是一次,这样的方程叫做一元一次方程。
[师]很好。
我们知道一元指的是一个未知数,一次指的是未知数的指数是一次,由此大家能够类推出一元一次不等式的定义,能够吗?[生]只含有一个未知数,未知数的最高次数是一次,这样的不等式叫一元一次不等式。
[师]好。
下边我们判断一下,以下的不等式能否是一元一次不等式。
请大家议论。
投电影。
以下不等式是一元一次不等式吗?(1)6+3x >30;(2)x+17<5x ;(3)x >5; (4) 1>1。
x[生]( 1)、( 2)、( 3)中的不等式是一元一次不等式,( 4)不是。
人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
一元一次不等式的解法教案设计

一元一次不等式的解法教案设计一、教学目标1. 让学生掌握一元一次不等式的定义及其解法。
2. 培养学生运用不等式解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容1. 一元一次不等式的定义及例题解析。
2. 一元一次不等式的解法及步骤。
3. 应用题练习。
三、教学重点与难点1. 重点:一元一次不等式的解法。
2. 难点:不等式解法的运用。
四、教学方法1. 采用自主学习、合作交流的教学方法,让学生在探究中掌握知识。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 结合生活实际,培养学生的应用能力。
五、教学过程1. 导入新课1.1 复习相关知识点:方程的解、解集等。
1.2 提问:不等式与方程有什么关系?如何解不等式?2. 自主学习2.1 学生自主探究一元一次不等式的定义及解法。
2.2 学生展示学习成果,教师点评并总结。
3. 课堂讲解3.1 讲解一元一次不等式的定义及解法。
3.2 举例讲解,让学生明确解不等式的步骤。
4. 课堂练习4.1 学生独立完成练习题,检验学习效果。
4.2 教师点评练习题,纠正错误,巩固知识。
5. 应用题练习5.1 学生分组讨论,分析实际问题。
5.2 学生展示解题过程,教师点评并总结。
6. 课堂小结6.1 学生总结一元一次不等式的解法。
6.2 教师补充讲解,巩固知识点。
7. 作业布置7.1 布置练习题,巩固所学知识。
7.2 布置应用题,培养学生的实际应用能力。
8. 课后反思8.1 教师总结课堂教学,反思教学方法。
8.2 学生反馈学习情况,提出疑问。
六、教学评价1. 课堂练习的完成情况:评价学生对一元一次不等式解法的掌握程度。
2. 应用题的解答:评价学生将所学知识应用于实际问题的能力。
3. 课堂参与度:评价学生在课堂讨论、提问等方面的积极性。
4. 课后作业:评价学生对课堂知识的巩固程度。
七、教学拓展1. 组织学生进行不等式知识竞答,激发学生的学习热情。
2. 让学生收集生活中的不等式实例,并进行分享交流。
一元一次不等式的解法教案设计

一元一次不等式的解法教案设计一、教学目标1. 让学生掌握一元一次不等式的概念及其解法。
2. 培养学生运用不等式解决实际问题的能力。
3. 培养学生合作学习、积极探究的精神。
二、教学内容1. 一元一次不等式的定义及例子。
2. 一元一次不等式的解法及步骤。
3. 实际问题中的一元一次不等式应用。
三、教学重点与难点1. 重点:一元一次不等式的解法及实际应用。
2. 难点:不等式解法的步骤及运用。
四、教学方法1. 采用讲授法讲解一元一次不等式的定义、解法及应用。
2. 利用案例分析法分析实际问题中的一元一次不等式解法。
3. 组织学生进行小组讨论,培养合作学习的能力。
4. 利用练习法巩固所学知识。
五、教学过程1. 导入:通过生活实例引入一元一次不等式概念,激发学生兴趣。
2. 新课讲解:讲解一元一次不等式的定义、解法及步骤。
3. 案例分析:分析实际问题中的一元一次不等式解法,引导学生运用所学知识解决实际问题。
4. 小组讨论:组织学生进行小组讨论,分享解题心得,培养合作学习的精神。
5. 练习巩固:布置适量练习题,让学生巩固所学知识。
6. 总结与反思:总结本节课所学内容,强调一元一次不等式的解法及应用。
7. 课后作业:布置课后作业,巩固所学知识。
8. 教学评价:通过课后作业、课堂表现等方面对学生的学习情况进行评价。
六、教学准备1. 教学课件:制作一元一次不等式解法的课件,包括定义、解法步骤及实例。
2. 练习题:准备一定数量的一元一次不等式练习题,包括简单和复杂题目。
3. 小组讨论材料:准备一些实际问题,用于引导学生进行小组讨论。
七、教学步骤1. 回顾上节课的内容,复习一元一次不等式的定义和解法步骤。
2. 通过课件展示一元一次不等式的解法过程,重点讲解解法步骤和关键点。
3. 分发练习题,让学生独立解答,老师在旁边辅导解答过程中遇到的问题。
4. 组织小组讨论,让学生应用一元一次不等式解法解决实际问题,分享解题思路和方法。
5. 老师选取几个学生的作业进行点评,讲解正确解题思路和解法步骤。
一元一次不等式的解法教案

一元一次不等式的解法教案教案标题:一元一次不等式的解法教案教案目标:1. 学生能够理解一元一次不等式的概念和性质。
2. 学生能够运用适当的方法解决一元一次不等式。
3. 学生能够应用所学知识解决实际问题。
教案步骤:引入(5分钟):1. 引导学生回顾一元一次方程的解法,提醒他们解方程的目标是找到使等式成立的未知数值。
2. 引导学生思考一元一次不等式与方程的区别,强调不等式表示的是一个范围。
讲解(15分钟):1. 解释一元一次不等式的定义,即形如ax + b > c的不等式,其中a、b、c为已知数,x为未知数。
2. 介绍不等式的解集表示方式,如x > 2表示解集为所有大于2的实数。
3. 讲解求解不等式的基本思路,即通过变换不等式的形式,将未知数x的范围确定下来。
示范(15分钟):1. 给出一些简单的一元一次不等式示例,如2x + 3 > 7,引导学生运用逆运算的思想解决不等式。
2. 指导学生将不等式转化为等价的形式,如将2x + 3 > 7转化为2x > 7 - 3。
3. 引导学生运用逆运算,得出x > 4的解集。
4. 给出更复杂的不等式示例,如3(x - 2) ≤ 2x + 5,引导学生通过展开和合并同类项的方式解决不等式。
练习(20分钟):1. 分发练习题,让学生独立解决一元一次不等式。
2. 监督学生的解题过程,及时纠正错误,解答疑惑。
3. 收集学生的解答,进行讲解和讨论。
应用(10分钟):1. 提供一些实际问题,如某商品折扣后的价格不得低于100元,引导学生建立相应的不等式,并解决问题。
2. 鼓励学生思考如何将实际问题转化为数学不等式。
总结(5分钟):1. 总结一元一次不等式的解法思路和方法。
2. 强调解决实际问题时的重要性,培养学生应用数学知识解决实际问题的能力。
拓展练习:1. 提供更复杂的一元一次不等式练习题,让学生进一步巩固和拓展所学知识。
2. 鼓励学生自主寻找实际问题,并将其转化为一元一次不等式进行解决。
解一元一次不等式教案

解一元一次不等式教案【篇一:“解一元一次不等式”教案】【篇二:一元一次不等式教案】第二章一元一次不等式与一元一次不等式组4.一元一次不等式(一)一、学生知识状况分析学生已经经历了不等式的基本性质、不等式的解集的学习,对不等关系已经有了初步的认识和体会。
在本节的学习中可以类比一元一次方程的解法和对不等式的性质的利用加深对解不等式的理解。
学生在学习中要能将本节内容与上节内容联系起来,强化数轴在解一元一次不等式中的作用,为后续学习解不等式组打下坚实的基础。
二、教学任务分析本节课的教学内容是一元一次不等式的形成及其解集的表示,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论、交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
本课时的学习任务主要有两个:第一是让学生体会和经历一元一次不等式概念的形成过程;第二是让学生会解简单的一元一次不等式并能在数轴上表示其解集,最终实现提高学生分析问题、解决问题的能力的任务。
1.教学目标:(一)知识与技能:会解简单的一元一次不等式,并能在数轴上表示其解集。
(二)过程与方法:让学生经历一元一次不等式的形成过程,通过类比理解一元一次不等式的解法。
(三)情感与态度:通过一元一次不等式的学习,提高学生的自主学习能力,激发学生的探究兴趣。
2.教学重点:掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
3.教学难点:一元一次不等式的解法。
三、教学过程分析本节课设计了六个教学环节:第一环节:复习提问,引入课题;第二环节:合作探究,解决问题;第三环节:例题解析;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节创设情境,引入课题活动内容1:复习提问:(1) 不等式的三条基本性质是什么?(2) 运用不等式基本性质把下列不等式化成xa或xa的形式。
一元一次不等式的解法教学设计

一元一次不等式和它的解法(一)(一)知识教学点1.了解一元一次不等式的定义.2.掌握一元一次不等式的解法.(二)能力训练点1.培训学生运用类比方法处理相关内容的能力.三、重点·难点·疑点及解决方法(一)重点掌握一元一次不等式的解法、步骤并准确地求出解集.(二)难点正确运用不等式的基本性质3,避免变形中出现错误.四、课时安排一课时.(三)教学过程1.创设情境,复习引入(1)提问:①什么叫一元一次方程?②它的标准形式是什么?③解一元一次方程的一般步骤是什么?④一元一次方程一定有解吗?有几个解?(2)解下列方程:①.②,并在数轴上表示它们的解.(3)指出不等式的解集,并在数轴上表示出来.学生活动:第(1)题口答,第(2)题、第(3)题在练习本上完成,指定三个学生板演,完成后由学生判断是否正确.教师活动:纠正,强调解方程时的常见错误及“· ”与“。
”的使用区别.然后指出,解不等式与解一元一次方程相比,最大的区别就是式子两边乘或除以同一个负数时,“不等号”需改变方向,“等号”不改变.除此之外的对式子进行的任何其他变形都是完全相同的.【教法说明】由于一元一次不等式与一元一次方程在诸多方面都有联系,因此,教学时光复习一元一次方程的有关内容,然后引入一元一次不等式的相应内容,通过仿同求异对比来学习,这样既降低了学习难度,又强化了对新知识的理解.2.探索新知,讲授新课大家知道,不等式的解集是,变形的理论依据是不等式基本性质1,相当于解方程的移项法则,实际上,解不等式就是运用不等式的三条基本性质,对不等式进行适当变形(去分母、去括号、移项、合并同类项、化系数为1)最终将不等式变形为或的形式,即求出不等式的解集.大家知道,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程,例如.一元二次方程的标准形式是.类似地,只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式,例如.一元一次不等式的标准形式为或注意问题:判断一个不等式是否为一元一次不等式,应先将它化成最简形式,再用定义判断.形如的不等式不是一元一次不等式,而是矛盾不等式.解一元一次不等式与解一元一次方程有类似的步骤,但一定要注意当不等式的两边同乘(或除以)同一个负数时,不等号要改变方向.例1 解不等式,并把它们的解集在数轴上表示出来.例2 解不等式,并把它们的解集在数轴上表示出来.师生活动:教师板书例1,学生板书例2.(同桌交换练习,指出对方错误井纠正)(1)解方程:解:去括号,得移项,得合并同类项,得化系数为1,得方程的解在数轴上表示如下:例1 解不等式:解:去括号,得移项,得合并同类项,得化系数为1,得不等式的解在数轴上表示如下:(2)解方程:解:去分母,得去括号,得移项,得合并同类项,得化系数为1,得方程的解在数轴上表示如下:例2 解不等式解:去分母,得去括号,得移项,得合并同类项,得化系数为1,得不等式的解在数轴上表示如下:。
一元一次不等式的解法优质课教案

一元一次不等式的解法【课时安排】2课时【第一课时】【教学目标】1.知识与技能:知道一元一次不等式的标准形式,理解不等式的解与解集的概念,了解什么是一元一次不等式。
2.过程与方法:理解用不等式的性质解一元一次不等式的基本方法,会熟练地解一元一次不等式。
3.情感态度与价值观:培养学生的分析能力。
训练学生的动手能力,提高综合分析解题能力、转化的数学思想。
通过本节的学习,进一步渗透化归的数学美。
【教学重难点】1.重点:一元一次不等式的解法。
2.难点:不等式的两边同乘以(或除以)一个负数。
【教学过程】(一)创设情境,导入新课。
动脑筋:水果批发市场的梨每千克3元,苹果每千克4元,小王购进50千克梨后还想购进些苹果,但他只有350元,他最多能买多少千克苹果?思考:1.买梨子用去的钱和买苹果用去的钱以及身上有的350元钱有什么关系?买梨子用去的钱_____买苹果用去的钱_____身上有的350元钱。
2.若设他买了x千克苹果可以列出关系式:_________________3.这个关系式有什么特点呢?(含有___个未知数,且未知数的次数为____)这样的不等式叫什么不等式?你认为呢?含有___个未知数,且未知数的次数为____的不等式叫_______不等式。
4.请你把一元一次不等式的概念与一元一次方程的概念对比,看看它们有什么异同?5.什么叫一元一次方程的标准形式?_________,__________,由此请你猜想什么是一元一次不等式的标准形式?________________________叫一元一次不等式的标准形式。
怎样求出小王最多能买多少千克苹果呢?只需要解上面的一元一次不等式,这节课我们来研究一元一次不等式的解法。
(二)合作交流,探究新知。
1.不等式的解和解集的概念为了求出小王最多能买多少千克苹果,需要求出x 的范围,你会求吗?为了对比不等式与方程,请你解方程:3×50+4x=350。
(1)什么是方程的解,一般的一元一次方程有几个解?(2)猜想什么叫不等式的解?满足一个不等式的________的值,叫不等式的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4一元一次不等式第1课时一元一次不等式的解法1.理解一元一次不等式、不等式的解集、解不等式等概念;2.掌握一元一次不等式的解法.(重点,难点)一、情境导入1.什么叫一元一次方程?2.解一元一次方程的一般步骤是什么?要注意什么?3.如果把一元一次方程中的等号改为不等号,怎样求解?二、合作探究探究点一:一元一次不等式的概念【类型一】一元一次不等式的识别下列不等式中,是一元一次不等式的是()A.5x-2>0 B.-3<2+1xC.6x-3y≤-2 D.y2+1>2解析:选项A是一元一次不等式,选项B中含未知数的项不是整式,选项C中含有两个未知数,选项D中未知数的次数是2,故选项B,C,D都不是一元一次不等式,所以选A.方法总结:如果一个不等式是一元一次不等式,必须满足三个条件:①含有一个未知数,②未知数的最高次数为1,③不等号的两边都是整式.【类型二】根据一元一次不等式的概念求值已知-13x2a-1+5>0是关于x的一元一次不等式,则a的值是________.解析:由-13x2a-1+5>0是关于x的一元一次不等式得2a-1=1,计算即可求出a的值,故a=1.方法总结:利用一元一次不等式的概念列出相应的方程求解即可.注意:如果未知数的系数中有字母,要检验此系数可不可能为零.探究点二:一元一次不等式的解法【类型一】一元一次不等式的解或解集下列说法:①x=0是2x-1<0的一个解;②x=-3不是3x-2>0的解;③-2x+1<0的解集是x>2.其中正确的个数是()A.0个B.1个C.2个D.3个解析:①x=0时,2x-1<0成立,所以x=0是2x-1<0的一个解;②x=-3时,3x-2>0不成立,所以x=-3不是3x-2>0的解;③-2x+1<0的解集是x>12,所以不正确.故选C.方法总结:判断一个数是不是不等式的解,只要把这个数代入不等式,看是否成立.判断一个不等式的解集是否正确,可把这个不等式化为“x>a”或“x<a”的形式,再进行比较即可.【类型二】解一元一次不等式解下列一元一次不等式,并在数轴上表示:(1)2(x+12)-1≤-x+9;(2)x-32-1>x-53.解析:按照解一元一次不等式的基本步骤求解:去分母、去括号、移项、合并同类项、两边都除以未知数的系数.解:(1)去括号,得2x +1-1≤-x +9, 移项、合并同类项,得3x ≤9, 两边都除以3,得x ≤3;(2)去分母,得3(x -3)-6>2(x -5), 去括号,得3x -9-6>2x -10, 移项,得3x -2x >-10+9+6, 合并同类项,得x >5.方法总结:解一元一次不等式的基本步骤:去分母、去括号、移项、合并同类项、两边都除以未知数的系数,这些基本步骤与解一元一次方程是一样的,但一元一次不等式两边都除以未知数的系数时,一定要注意这个数是正数还是负数,如果是正数,不等号方向不变;如果是负数,不等号的方向改变.【类型三】 根据不等式的解集求待定系数已知不等式x +8>4x +m (m 是常数)的解集是x <3,求m 的值.解析:先解不等式x +8>4x +m ,再列方程求解.解:因为x +8>4x +m ,所以x -4x >m -8,-3x >m -8,x <-13(m -8). 因为其解集为x <3,所以-13(m -8)=3.解得m =-1.方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母; (2)去括号; (3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究探究点一:对角线互相平分的四边形是平行四边形【类型一】利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC≌△BOD;(2)此题已知AO=BO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OE=OF就可以了.证明:(1)∵AC∥BD,∴∠C=∠D.在△AOC和△BOD中,∵⎩⎪⎨⎪⎧AO=OB,∠AOC=∠BOD,∠C=∠D,∴△AOC≌△BOD(AAS);(2)∵△AOC≌△BOD,∴CO=DO.∵E、F分别是OC、OD的中点,∴OF=12OD,OE=12OC,∴EO=FO,又∵AO=BO,∴四边形AFBE是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD中,AC交BD于点O,点E,F分别是OA,OC的中点,请判断线段BE,DF的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF.解:BE=DF,BE∥DF.因为四边形ABCD是平行四边形,所以OA=OC,OB=OD.因为E,F分别是OA,OC的中点,所以OE=OF,所以四边形BFDE是平行四边形,所以BE=DF,BE∥DF.方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH=12GH·h,S△FGH =12GH·h,∴S△EGH=S△FGH,∴S△EGH-S△GOH=S△FGH-S△GOH,∴S△EGO=S△FHO.方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)如果点G是BC的中点,且BC=12,DC=10,求四边形AGCD的面积.解析:(1)求出平行四边形AGCD,推出CD=AG,推出EG=DF,EG∥DF,根据平行四边形的判定推出即可;(2)由点G是BC的中点,BC=12,得到BG=CG=12BC=6,根据四边形AGCD是平行四边形可知AG=DC=10,根据勾股定理得AB=8,求出四边形AGCD的面积为6×8=48.解:(1)∵AG∥DC,AD∥BC,∴四边形AGCD是平行四边形,∴AG=DC.∵E、F分别为AG、DC的中点,∴GE=12AG,DF=12DC,即GE=DF,GE∥DF,∴四边形DEGF是平行四边形;(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。