圆中的分类讨论习题

合集下载

初三数学圆的综合的专项培优练习题(含答案)及答案解析

初三数学圆的综合的专项培优练习题(含答案)及答案解析

初三数学圆的综合的专项培优练习题(含答案)及答案解析一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.试题解析:(1)证明:连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线,∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.3.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.4.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,3PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,3,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=123,3,在Rt△DEP中,∵37∴22(7)(3)=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=17,∴57∵BE∥DF,∴△ABE∽△AFD,∴BE AE DF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴阴影部分的面积=△BDF的面积﹣弓形BD的面积=△BDF的面积﹣(扇形BOD的面积﹣△BOD的面积)=22160(23)3123(23)23604π⨯⨯⨯--⨯ =93﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.5.如图1,是用量角器一个角的操作示意图,量角器的读数从M点开始(即M点的读数为0),如图2,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线C绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是;(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;(3)当CP旋转多少秒时,△BCE是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∠ACB=60°,∴∠ACE=12∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.6..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A 重合),⊙D与AB相切,切点为E,⊙D交射线..DC于点F,过F作FG⊥EF交直线..BC于点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 3r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r ,由勾股定理得:(3r )2+9=36,解得:r=3; (3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==-②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2,即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.7.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC 于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=322)tan ∠BCD=14;(3)①135°;②2. 【解析】 【分析】(1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(2c )(2c )=8,消去字母a ,b 求出c 值,即求出△CPF 2c . 【详解】 (1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得: AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1, ∴x 2+x 2=82, 解得:x=42.∵⊙O 内接四边形,∠ACD=90°, ∴∠ADE=90°, ∴∠EDB=90°, ∵∠B=45°,∴△BDE 是等腰直角三形. ∴DE=DB , 又∵DB=1, ∴DE=1, 又∵CE=BC-BE , ∴CE=42232-=. (2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y , ∵S △ACB =S ACD +S DCB ,∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去). ∴EM=1,CM=CE+ME=1+3=4, 又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°, ∴∠CPD=∠CAD=45°, 又∵点D 是CPF ∆的内心, ∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD ∴∠CPF=90° ∴∠PCF+∠PFC=90°∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°, 即∠CDF 的度数为135°. ②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心, ∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°, ∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线, ∴∠PCF=2∠DCF ,∠PFC=2∠DFC , ∴∠PCF+∠PFC=90°, ∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°, ∴四边形PKDN 是矩形, 又∵KD=ND ,∴四边形PKDN 是正方形. 又∵∠MBD=∠BDM=45°, ∠BDM=∠KDP , ∴∠KDP=45°. ∵PC=a ,PF=b ,PD=c ,∴,∴NF=b -,CK=a -, 又∵CK=CM ,FM=FN ,CF=CM+FM , ∴CF=a b +, 又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a b (a b 2222=+++-),化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ),将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴m=c 222==, 即△CPF 的内切圆半径长为2. 【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.8.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxx-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC =HP CP =10R R -=45,解得:R =409; (2)在△ABC 中,AC =BC =10,cosC =35, 设AP =PD =x ,∠A =∠ABC =β,过点B 作BH ⊥AC ,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=5设圆的半径为r,在△ADG中,AD=2rcosβ5DG5AG=2r,5=52r51+,则:DG550﹣5相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.10.如图,四边形ABCD是⊙O的内接四边形,AC为直径,»»BD AD=,DE⊥BC,垂足为E.(1)判断直线ED与⊙O的位置关系,并说明理由;(2)若CE=1,AC=4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影. 【解析】 【分析】(1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可. 【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•2223=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.11.已知四边形ABCD 是⊙O 的内接四边形,∠DAB =120°,BC =CD ,AD =4,AC =7,求AB 的长度.【答案】AB =3. 【解析】 【分析】作DE ⊥AC ,BF ⊥AC ,根据弦、弧、圆周角、圆心角的关系,求得BC CD =u u u r u u u r,进而得到∠DAC =∠CAB =60°,在Rt △ADE 中,根据60°锐角三角函数值,可求得DE =23,AE =2,再由Rt △DEC 中,根据勾股定理求出DC 的长,在△BFC 和△ABF 中,利用60°角的锐角三角函数值及勾股定理求出AF 的长,然后根据求出的两个结果,由AB =2AF ,分类讨论求出AB 的长即可. 【详解】作DE ⊥AC ,BF ⊥AC ,∵BC =CD , ∴BC CD =u u u r u u u r, ∴∠CAB =∠DAC , ∵∠DAB =120°, ∴∠DAC =∠CAB =60°, ∵DE ⊥AC ,∴∠DEA =∠DEC =90°, ∴sin60°=4DE ,cos60°=4AE, ∴DE =3AE =2, ∵AC =7,∴CE =5,∴DC= ∴BC ,∵BF ⊥AC ,∴∠BFA =∠BFC =90°,∴tan60°=BF AF,BF 2+CF 2=BC 2, ∴BF,∴()2227AF +-=, ∴AF =2或AF =32, ∵cos60°=AF AB, ∴AB =2AF ,当AF =2时,AB =2AF =4,∴AB =AD ,∵DC =BC ,AC =AC ,∴△ADC ≌△ABC (SSS ),∴∠ADC =∠ABC ,∵ABCD 是圆内接四边形,∴∠ADC+∠ABC =180°,∴∠ADC =∠ABC =90°,但AC 2=49,2222453AD DC +=+=,AC 2≠AD 2+DC 2,∴AB =4(不合题意,舍去), 当AF =32时,AB =2AF =3, ∴AB =3.【点睛】 此题主要考查了圆的相关性质和直角三角形的性质,解题关键是构造直角三角形模型,利用直角三角形的性质解题.12.如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE =∠C .(1)求证:AE 与⊙O 相切于点A ;(2)若AE ∥BC ,BC =AC =2,求AD 的长.【答案】(1)证明见解析;(2)23【解析】【分析】(1)根据题目中已出现切点可确定用“连半径,证垂直”的方法证明切线,连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,根据同弧所对的圆周角相等,则可得到∠BAE=∠F,既而得到AE与⊙O相切于点A.(2))连接OC,先由平行和已知可得∠ACB=∠ABC,所以AC=AB,则∠AOC=∠AOB,从而利用垂径定理可得AH=1,在Rt△OBH中,设OB=r,利用勾股定理解得r=2,在Rt△ABD中,即可求得AD的长为3【详解】解:(1)连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,∵»»,AB AB∴∠ACB=∠F,∵∠BAE=∠ACB,∴∠BAE=∠F,∵∠FAB+∠F=90°,∴∠FAB+∠BAE=90°,∴OA⊥AE,∴AE与⊙O相切于点A.(2)连接OC,∵AE∥BC,∴∠BAE=∠ABC,∵∠BAE=∠ACB,∴∠ACB=∠ABC,∴AC=AB=2,∴∠AOC=∠AOB,∵OC=OB,∴OA⊥BC,∴CH=BH=1BC32在Rt△ABH中,AH=22AB BH-=1,在Rt△OBH中,设OB=r,∵OH2+BH2=OB2,∴(r﹣1)2+(3)2=r2,解得:r=2,∴DB=2r=4,在Rt△ABD中,AD=22BD AB-=2242-=23,∴AD的长为23.【点睛】本题考查了圆的综合问题,恰当的添加辅助线是解题关键.13.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=12∠P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.【答案】(1)证明见解析;(2)PM=32;(3)满足条件的DH的值为632-或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线. (2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD 33,∴OD =OC ﹣CD =43,∴AD =OA+OD =8+43 =123 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2. (3)如图2中,由(2)可知:BF =12BC =4,FM =3BF =43 ,CM =2DM =2,CD =3 , ∴FM =FC ﹣CM =43﹣2,①当△CDH ∽△BFM 时,DH CD FM BF = , ∴ 3432=- ,∴DH =63- ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =- ,∴DH =1223+ , ∵DN =()22443833--=- ,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为63- 或1223+. 【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.14.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点. (1)求证:是小半圆的切线; (2)若,点在上运动(点不与两点重合),设,. ①求与之间的函数关系式,并写出自变量的取值范围;②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.15.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52 BE【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF=3,在Rt △AFD 中求得DF =1,所以AB =AD = ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD =,即可求出BE 的长度; 试题解析:(1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°.∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴AB AD ==且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA , ∴BE AB DA CD=,∴10=,10∴5BE=.2。

219457521_分类讨论思想在高中数学解题中的应用

219457521_分类讨论思想在高中数学解题中的应用

分类讨论思想在高中数学解题中的应用陈燕飞(昆山陆家高级中学ꎬ江苏苏州215000)摘㊀要:分类讨论是数学学科的重要思想之一ꎬ每年高考题都会涉及到分类讨论思想的考查ꎬ是高中数学教学的重点.为提高学生的分类讨论思想能力ꎬ促进其解题能力及数学学习成绩的提升ꎬ教学实践中应采用理论讲解和习题巩固相结合的教学方法ꎬ指导学生在不同题型中的应用分类讨论思想.关键词:分类讨论思想ꎻ高中数学ꎻ解题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)18-0011-03收稿日期:2023-03-25作者简介:陈燕飞(1977.9-)ꎬ男ꎬ江苏省如皋人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀分类讨论思想在高中数学解题中有着广泛的应用ꎬ不同习题分类讨论的切入点及讨论标准存在差异ꎬ因此ꎬ教学实践中应为学生做好解题示范ꎬ注意预留 空白 ꎬ要求学生认真揣摩分类讨论的标准与过程ꎬ做好方法的归纳㊁整理ꎬ以便理解与掌握分类讨论法.1解答三角函数习题三角函数题中产生分类讨论的情况主要有周期㊁相位㊁图象的不确定等ꎬ解题时应从这些不确定的对象入手ꎬ运用已知条件尽可能的将不确定对象的范围进一步精确ꎬ通过分类讨论尝试推导出矛盾ꎬ从而解决问题.例1㊀已知函数f(x)=cos(ωx+φ)(ω>0ꎬωɪN∗ꎬ0<φ<π)图象上A的坐标为(π24ꎬ0)ꎬ一条对称轴为直线x=π6.当f(x)在区间(π6ꎬπ3)上单调ꎬ则φ的值为(㊀㊀).A.π6㊀㊀㊀B.π4㊀㊀㊀C.π3㊀㊀㊀D.2π3解析㊀由f(x)在区间(π6ꎬπ3)上单调ꎬ可得π3-π6=π6ɤT2ꎬ即ꎬ12ˑ2πωȡπ6ꎬ解得0<ωɤ6.因点A在函数f(x)图象上ꎬ且直线x=π6为函数f(x)图象的一条对称轴ꎬ则π6-π24=π8.当π8=T4ꎬ此时T=2πω=π2ꎬ解得ω=4满足题意ꎻ当π8=3T4ꎬ此时T=2πω=π6ꎬ解得ω=12不满足题意ꎻ综上可得f(x)=cos(4x+φ)ꎬ因直线x=π6为其一条对称轴ꎬ则4ˑπ6+φ=kπꎬkɪZꎬφ=kπ-2π3ꎬkɪZꎬ又由0<φ<πꎬ则φ=π3ꎬ选择C.11点评㊀根据函数f(x)在给定区间的单调性ꎬ确定其周期范围ꎬ再运用周期公式得出ω的范围.结合图象中的已知点㊁对称轴进行分类讨论ꎬ看计算出的ω是否在解得的范围内ꎬ得出最终结果.2解答解三角形习题解三角形常用的知识点有正弦㊁余弦定理ꎬ但在运算的过程中可能会出现多种情况ꎬ此时需进行分类讨论.分类讨论的依据有三角形的内角的分类ꎬ边的分类等.分类讨论中ꎬ若某种情况能推出矛盾ꎬ则应舍去该种情况ꎻ如不能推出矛盾ꎬ则该种情况成立.例2㊀在钝角әABC中AꎬBꎬC对应边aꎬbꎬcꎬ其中a>bꎬa=6ꎬ且满足3sinB-3sinC=cosAꎬcos2A=-79ꎬ则әABC的面积为(㊀㊀).A.4㊀㊀㊀B.8㊀㊀㊀C.42㊀㊀㊀D.82解析㊀由a=6ꎬ3cosB-3cosC=cosA以及正弦定理得到:3b-3c=a=6ꎬ则b-c=2①ꎻ又由cos2A=2cos2A-1ꎬcos2A=-79ꎬ得到cosA=ʃ13.当cosA=13时ꎬ由余弦定理得到:a2=b2+c2-2bccosAꎬ即ꎬ36=b2+c2-23bc=(b-c)2+43bc=4+43bcꎬ即ꎬbc=24②ꎻ由①②得到b=6ꎬc=4ꎬ不符合题意ꎬ舍去ꎻ当cosA=-13时ꎬcosA=1-cos2A=223ꎬ由余弦定理得到:4+83bc=36ꎬ此时bc=12ꎬ由①得到ꎬb=1+13ꎬc=-1+13ꎬ满足a>bꎬ则SәABC=12bccosA=12ˑ12ˑ223=42ꎬ选择C项.点评㊀根据题干中给出的等式ꎬ运用正弦定理进行转化得出cosA的值有两个ꎻ分别对两个值讨论ꎬ发现cosA=13不符合题意ꎬ而cosA=-13符合题意ꎬ在cosA=-13的条件下计算出әABC的面积即可.3解答导数习题导数是高中数学中最易考查分类讨论思想的知识[1].分类讨论常出现对函数求导后ꎬ因参数值的不确定性ꎬ导致函数在不同区间的单调性不同.对参数分类讨论过程中ꎬ判断得出的参数值或范围是否符合题意.例3㊀已知函数f(x)=xex+1ꎬg(x)=a(ex-1)ꎬ当x>0时ꎬ有f(x)ȡg(x)ꎬ则实数a能取到的最大整数为(㊀㊀).A.1㊀㊀㊀㊀B.2㊀㊀㊀㊀C.3㊀㊀㊀㊀D.4解析㊀令h(x)=f(x)-g(x)=xex+1-a(ex-1)=(x-a)ex+a+1ꎬ则hᶄ(x)=(x-a+1)ex.当aɤ1时ꎬhᶄ(x)>0在(0ꎬ+ɕ)上恒成立ꎬ此时ꎬh(x)单调递增ꎬ要想满足题意只需h(0)ȡ0ꎬ此时h(0)=1满足题意.当a>1时ꎬ令hᶄ(x)=0ꎬ解得x=a-1ꎬ则当0<x<a-1时hᶄ(x)<0ꎬh(x)单调递减ꎻ当x>a-1时ꎬhᶄ(x)>0ꎬh(x)单调递增ꎻh(x)min=h(a-1)=-ea-1+1+aꎬ要想满足题意只需-ea-1+1+aȡ0ꎬ即1+aȡea-1.当a=2时.3>e成立ꎻ当a=3时4>e2不成立.综上分析ꎬ实数a能取到的最大整数为2ꎬ故选择B项.点评㊀求参数a能取到的最大整数ꎬ需将问题转化为恒成立问题ꎬ而恒成立对应求函数的最值ꎬ因此ꎬ分类讨论主要围绕求函数的最值展开ꎬ期间需灵活应用导数知识.4解答数列习题数列习题中分类讨论常出现的情况有公差和公比的不确定性㊁通项公式的不确定性等ꎬ尤其对于部 21分数列需将偶数项与奇数项的通项公式分开考虑ꎬ运算时应搞清楚奇㊁偶项的内在联系ꎬ保证推理的严谨性与正确性.例4㊀已知数列{an}中a1ɪZꎬan+1+an=2n+3ꎬ前n项的和为Snꎬ若S13=amꎬ则正整数m=(㊀㊀).A.99㊀㊀㊀B.103㊀㊀㊀C.107㊀㊀㊀D.198解析㊀由an+1+an=2n+3得到an+1-(n+1)-1=-(an-n-1)ꎬ则数列{an-n-1}为公比1的等比数列ꎬ则an-n-1=(-1)n-1(a1-2)ꎬ由数列{an}前n项的和为Sn得到:S13=a1+(a2+a3)+ +(a12+a13)=a1+2(2+4+ +12)+3ˑ6=a1+102.当n为奇数时a1-2+n+1=a1+102ꎬ解得m=103ꎻ当n为偶数时ꎬ-(a1-2)+n+1=a1+102ꎬm=2a1+99由a1ɪZꎬ则m=2a1+99只能为奇数ꎬ此时无解.综上分析m=103ꎬ选择B项.点评㊀数列的的通项公式中含有(-1)n-1ꎬ导致数列的偶数项与奇数项的值不同ꎬ因此ꎬ需将其分开进行考虑ꎬ推理㊁计算出符合题意的结果.5解答圆锥曲线习题圆锥曲线是高中数学一个重难点ꎬ圆锥曲线习题中产生分类讨论的情况多种多样ꎬ尤以直线与圆锥曲线的关系不确定时为讨论的切入点ꎬ讨论过程中为减少运算量ꎬ提高运算效率ꎬ应认真观察图形ꎬ注重几何性质的应用.例5㊀已知F1ꎬF2为双曲线C:x2-y2b2=1(b>0)的左㊁右焦点ꎬ过点F2的直线和双曲线交于AꎬB两点ꎬ当әABF1为等边三角形ꎬ则b的所有取值的积为(㊀㊀).A.2㊀㊀㊀B.3㊀㊀㊀C.22㊀㊀㊀D.23解析㊀(1)当过点F2的直线和双曲线相交的情境如图1时ꎬ设|AF2|=m(m>c-1)ꎬ则由双曲线定义可得|AF1|=|AF2|+2a=m+2ꎬ由әABF1为等边三角形ꎬ可得|AF1|=|BF1|=|AB|=m+2ꎬ可得|BF2|=2ꎬ由双曲线的性质可得|BF1|-|BF2|=|AB|-|BF2|=m=2ꎬ则|AF2|=|BF2|ꎬ则ABʅF1F2ꎬ则2c=4cos30ʎ=23ꎬ则c=3ꎬb=2ꎻ图1㊀例5题解析(1)㊀㊀㊀㊀㊀图2㊀例5题解析(2) (2)当过点F2的直线和双曲线相交的情境如图2时ꎬ设|BF2|=n(n>c-1)ꎬ则|BF1|=|BF2|+2a=n+2ꎬ由әABF1为等边三角形ꎬ可得|AF1|=|BF1|=|AB|=n+2ꎬ|AF2|=2n+2ꎬ又由|AF2|-|AF1|=2n+2-(n+2)=2ꎬ解得n=2ꎬ则|AF1|=4ꎬ|AF2|=6ꎬ则әAF1F2中由余弦定理可得|F1F2|2=|AF1|2+|AF2|2-2|AF1|AF2||cos60ʎ=27ꎬ则c=7ꎬ此时ꎬb=6.结合以上两种情境可得b的所有取值的积为2ˑ6=23ꎬ选择D项.点评㊀对于情况一ꎬ等边әABF1位置较为特殊ꎬ可借助双曲线和等边三角形性质构建线段之间的关系求解.对于情况二ꎬ则需应用余弦定理进行运算.综上所述ꎬ应用分类讨论思想解答数学题时ꎬ应明确为何要进行分类讨论ꎬ分类讨论的依据是什么ꎬ怎样对分类讨论的结果进行合理取舍ꎬ等[2].解题教学中ꎬ为使学生掌握技巧㊁把握思路ꎬ既要展示经典例题ꎬ又要加强专题训练ꎬ启发学生的同时ꎬ帮助其积累丰富经验ꎬ增强应用能力.参考文献:[1]俞洁.高中数学问题中的分类讨论思想例谈[J].中学数学ꎬ2022(03):35-36.[2]顾宣峰.分类讨论思想在高中数学解题中的应用[J].高中数理化ꎬ2021(S1):20.[责任编辑:李㊀璟]31。

《圆》的全章教案圆

《圆》的全章教案圆

图23.1.1我们是用圆规画出一个圆,再将圆划分成一个个扇形,上图23.1.1就是反映学校学生上学方式的扇子形统计、说出上右图中的圆心解、优弧、劣弧。

1、将图形23.1.3中的扇形AOB 绕点O 逆时针旋转某个角度,得到图23.1.4中的图形,同学们可以通过比较前后两个图形,发现AOB =∠,AB AB =。

实质上,AOB ∠确定了扇形AOB 的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等。

图23.1.3图23.1.43)如图,在⊙AB ︵=AC ︵,∠B =70(第4题)=CD ︵=DE ︵,∠本节课我们通过实验得到了圆不仅是中心对称图形,而由圆的对称性又得出许多圆的许多性)同一个圆中,相等的圆心角所对弧相等,所)在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦相等。

(3)在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧相等。

圆心角、弧、弦关系图 23.1.5图 23.1.6试一试如图23.1.7,如果在图形纸片上任意画一条垂直于直径CD 垂足为P ,再将纸片沿着直径CD 对折,比较AP 与PB 、AC ︵与你能发现什么结论?你的结论是:_________________________________________ ________________________________________________ 这就是我们这节课要研究的问题。

例截面如图示,如果油面宽是谈一下本节课的收获?还有何困惑?究竟什么样的角是圆周角呢?像图(3)中的解就叫做圆周角,而图(2)、(4)、(5)中的角都不是圆周角。

同学们可以通过讨论归纳如何判断一个角是不是圆周角。

(顶(第1题)图23.1.9图23.1.10圆心角的度数的一半。

由上述操作可以猜想:在一个圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心角的一半。

为了验证这个猜想,如图使折痕经过圆心况:(1)折痕是圆周角的一条边,内部,(3)折痕在圆周角的外部。

直线与圆的方程培优试题

直线与圆的方程培优试题
单击此处添加标题
已知圆 C 的方程为 x^2 + y^2 - 2x - 4y - 4 = 0,求圆 C 的圆心坐标 和半径。
直线方程的一般式和点斜式,以及它们的转换关系 圆的方程的三种形式及其特点 直线与圆的位置关系:相切、相交和相离 求解直线与圆的交点坐标
解析步骤:先确 定圆心和半径, 再利用点到直线 距离公式求出圆 心到直线的距离, 最后根据距离判 断直线与圆的位
圆的参数方程:$(x=a+rcos\theta, y=b+rsin\theta)$,其中 $ ( r, \ t h e t a ) $ 为 参 数
圆的切线方程:圆的切线方程有三种形式,分别为点斜式、斜截式和两点 式
相交:直线与圆有两个交点 相切:直线与圆有一个交点 相离:直线与圆没有交点 相交、相切、相离的判定方法
直接法:根据题意,直接列出 直线方程
点斜式:已知一点和斜率,写 出直线方程
斜截式:已知斜率和y轴截距, 写出直线方程
两点式:已知两点坐标,写出 直线方程
直接法:根据题 意,直接写出圆 的方程
待定系数法:先 假设圆的方程, 再根据条件求出 待定系数
几何法:根据题 意,利用几何性 质确定圆心和半 径,进而写出圆 的方程
XX,a click to unlimited possibilities
01 单 击 添 加 目 录 项 标 题 02 直 线 与 圆 的 基 本 概 念 03 直 线 与 圆 的 方 程 解 题 方 法 04 直 线 与 圆 的 方 程 培 优 练 习 05 直 线 与 圆 的 方 程 培 优 试 题 解 析 06 直 线 与 圆 的 方 程 培 优 试 题 总 结
置关系。
解析方法:通过 观察直线与圆的 位置关系,选择 合适的解析方法, 如代数法或几何

圆的一般方程

圆的一般方程
2 2
(3)当 D + E − 4 F < 0 时; 当
2 2
方程x 没有实数解, 方程 2 + y 2 + D x + E y + F = 0没有实数解,因而它不表 没有实数解 示任何图形。 示任何图形。
定义: 定义:
当 D2 + E2 − 4F > 0时,方程 x2 + y2 + Dx + Ey + F = 0
x2 + y2 + Dx + Ey + F = 0 圆的一般方程。 表示一个圆, 表示一个圆,称 为 圆的一般方程。
D E − , ,半径为 1 D2 + E2 − 4F 其中圆心为 − 2 2 2
思考: 思考:
既然圆的一般方程是一个二元二次方程,那么它和二元 二次方程的一般式 Ax 2 + Bxy + C y 2 + D x + Ey + F = 0 进行 比较有什么样的特点呢? 特点: 特点: (1)x2 和 y2的系数相同且不等于0,即A=C≠0; (2)没有xy项,即 B=0; (3) D2+E2-4F>0
若令D=-2a,E=-2b,F=a2+b2-r2,则上述的展开式就可 若令 则上述的展开式就可 以用下面的一般式表示: 以用下面的一般式表示:
x 2+ y 2+ D x + E y + F = 0
思考:
形如 x 2 + y 2 + D x + E y + F = 0的方程所表 的方程所表 示的图形一定是圆吗? 示的图形一定是圆吗?
2 2 2 2

浙江中考数学考点专题复习--专题七《圆》

浙江中考数学考点专题复习--专题七《圆》

浙江中考数学考点专题复习----专题七《圆》●中考点击 考点分析:内容要求 1、圆、等圆、等弧等概念及圆的对称性,点和圆的位置关系以及其有关概念 Ⅰ 2、弧、弦、圆心角、弦心距四者之间的关系,能根据具体条件确定这四者之间的关系Ⅱ 3、圆的性质及圆周角与圆心角的关系、直径所对圆周角的特征,灵活运用圆周角的知识进行有关的推理论证及计算Ⅱ 4、垂径定理的应用及逆定理的应用,会添加与之相关的辅助线 Ⅱ 5、圆与三角形和圆内接四边形的知识及综合运用Ⅱ命题预测:本专题主要考查圆的重要性质以及和圆有关的角、线段、环长和面积的计算,另外也会考查圆与勾股定理、相似三角形知识的综合应用.其中,点和圆、直线和圆的位置关系的判断以及和圆有关的简单计算一般以选择填空题形式考查;有关圆与图形的相似、三角函数、函数等知识的综合应用一般是以证明、阅读理解、探索存在等解答题的形式考查.从2005和2006年各地区中考试题中有关圆的考查内容占分比例分析,课改区一般占到10%左右,而非课改区以往对这一部分较为看重,前几年一般占到20%以上,但近年已降至14%左右,不难看出正逐步向课改区靠拢,而且难度也有所降低.预测2008年中考这部分内容的考查会更加贴近生活,重视实用,同时强调基础,突出能力的考查.●难题透视例1如图7-1,在中,弦平行于弦BC ,若80AOC ∠=,则DAB ∠=____度. 【考点要求】本题主要考查圆中圆心角与圆周角之间的关系.【思路点拔】∵∠B=12∠AOC ,80AOC ∠= ∴∠B=40° ∵AD ∥BC∴DAB ∠=∠B =40°【答案】填:40【方法点拨】本题部分学生不能很快发现所求角与已知角之间的关系.突破方法:抓住题中的所在条件,如本题中的两条弦平行,由此可将∠DAB 转化为∠ABC ,然后再利用圆周角与圆心的角关系求解.解题关键:本题要求学生要熟悉同弧所对的圆周角与圆心角之间的关系,即同弧所对的圆周角等于圆心角的一半,同时还要根据平行线的性质进行解题.例2如图8-2,AB 是的⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC=CD=DA ,则∠BCD=( )A .1000B .1100C .1200D .1350【考点要求】本题考查了圆中弧、弦、圆心(周)角之间的关系,以及直径所对的弧是半圆等基本知识.【思路点拔】∵AB 是的⊙O 的直径ADC B O图7-1图7-2∴ACB 度数是1800 ∵BC=CD=DA ∴BC =CD =DA ∵∠BCD=001(18060)2=1200 【答案】选填C【方法点拨】本题要求学生要能比较熟悉圆中的弧、弦和圆心角之间的有关系,即同圆中相等的弦所对的弧相等,所对的圆心角也相等,同时还要知道直径是圆的一条特殊的弦,其所对的圆心角等于180°,以及圆心角与圆周角之间的关系,综合运用这些知识,容易理解要求某个圆周角,只需求得其所对的弧的度数.例3已知:AB 和CD 为⊙O 的两条平行弦,⊙O 的半径为5cm ,AB=8cm ,CD=6cm ,求AB 、CD 间的距离是 .【考点要求】本题考查圆中弦、弦心距等与弦有关的计算问题. 【思路点拔】由于圆内的的两条弦均小于圆的直径,因此可确定出圆中的两条平行弦的位置关系有两种:一是位于圆心的同侧;二是位于圆心的异侧.如图8-3:过O 作EF ⊥AB ,分别交AB 、CD 于E 、F ,则AE=4㎝,CF=3㎝,由勾股定理可求出OE=3㎝,OF=4㎝.故当AB 、CD 在圆心异侧时,距离为7㎝,在圆心同侧时,距离为1㎝. 【答案】填:7㎝或1㎝【方法点拨】本题难点有两个:一是有不少学生容易只考虑其中的一种情形,而忽视另一情形;二是辅助线的添加.突破方法:一般几何填空题中,如果不配图,在自己作图时,应全面考虑各种可能情况.圆中与弦有关的计算或证明问题,往往需要连结半径和弦心距,以构造直角三角形,从而应用勾股定理进行计算.例4用圆规、直尺作图,不写作法,但要保留作图痕迹.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图7-5图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面; (2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径.【考点要求】本题考查圆内心的确定,及与弦有关计算问题,同时考查学生动手操作图形的能力和利用基本知识解决简单问题的能力.【思路点拔】(1)正确作出图形,如图7-6并做答. (2)过O 作OC ⊥AB 于D ,交弧AB 于C ,∵OC ⊥AB , ∴BD =21AB =21×16=8cm . 由题意可知,CD =4cm .设半径为x cm ,则OD =(x -4)cm . 在Rt △BOD 中,由勾股定理得:OD 2+BD 2=OB 2, ∴( x -4)2+82=x 2.图7-5B A (A)(B)CD E F 图7-3图7-6∴x =10.【答案】这个圆形截面的半径为10cm . 【方法点拨】这是一道作图与解答相结合的中考题,部分学生不会补全整个圆面或者补全之后不知如何进行计算.突破方法:补全圆面的关键在于确定圆心,然后再利用勾股定理进行计算.解题关键:确定圆心时,主要根据圆的定义,取弧上的两条弦,作出两条弦的垂直平分线,交点即为圆心,然后连结半径构造直角三角形.例5如图7-7,有一木制圆形脸谱工艺品,H 、T 两点为脸谱的耳朵,打算在工艺品反面两耳连线中点D 处打一小孔.现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定点D 的位置(画出图形表示),并且分别说明理由.【考点要求】本题考查线段垂直平分线知识,通过对圆中弦的中点的确定,考查学生综合运用知识的能力.【思路点拔】方法一:画弦的垂直平分线常用的依据是根据垂径定理,如图7-8中,图①,画TH 的垂线L 交TH 于D ,则点D 就是TH 的中点.方法二:利用全等三角形,如图②,分别过点T 、H 画HC ⊥TO ,TE ⊥HO ,HC 与TE 相交于点F ,过点O 、F 画直线L 交HT 于点D ,由画图知,Rt △HOC ≌Rt △TOE ,易得HF=TF ,又OH=OT ,所以点O 、F 在HT 的中垂线上,所以HD=TD 了,则点D 就是HT 的中点.方法三:如图③,(原理同方法二)图7-7 图7-8 ③②①D L H TO 反面D L H T O 反面反面O T H L C EF GD【答案】见图.【方法点拨】这一道题有一定的开放性,题目中只提供了一块无刻度单位的直角三角板(斜边大于工艺品的直径),工具的限至使用学生思维不易完全打开.突破方法: 充分利用三角板直角,可画垂直线段,从而能够根据垂径定理或者构造全等的直角三角形来确定弦的中点.例6如图7-9,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC 交⊙O 与点F .(1)AB 与AC 的大小有什么关系?为什么?(2)按角的大小分类, 请你判断△ABC 属于哪一类三角形,并说明理由.【考点要求】本题考查与圆有关的性质在三角中的应用. 【思路点拔】(1)(方法1)连接DO ,∵OD 是△ABC的中位线,∴DO ∥CA ,∵∠ODB =∠C ,∴OD =BO ,∴∠OBD =∠ODB ,∴∠OBD =∠ACB ,∴AB =AC(方法2)连接AD , ∵AB 是⊙O 的直径,∴AO ⊥BC , ∵BD =CD ,∴AB =AC(方法3)连接DO ∵OD 是△ABC 的中位线,∴OD=21AC ,OB=OD=21AB ,∴AB=AC (2) 连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°∴∠B <∠ACB =90°.∠C <∠ACB =90°.∴∠B 、∠C 为锐角 ∵AC 和⊙O 交于点F ,连接BF ,∴∠A <∠BFC =90°.∴△ABC 为锐角三角形 【答案】(1)AB =AC ;(2)△ABC 为锐角三角形【方法点拨】部分学生第(1)题会做出判断,但不知如何证明,而第(2)题又容易将问题结果简单、特殊化,易错误的判断为等边三角形.突破方法:判断或证明线段的大小关系时,一般结论是相等,在同一个三角形中可根据等角对等边证明,如果在两个三角形中,往往会根据三角形全等证明,同时还要看清题目要求,如本题就是要求按角的大小分类进行判断,而不是边的大小关系.解题关键:证明同一个三角形中的两边相等,一般根据等角对等边进行证明. 例7如图7-13,已知AB 为⊙O 的直径,弦CD ⊥AB ,垂足为H . (1)求证:AH ·AB =AC 2;(2)若过A 的直线与弦CD (不含端点)相交于点E ,与⊙O 相交于点F ,求证:AE ·AF =AC 2;(3)若过A 的直线与直线CD 相交于点P ,与⊙O 相交于点Q ,判断AP ·AQ =AC 2是否成立(不必证明).【考点要求】本题考查与圆有关的三角形相似问题,是一道几何综合证明题.【思路点拔】(1)连结CB ,∵AB 是⊙O 的直径,∴∠ACB =90°. 而∠CAH =∠BAC ,∴△CAH ∽△BAC . ∴ACAH AB AC , 即AH ·AB =AC 2 . (2)连结FB ,易证△AHE ∽△AFB , ∴ AE ·AF =AH ·AB ,图7-9OFD C B A 图7-13∴ AE ·AF =AC 2 .(也可连结CF ,证△AEC ∽△ACF ) (3)结论AP ·AQ =AC 2成立. 【答案】 (3)结论AP ·AQ =AC 2成立. 【规律总结】等积式的证明往往要转化为比例式进行,部分学生不知改写为何种比例式比较合适.突破方法:把等积式转化为比例式时,要结合图形书写,如证明AH ·AB =AC 2时,可将其先转化为ACAHAB AC,然后从比例式中对应边的比容易看出证明的目标为△CAH ∽△BAC ,从而使得解题变得有的放矢.解题关键:证明圆中的等积式或比例式问题时,往往会利用三角形的相似,因为圆中容易证明角相等.●难点突破方法总结在求解有关圆的中考试题,尤其是难题时,应尽量注意巧妙而又快速地找到其突破口,把题目由繁化简,变难为易.归纳下来,有这样几个方面值得考生们注意:1.掌握解题的关键点.(1)有直径,常作其所对的圆周角;(2)有切线,常将切点与圆心连结起来;(3)有关弦的问题,常需作弦心距.联系垂径定理和直角三角形中的勾股定理;(4)研究两圆位置关系时,常作公切线和连心线;(5)有关切线的判定问题,根据题目条件,主要是两条思路,连半径证明垂直,或者是作垂直证明半径.2.重视基本定理与基本图形相结合,计算与推理相结合,灵活运用各种方法.3.重视数学思想方法的应用.运用分析法、演绎法、截补法,结合方程思想、分类讨论思想、数形结合思想解有关圆的应用题,探索开放性题和方案设计. ●拓展演练 一、选择题 1.已知⊙O 的半径为5cm ,A 为线段OP 的中点,当OP=6cm ,点A 与⊙O 的位置关系时( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C .点A 在⊙O 外 D .不能确定2.已知⊙O 1与⊙O 2的半径分别为3cm 和4cm ,圆心距=10cm ,那么⊙O 1与⊙O 2的位置关系是( )A .内切B .相交C .外切D .外离 3.下列语句中正确的有( )①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③长度相等的两条弧是等弧 ④ 经过圆心的每一条直线都是圆的对称轴.A .1个B .2个C .3个D .4个4.已知圆的半径为6.5cm ,如果一条直线和圆心的距离为9cm ,那么这条直线和这个圆的位置关系是( )A .相交B .相切C .相离D .相交或相离 5.如图,点P 是⊙O 的直径BA 延长线上一点,PC 与⊙O 相切于点C ,CD ⊥AB ,垂足为D ,连结AC .BC .OC ,那么下列结论中:①PC 2=PA ·PB ;②PC ·OC =OP ·CD ;③OA 2=OD ·OP .正确的有( )A .0个B .1个C .2个D .3个6.AB 是⊙O 的直径,点D .E 是半圆的三等分点,AE .BD 的 延长线交于点C ,若CE=2,则图中阴影部分的面积是( )A .43π-3B .23π C .π-D .π二、填空题7.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于.8.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,则sin∠ABD 的值是9.用48m长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形场地;另一种是围成圆形场地.现请你选择,围成(圆形.正方形两者选一)场地的面积较大.10.某落地钟钟摆的摆长为0.5m,来回摆动的最大夹角为20°,已知在钟摆的摆动过程中,摆锤离地面的最低高度为am,最大高度为bm,则b a-= m(不取近似值).11.如图,圆锥的底面半径为6cm,高为8cm,则将该圆锥沿母线剪开后所得扇形对应的圆心角为12.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图8,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.三、解答题13.如图,在△ABC中,∠C=900,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB.AC都相切,求⊙O的半径.14.已知: 如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.(1)求证: DE⊥BC; (2)如果CD=4,CE=3,求⊙O的半径.15.如图所示,外切于P点的⊙O1和⊙O2是半径为3cm的等圆,连心线交⊙O1于点A,交⊙O2于点B,AC与⊙O2相切于点C,连接PC,求PC的长.ODECBA16.如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.(1)求证:点F是BD中点;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.17.已知:AB为⊙O的直径,P为AB弧的中点.(1)若⊙O′与⊙O外切于点P(见图甲),AP.BP的延长线分别交⊙O′于点C.D,连接CD,则△PCD是三角形;(2)若⊙O′与⊙O相交于点P.Q(见图乙),连接AQ.BQ并延长分别交⊙O′于点E.F,请选择下列两个问题中的一个..作答:问题一:判断△PEF的形状,并证明你的结论;问题二:判断线段AE与BF的关系,并证明你的结论.我选择问题,结论:.●专题七《圆》习题答案1.【答案】A [点拨:根据圆的定义及点和圆的位置关系进行分析]2.【答案】D [点拨:根据圆与圆的位置关系进行判断]3.【答案】A [点拨:这是一道概念辨析题,正确理解等弧的概念是解此类题目的关键.等弧只能在同圆中,长度相等或度数相等的两条弧都不能判断是等弧,因此①③ 都是错误的,圆内任意两条直径都互相平分,但不一定垂直,故②不正确]4.【答案】C [点拨:根据已知条件圆心到直线的距离为9cm ,大于圆的半径6.5cm ,所以直线与圆相离]5.【答案】D [点拨:由题目已知条件,容易证明△PCA ∽△PBC .△OCD ∽△OPC ,所以PC PB PA PC =,PC CD OP OC =,OC OPOD OC=,又由于OA=OC ,从而可推得三个结论全部正确] 6.【答案】A [点拨:∵AE ED DB ==,∴ ∠A=∠ABC=600,∴△ABC 是等边三角形,又 AB 是⊙O 的直径,∴∠AEB=900 ,即 BE ⊥AE ,∴AC=2CE=4=AB , ∴S 阴=S 扇形OBE -S ▲ABE =43π-3]7.【答案】5 [点拨:直角三角形外接圆的圆心在斜边的中点上,且半径等于斜边的一半] 8.【答案】45[由已知已知AB 是⊙O 的直径,得∠ACB=90O ,AB 垂直平分CD ,∴△BCD 为等腰三角形,∴∠ABD=∠ABC ,∴sin ∠ABD=sin ∠ABC=45AC AB =]9.【答案】圆 [点拨:用同样长度的材料,圆形场地的面积较大] 10.【答案】0.5(1cos10)-︒ [点拨:根据垂径定理计算]11.【答案】216o [226810l =+=(cm ),C=2πr=12π,∴n=00180216CLπ=] 12.【答案】26 [点拨:由垂径定理可知,CD 平分弦AB ,所以152AE AB ==,设⊙O 的半径为R ,连结OA ,在Rt △AOE 中,222AO AE OE =+,所以2225(1)R R =+-,解之,得R=13,所以CD=2R=26] 13.【答案】解:由题意,BC=22AB AC -=6, 过O 分别作OD ⊥AB ,OE ⊥OE ,则D .E分别是AB .AC与⊙O相切的切点,则AD=AE ,OD=OE ,,,OE CP BC CP ⊥⊥又,∴BCP △∽△OEP ,∴EP=OE ,设OE=x ,则BD =AB -AD =AB -AE =10-(2+x )=8-x ,OB =BP-OP =2,∴(8-x )2+x 2=2(6-x )2 ,∴x =1,∴⊙O 的半径为1 14.【答案】解:(1)连结OD .∵DE 切⊙O 于点D ,∴DE ⊥OD , ∴∠ODE =900 ,又∵AD =DC , AO =OB ,∴OD //BC ,∴∠DEC =∠ODE =900,∴DE ⊥BC(2)连结BD .∵AB 是⊙O 的直径, ∴∠ADB =900 ,∴BD ⊥AC , ∴∠BDC =900 ,又∵DE ⊥BC , △Rt CDB ∽△Rt CED ,∴CE DC DC BC =, ∴BC=3163422==CE DC 又∵OD=21BC ,∴OD =3831621=⨯, 即⊙O 的半径为38. 15.【答案】解:设PC =x cm ,BC =y cm , 连结BC ,则∠BCP =90o ,AC 2=AP ·AB , ∴AC =62,又∠ACP =∠CBP ,∴△ACP ∽△ABC ,2PC BC x AC AB∴=,即y=①2AB PB +=2又PC ,即236x y +=2②, 由①、②得,x=23,y=26( x=-23,y=-26(舍去),∴PC =23cm16.【答案】解:(1)∵CH ⊥AB ,DB ⊥AB ,∴△AEH ∽△AFB ,△ACE ∽△ADF∴FDCEAF AE BF EH ==,∵HE =EC ,∴BF =FD (2)方法一:连接CB .OC ,∵AB 是直径, ∴∠ACB =90°,∵F 是BD 中点,∴∠BCF =∠CBF =90°-∠CBA =∠CAB =∠ACO ,∴∠OCF =90°,∴CG 是⊙O 的切线 方法二:可证明△OCF ≌△OBF(3)解:由FC =FB =FE 得:∠FCE=∠FEC ,可证得:FA =FG ,且AB =BG ,由切割线定理得:[2+FG ]2=BG ×AG =2BG 2 ①在Rt △BGF 中,由勾股定理得:BG 2=FG 2-BF 2 ②由①、②得:FG 2-4FG -12=0,解之得:FG 1=6,FG 2=-2(舍去)∴AB =BG =24,∴⊙O 半径为22。

圆的分类讨论例题及习题

圆的分类讨论例题及习题圆中的分类讨论题------之两解情况一、根据点与圆的位置分类例1、点P 是圆0所在平面上一定点,点 P 到圆上的最大距离和最短距离分别为8和2, 则该圆的半径为 ___________________ 。

解:过点P 和圆心0作直线分别与圆0相交于A 、B 两点。

PA 、 PB 分别表示圆上各点到点 P的最长距离和最短距离。

(1)当点P 在圆内时,如图1所示,直径(2)当点P 在圆外时,如图2所示,直径--1 - :H .所以,圆0的直径为2或6。

练习1:若。

0所在平面内一点P 到。

0上的点的最大距离为a ,最 小距离为b ,则此圆的半径为()2: P 在。

0内,距圆心0的距离为4,。

0半径长为5,经过P 点, 有多少条?解:过P 点的弦长为整数的最短弦长是 6cm (该弦垂直于0P ,等于5与4的平方和的平方 根的2倍);最长的是10cm (过0、P 的直径);其间弦长为整数的长度还有 7、8、9cm ,所以共 有8条(其中的7、8、9各有两条,以0P 为对称轴)。

3:00的半径为2.5,动点P 到定点0的距离为2,动点Q 到P 的点的距离为1,则点P 、 Q 与O 0有何位置关系?二、弦与弦的位置关系不唯一,需要分类讨论例 1、圆 0 的直径为 10cm ,弦 AB//CD , AB=6cm , CD = 8cm ,求 AB 和CD 的距离。

解:(1)当AB 、CD 在圆心的同侧时,如图,过点 0作0M_AB 交 AB 于点M ,交CD于N ,连结OB 、0D ,得Rt 0MB , Rt 0ND ,然后 由勾股定理求0M = 4cm, 0N = 3cm ,故 AB 和 CD 的距离为 1cm 。

(2)当AB 、CD 在圆心的异侧时,如图9,仍可求得0M = 4cm, ON = 3cm 故AB 和CD 的距离为7cm 。

所以AB 和CD 的距离为1cm 和7cm 。

例2、已知弓形的弦长为8cm ,所在圆的半径为5cm ,则弓形的高为多少? ( 2或8cm )k _________ 止 ______________ ________ LAP . 定点 交于。

人教版九年级上册数学圆的有关性质 四课时教学设计(教案)

教学时间课题24.1.1 圆课型新授课教学目标知识和能力探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.过程和方法体会圆的不同定义方法,感受圆和实际生活的联系.培养学生把实际问题转化为数学问题的能力.情感态度价值观在解决问题过程中使学生体会数学知识在生活中的普遍性.教学重点圆的两种定义的探索,能够解释一些生活问题.教学难点圆的运动式定义方法教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、创设问题情境,激发学生兴趣,引出本节内容活动1:如图1,观察下列图形,从中找出共同特点.图1学生活动设计:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.教师活动设计:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.二、问题引申,探究圆的定义,培养学生的探究精神活动2:如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件:画圆)图2学生活动设计:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.活动3:讨论圆中相关元素的定义.如图3,你能说出弦、直径、弧、半圆的定义吗?图3学生活动设计:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.教师活动设计:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决.弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;弧的表示方法:以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC;劣弧:小于半圆的弧叫作劣弧,如图3中的BC.活动4:讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)学生活动设计:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.图4三、应用提高,培养学生的应用意识和创新能力活动5:如何在操场上画一个半径是5 m的圆?说出你的理由师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.活动6:从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?图5师生活动设计:首先求出半径,然后除以20即可.〔解答〕树干的半径是23÷2=11.5(cm).平均每年半径增加11.5÷20=0.575(cm).小结:圆的两种定义以及相关概念.在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)学生活动设计:如图2所示,连接OA、OB,得到等腰△OAB,即OA=OB.因CD⊥AB,故△OA M与△OB M都是直角三角形,又O M为公共边,所以两个直角三角形全等,则A M=B M.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此.AM=B M,AC=BC,同理得到AD BD教师活动设计:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,弦AB=16 m,求此圆的半径.图3学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC⊥AB,图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接作OE ⊥AB ,垂足为E ,交圆于则AE =21AB = 30 cm .令⊙的半径为R ,情感培养学生积极探索数学问题的态度及方法.态度价值观教学重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.教学难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、一、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作.由已知条件可知∠AOB=∠A′O′B′;由AB AC=,△ABC是等腰三角形,由∠ACB=60°,得到△ABC是等边三角形,AB=AC=BC,所以得到∠AOB=∠AOC=∠BOC.教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.〔证明〕∵AB AC=∴AB=AC,△ABC是等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠AOC=∠BOC.2.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.图3学生活动设计:学生分析,由BC=CD=DA可以得到这三条弦所对的圆心角相等,所以考虑连接OC,得到∠AOD=∠DOC=∠BOC,而AB是直径,于是得到∠BOD=23×180°=120°.教师活动设计:此问题的解决方式和活动3类似,不过要注意学生对辅助线OC的理解,添加辅助线OC的原因.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?师生活动设计:小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如可以请同学们画一个只能是圆心角相等的这个条件的图.如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′.图4教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.小结:弦、圆心角、弧三量关系.作业设计必做习题24.1 第2、3题,第10题.选做P88:11、12教学反思教学时间课题24.1.4 圆周角课型新授课教学目标知识和能力1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.过程和方法1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.4.学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度价值观引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.教学重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.教学难点发现并论证圆周角定理.教学准备教师多媒体课件学生“五个一”问题与情境师生行为设计意图[活动1 ]演示课件或图片:教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发问题1如图:同学甲站在圆心O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C ,他们的视角(AOB ∠和ACB ∠)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D 和E ,他们的视角(ADB ∠和AEB ∠)和同学乙的视角相同吗?角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB )所对的圆心角(AOB ∠)与圆周角(ACB ∠)、同弧所对的圆周角(ACB ∠、ADB ∠、AEB ∠等)之间的大小关系.教师引导学生进行探究.教师关注:1.问题的提出是否引起了学生的兴趣;2.学生是否理解了示意图; 3.学生是否理解了圆周角的定义;4.学生是否清楚了要研究的数学问题.现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.[活动2]问题1同弧(弧AB )所对的圆心角∠AOB 与圆周角∠ACB 的大小关系是怎样的?问题2同弧(弧AB )所对的圆周角∠ACB 与圆周角∠ADB 的大小关系是怎样的?O BAC BOA C D E教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论. 在活动中,教师应关注:1.学生是否积极参与活动; 2.学生是否度量准确,观察、发现的结论是否正确.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数; 3.改变圆的半径大小.活动2的设计是为 引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.问题5如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6如图,⊙O的直径AB 为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.问题6提出后,教师关注:1.学生是否能由已知条件得出直角三角形ABC、ABD;2.学生能否将要求的线段放到三角形里求解;3.学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.[活动5]问题通过本节课的学习你有哪些收获?教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结,使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联系,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业的目的是让学生养成看书的习惯,并通过看书加DBOAC。

以圆为背景的一道中考模拟压轴过渡题的命制与导向反思

图8 ) .
2 0 1 4 年7 月
问题是不 是就失 去了部分选拔 的功能 呢?若在 问题 ( 3 ) 中不做任 何提示 ,让学生 通过 画图直接说 出 O B A与 O D A的数 量关 系 , 既考查 了学 生 的构 图能 力 , 又 节约
了时间, 提高 了效率.

图7 图 8
圆为 背景 的压轴 过渡题 , 定位 图形 不能太 复杂 , 推理不 能太烦琐.
2 . 遴 选 素 材
( 2 ) 当四边形O B C D为平行 四边形时 , 请探索 /O B A 与 O D A的数量关 系. 思考: 问题 ( 1 ) 入 口偏难 , 还 用到 了分类思 想 、 转化
题感悟
① O B A+ O D A= 1 2 0 。 ( 如 图4 ) ; ② O D A— LO B A= 6 0 。 ( 如 图5 ) ; ③/ _O B A 一 O D A= 6 0 。 ( 如 图6 ) ; ④ O D A— O B A = 6 0 。 ( 如 图7 ) ; ⑤ O B A 一 O D A: 6 0 。 ( 如

如 图3 ,四边形O B C D 中 的三个 顶点在 o0 上 ,点A是 6 3O 上 的一个
分, 降低起 点 , 放低人 口 , 在 体现一定 区分 功能 的 同时 ,
ห้องสมุดไป่ตู้要通 过 问题 的层次性 体现人 文关怀.在 内容的考查 上 ,
动点( 不与点B、 c 、 D 重合 ) . ( 1 ) 若点0 在 厶4 的 内部 , 已知
LB O D= 1 2 0 。 ,则 /O B A+ O D A= C
图 3
要 突 出初 中数 学 的核心 知识 , 要 有一定 的综 合度 . 圆作

九年级数学圆的综合的专项培优练习题(含答案)附答案解析

九年级数学圆的综合的专项培优练习题(含答案)附答案解析一、圆的综合1.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】 分析:(1)由菱形知∠D=∠BEC ,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC ,据此得证;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG=AC=CE=CD ,证△BEF ∽△BGA 得BE BG BF BA =,即B F•BG=BE•AB ,将BF=BC-CF=BC-AC 、BG=BC+CG=BC+AC 代入可得; (3)①设AB=5k 、AC=3k ,由BC 2-AC 2=AB•AC 知6k ,连接ED 交BC 于点M ,Rt △DMC 中由DC=AC=3k 、MC=126k 求得22CD CM -3,可知OM=OD-3,在Rt △COM 中,由OM 2+MC 2=OC 2可得答案.②设OM=d ,则MD=3-d ,MC 2=OC 2-OM 2=9-d 2,继而知BC 2=(2MC )2=36-4d 2、AC 2=DC 2=DM 2+CM 2=(3-d )2+9-d 2,由(2)得AB•AC=BC 2-AC 2,据此得出关于d 的二次函数,利用二次函数的性质可得答案. 详解:(1)∵四边形EBDC 为菱形,∴∠D=∠BEC ,∵四边形ABDC 是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC ,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:k=33或k=0(舍),∴62;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC 2=(2MC )2=36﹣4d 2,AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272, ∴AC=DC=362, ∴AB=964,此时32AB AC =. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.2.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O e 外取一点H ,连接CH 、DH 分别交O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)37【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O Q e 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=o ,D E 90∠∠∴+=o ,2D 2E 180∠∠∴+=o ,AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=o .()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===o Q ,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR V 和ODG V 中,A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,AOR ∴V ≌ODG V ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===o Q ,AF//OC//BT ∴,OA OB =Q ,CT CF 3m ∴==,ET m ∴=,CD Q 为直径,CBD CND 90CBE ∠∠∠∴===o ,E 90EBT CBT ∠∠∠∴=-=o ,tan E tan CBT ∠∠∴=,BT CT ET BT∴=, BT 3m m BT∴=, BT 3m(∴=负根已经舍弃),3m tan E 3∠∴== E 60∠∴=o ,CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,H E 60∠∠∴==o ,MON 2HCN 60∠∠∴==o ,OM ON =Q ,OMN ∴V 是等边三角形,MN ON ∴=,QM OB OM ==Q ,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=o o Q ,MQO P 180H 120∠∠∠+=-=o o , PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN V 中,2222CN CD DN 501448=-=-=,在Rt CHN V 中,CN 48tan H 3HN HN∠===, HN 163∴=,在Rt KNH V 中,1KH HN 832==,3NK HN 24==, 在Rt NMK V 中,2222MK MN NK 25247=-=-=,HM HK MK 837∴=+=+.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.3.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o , 1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=,AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G ,1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==,24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.4.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.【详解】()1解:结论:DE 是O e 的切线.理由:连接OD .CDB ADE ∠=∠Q ,ADC EDB ∴∠=∠,//CD AB Q ,CDA DAB ∴∠=∠,OA OD =Q ,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠,AB Q 是直径,90ADB ∴∠=o ,90ADB ODE ∴∠=∠=o ,DE OD ∴⊥,DE ∴是O e 的切线.()2//CD AB Q ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=n n, AC BD ∴=,DCB DAB ∠=∠Q ,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴V ∽DBE V ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.5.在⊙O 中,点C 是AB u u u r 上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.6.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;(2)若AB=6,CB=4,求PC的长.【答案】(1)PC是⊙O的切线,理由见解析;(235 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.7.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF ,BG ,由三角形AED 与三角形BFD 全等,得到ED =FD ,进而得到三角形DEF 为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE =BF =1,在直角三角形BEF 中,利用勾股定理求出EF 的长,利用锐角三角形函数定义求出DE 的长,利用两对角相等的三角形相似得到三角形AED 与三角形GEB 相似,由相似得比例,求出GE 的长,由GE +ED 求出GD 的长,根据三角形的面积公式计算即可.详解:(1)连接BD .在Rt △ABC 中,∠ABC =90°,AB =BC ,∴∠A =∠C =45°. ∵AB 为圆O 的直径,∴∠ADB =90°,即BD ⊥AC ,∴AD =DC =BD =12AC ,∠CBD =∠C =45°,∴∠A =∠FBD .∵DF ⊥DG ,∴∠FDG =90°,∴∠FDB +∠BDG =90°.∵∠EDA +∠BDG =90°,∴∠EDA =∠FDB .在△AED 和△BFD 中,A FBD AD BD EDA FDB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△BFD (ASA ),∴AE =BF ; (2)连接EF ,BG . ∵△AED ≌△BFD ,∴DE =DF .∵∠EDF =90°,∴△EDF 是等腰直角三角形,∴∠DEF =45°. ∵∠G =∠A =45°,∴∠G =∠DEF ,∴GB ∥EF ,∴∠FEB =∠GBA . ∵∠GBA =∠GDA ,∴∠FEB =∠GDA ;(3)∵AE =BF ,AE =2,∴BF =2.在Rt △EBF 中,∠EBF =90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DEEF. ∵EF=∴DE=2. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EBED,即GE •ED =AE •EB ,∴GE =8,即GE,则GD =GE +ED∴11192252S GD DF GD DE =⨯⨯=⨯⨯==.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.8.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【答案】(1) B(,2).(2)证明见解析.【解析】试题分析:(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可试题解析:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.9.在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为﹣2.【解析】【分析】(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A=(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【详解】解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=30°,∠BAO=60°,由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°,∵OB=OB'=2,∠COB'=90°﹣60°=30°,∴B'C =OB’=,∴OC=3,∴B'(3,),(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为-2.理由是:如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,2),∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点睛】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP 为半径的圆.10..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A重合),⊙D与AB相切,切点为E,⊙D交射线..BC于..DC于点F,过F作FG⊥EF交直线点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 3r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理得:(3r)2+9=36,解得:3(3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==- ②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2, 即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.11.如图,⊙O 是△ABC 的外接圆,AB 是直径,过点O 作OD ⊥CB ,垂足为点D ,延长DO 交⊙O 于点E ,过点E 作PE ⊥AB ,垂足为点P ,作射线DP 交CA 的延长线于F 点,连接EF ,(1)求证:OD=OP;(2)求证:FE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE≌△ADO可得DO=EO;(3)连接AE,BE,证出△APE≌△AFE即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BODOE=OB∴△OPE≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.12.如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A在原点的左上方,且tan∠AOB=3,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.【答案】(1)103π(2)30(3)①AD=2PC②20+83或20+83③1≤d≤3【解析】【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.解直角三角形即可解决问题.(3)①结论:AD=2PC.如图2中,连接AB,AC.证明△COP∽△AOD,即可解决问题.②分两种情形:如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.求出PC即可.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得.③判断出PC的取值范围即可解决问题.【详解】(1)∵tan∠AOB=3,∴∠AOB=60°,∴S扇形AOB=23002103603ππ⋅⋅=(大于半圆的扇形),(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.∵PD是⊙O的切线,∴OP⊥PD,∴∠OPD =90°, ∵21sin 42OP PDO OD ∠=== ∴∠PDB =30°, 同法当DP ′与⊙O 相切时,∠BDP ′=30°,∴∠PDB 的最大值为30°.故答案为30.(3)①结论:AD =2PC .理由:如图2中,连接AB ,AC .∵OA =OB ,∠AOB =60°,∴△AOB 是等边三角形,∵BC =OC ,∴AC ⊥OB ,∵∠AOC =∠DOP =60°,∴∠COP =∠AOD ,∵2AO OD OC OP==, ∴△COP ∽△AOD , ∴2AD AO PC OC==, ∴AD =2PC . ②如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .∵OP =OK ,∠POK =60°,∴△OPK 是等边三角形,∵PD∥OA,∴∠AOP=∠OPD=90°,∴∠POH+∠AOC=90°,∵∠AOC=60°,∴∠POH=30°,∴PH=12OP=1,OH=3PH=3,∴PC=2222PH CH1(13)523+=++=+,∵AD=2PC,∴AD2=4(5+23)=20+83.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得:PC2=12+(3﹣1)2=5﹣23,AD2=4PC2=20﹣83.③由题意1≤PC≤3,∴在旋转过程中,点C到PD所在直线的距离d的取值范围为1≤d≤3.【点睛】本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.如图,已知AB是⊙O的直径,BC是弦,弦BD平分∠ABC交AC于F,弦DE⊥AB于H,交AC于G.①求证:AG=GD;②当∠ABC满足什么条件时,△DFG是等边三角形?③若AB=10,sin∠ABD=35,求BC的长.【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;(3)BC 的长为145. 【解析】【分析】 (1)首先连接AD ,由DE ⊥AB ,AB 是O e 的直径,根据垂径定理,即可得到¶¶AD AE =,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE =∠ABD ,又由弦BD 平分∠ABC ,可得∠DBC =∠ABD ,根据等角对等边的性质,即可证得AG=GD ;(2)当∠ABC=60°时,△DFG 是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan ∠ABD 34=,cos ∠ABD =45,再求出DF 、BF ,然后即可求出BC.【详解】(1)证明:连接AD ,∵DE ⊥AB ,AB 是⊙O 的直径,∴¶¶AD AE =,∴∠ADE =∠ABD ,∵弦BD 平分∠ABC ,∴∠DBC =∠ABD ,∵∠DBC =∠DAC ,∴∠ADE =∠DAC ,∴AG =GD ;(2)解:当∠ABC =60°时,△DFG 是等边三角形.理由:∵弦BD 平分∠ABC ,∴∠DBC =∠ABD =30°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°﹣∠ABC =30°,∴∠DFG =∠FAB+∠DBA =60°,∵DE ⊥AB ,∴∠DGF =∠AGH =90°﹣∠CAB =60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD8,∴tan ∠ABD =34AD BD ,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145. ∴BC 的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.14.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接FA ,FC ,若∠AFC =2∠BAC ,求证:FA ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接FA ,FG ,FG 与AC 相交于点P ,且AF =FG .①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE =BD ,∠GOE =90°,⊙O 的半径为2,求EP 的长.【答案】(1)见解析;(2)①结论:∠GFA =2∠ABC .理由见解析;②PE 3. 【解析】【分析】 (1)证明∠OFA =∠BAC ,由∠EAO +∠EOA =90°,推出∠OFA +∠AOE =90°,推出∠FAO =90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为»»=,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.AG AG②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵»»AG AG=,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB =90°,∵CD ⊥AB ,∴∠ABC +∠BCA =90°,∵∠BCD +∠ACD =90°,∴∠ABC =∠ACG ,∴∠GFA =2∠ABC .②如图2﹣1中,连接AG ,作FH ⊥AG 于H .∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=,∴1342333PE,∴PE=36.【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=12AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.【答案】(1)26;(2)①证明见解析;②33﹣3.【解析】试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.试题解析:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===;(2)①如图3,连接OD,交CB于点F,连接BD,∵,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.考点:圆的综合题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

细说圆中的分类讨论题------之两解情况由于圆既是轴对称图形,又是中心对称图形,还具有旋转不变性,有许多问题需要分类讨论,分类讨论是一种同学们应该掌握并且相当重要的数学思想,对于锻炼同学们的缜密思维和分析问题能力异常的重要,但同学们在遇到分类讨论题时易出现漏解情况,这就要求同学们在解题时一要读懂题意,明白题干的要求,二要有顺序步骤的做。

先从几个方面举例说明如下: 一、根据点与圆的位置分类例1、点P 是圆O 所在平面上一定点,点P 到圆上的最大距离和最短距离分别为8和2,则该圆的半径为 。

分析:根据点和圆的位置关系,这个点P 与圆有两种位置关系。

分为点在圆内和点在圆外两种情况。

解:过点P 和圆心O 作直线分别与圆O 相交于A 、B 两点。

PA 、PB 分别表示圆上各点到点P 的最长距离和最短距离。

(1)当点P 在圆内时,如图1所示,直径;(2)当点P 在圆外时,如图2所示,直径; 所以,圆O 的直径为2或6。

二、三角形与圆心的位置关系例2:已知∆ABC 内接于圆O ,∠=︒OBC 35,则∠A 的度数为________。

分析:因点A 的位置不确定。

所以点A 和圆心O 可能在BC 的同侧,也可能在BC 的异侧。

也可分析为圆心在∆ABC 的内部和外部两种情况。

解:(1)当点A 和圆心O 在BC 的同侧时,如图3,POBAPOB A图3 图4(2)当点A 和圆心O 在BC 的异侧时,如图4,∠=︒OBC 35∴∠=︒BOC 110∴∠=︒BPC 55∴∠=︒BAC 125 所以∠A 的度数是55︒或125︒。

练习:已知圆内接∆ABC 中,AB=AC ,圆心O 到BC 的距离为3cm ,圆的半径为6cm,求腰长AB 。

(两种情况如图5、图6)AC图5 图6三、角与圆心的位置关系例3:在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 的度数是____。

分析:角与圆心的位置关系为圆心在角内部和外部两种情况。

解:如图7,当圆心在∠BAC 内部时,连接AO 并延长交⊙O 于E 在Rt △ABE 中,由勾股定理得:BE AE ==112,所以∠BAE =30°同理,在Rt △CAE 中,EC =AC ,所以∠EAC =45°,∠BAC =︒+︒=︒304575当圆心O 在∠BAC 的外部时(∠BAC'),由轴对称性可知:∠BAC '=︒-︒=︒453015 所以∠BAC 为75°或15°C'ECA四、圆中两平行弦与圆心的位置关系例4. 圆O 的直径为10cm ,弦AB//CD ,AB=6cm ,CD cm =8,求AB 和CD 的距离。

分析:题中的弦AB 、CD 都比圆O 中的直径小,所以AB 和CD 可能在圆心的同侧,也可能在圆心的异侧。

解:(1)当AB 、CD 在圆心的同侧时,如图8,过点O 作OM AB ⊥交AB 于点M ,交CD 于N ,连结OB 、OD ,得Rt OMB ∆,Rt OND ∆,然后由勾股定理求得:OM cm ON cm ==43,,故AB 和CD 的距离为1cm 。

(2)当AB CD 、在圆心的异侧时,如图9,仍可求得OM cm ON cm ==43,。

故AB 和CD 的距离为7cm 。

所以AB 和CD 的距离为1cm 和7cm 。

五、弦所对的圆周角有两种情况例5:半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于___________。

分析:弦所对的圆周角有两种情况: (1)弦所对的圆周角的顶点在优弧上; (2)弦所对的圆周角的顶点在劣弧上。

解:故应填60°或120°。

练习:一条弦分圆周为3:5两部分,则这条弦所对的圆周角的度数为 。

D六、圆与圆的位置关系例6、已知圆O1和圆O2相内切,圆心距为1cm,圆O2半径为4cm,求圆O1的半径。

分析:根据两圆相内切的特点:圆心距等于大圆半径减去小圆半径。

但该题的条件中没有给定谁是大圆,谁是小圆。

这时可把圆O2看成大圆,也可把圆O2看成小圆。

解:(1)当圆O2是大圆时,则圆O1的半径等于大圆半径4cm减去圆心距1cm,求得圆O1的半径为3cm。

(2)当圆O2是小圆时,则圆O1的半径等于小圆半径4cm加上圆心距1cm,求得圆O1的半径为5cm。

所以圆O1的半径是3cm或5cm。

例7、两圆相切,半径分别为4cm和6cm,求两圆的圆心距。

分析:此题中的两圆相切没有说明是内切还是外切,所以应该分两种情况考虑。

解:(1)当两圆内切时,两圆心的距离等于大圆半径减去小圆半径,即642-=cm。

(2)当两圆外切时,两圆心的距离等于大圆半径加上小圆半径,即6410+=cm。

所以两圆的圆心距是2cm或10cm。

例8、相交两圆半径分别为5 cm 和4cm ,公共弦长6cm,则两圆的圆心距等于_______分析:注意两圆心在公共弦长两侧和同侧两种情况补充:1、弦所对弧的优劣情况不确定已知横截面直径为100cm的圆形下水道,如果水面宽AB为80cm,求下水道中水的最大深度。

20cm或80cm分析:根据两圆相内切的特点:圆心距等于大圆半径减去小圆半径。

但该题的条件中没有给定谁是大圆,谁是小圆。

这时可把圆O2看成大圆,也可把圆O2看成小圆。

解:(1)当圆O2是大圆时,则圆O1的半径等于大圆半径4cm减去圆心距1cm,求得圆O1的半径为3cm。

(2)当圆O2是小圆时,则圆O1的半径等于小圆半径4cm加上圆心距1cm,求得圆O1的半径为5cm。

所以圆O1的半径是3cm或5cm。

4、相交两圆的半径分别为8和5,公共弦为8,这两个圆的圆心距等于_________。

分析:因两圆的半径都大于公共弦长的一半,所以两圆的圆心可能在公共弦的同侧,也可能在公共弦的异侧。

解:(1)当两圆的圆心在公共弦的同侧时,如图6,设AB是公共弦,O O12A O 1CO 2B所以这两圆的圆心距为433+或433-。

5、过不在⊙O 上的一点A ,作⊙O 的割线,交⊙O 于B 、C ,且AB ·AC =64,OA =10,则⊙O 的半径R 为___________。

解:依题意,点A 与⊙O 的位置关系有两种: (1)点A 在⊙O 内,如图1,延长AO 交⊙O 于F ,则AE R AF R =-=+1010,由相交弦定理得:()()R R -+=101064 所以R =241(负值已舍去)(2)点A 在⊙O 外,如图2,此时AE R AF R =-=+1010,由割线定理得:()()101064-+=R R 所以R =6(负值已舍去) 故⊙O 的半径R 为241或6。

6、如图8,在平面直角坐标系中,P 是经过O (0,0),A (0,2),B (2,0)的圆上的一个动点(P 与O 、B 不重合),则∠OAB =_________度,∠OPB =_________度。

解:依题意可知△AOB 是等腰直角三角形,所以∠OAB =45°当动点P 在OAB ⌒上时,∠OPB =∠OAB =45° 当动点P 在OB ⌒上时,∠OPB =180°-45°=135° 故∠OPB 为45°或135°。

7、已知半径为4和22的两圆相交,公共弦长为4,则两圆的圆心距为_________。

分析:相交两圆圆心的位置有在公共弦的同侧和异侧两种情况。

解:如图9、图10,在Rt O AC ∆1中,O C O A AC 1122224223=-=-= 在Rt O AC ∆2中,()O C O A AC 2222222222=-=-=(1)当圆心O O 12、在公共弦AB 的同侧时, 如图9O O O C O C 1212232=-=-(2)当圆心O O 12、在公共弦AB 的异侧时,如图10,O O O C O C 1212232=+=+8、已知在直径AB 为13的半圆上有一点C ,CD ⊥AB ,垂足为D ,且CD =6,求AD 的长.分析:由于6<132 ,即CD <12AB ,所以点D 在直径上的位置有两种情况: 解:(1)如图3,当点D 和点A 在圆心O 的同旁时(AD <BD ). 在Rt △COD 中,OD =256)213(2222=-=-CD CO ,则AD =OA -OD =132-52=4;(2)如图4,当点D 和点A 在圆心的两旁时(AD >BD ). 同理可求OD =52 ,则AD =AO +OD =132 +52 =9.故所求的AD 的长为4或9.点评:图形的位置关系是几何研究的重要方面,应考虑到图形所有可能情况,全面性地思考问题.如:本例中,由于圆的轴对称性,相同长度的弦位置往往不止一个.本题可以拓展到整圆:已知:⊙O 的半径为5,AB 为直径,弦CD ⊥AB ,CD=6,则AE= (1或9)9、两圆的半径分别为4和2,如果它们的两条公切线互相垂直,求两圆的圆心距。

这种情况。

解:(1)当内公切线与外公切线垂直时,如图11,AB 切⊙O 1于A ,切⊙O 2于B ,EF 切⊙O 1于E ,切⊙O 2于F ,AB ⊥EF 于D 。

O A B CD 图3 O D A BC 图4由切线定理,得:∠∠∠∠O DA O DE O DB O DF 11224545==︒==︒所以∠,,O DO O D O D 1212904222=︒== 故有O O O D O D 121222210=+=(2)当内公切线垂直时,如图12,作O E l O D l 1221⊥,⊥,交点为E ,则()()O O O E O E 12122222424262=+=+++=(3)当外公切线垂直时,如图13,作O E l O F l O G O E 122221⊥,⊥,⊥于G ,则()()O O O G O G O E GE EF 1212221222242222=+=-+=-+=10、如图,在平面直角坐标系中,已知⊙C 的半径为r,直线l :4y=x-43,与x 轴、y轴分别交于A 、B 两点.(1)当r=1.5时,将⊙C 从点C 与坐标原点重合开始, 沿y 轴向下运动,当⊙C 与直线l 相切时,点C 移动的距离是 6.5或1.5(2)若点C 位于坐标原点O,当⊙C 与△OAB 的斜边AB 有1个公共点时,r 的取值范围是 r =2.4或3<r ≤4 。

(3)若点C 位于坐标原点O,当⊙C 与△OAB 的边有2个交点时,r 的取值范围是0<r <2.4或3<r <4 。

xy B A O11、、如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,1OB2长为半径作⊙O,当射线BA绕点B按顺时针旋转(60或120)°时与⊙O相切11。

相关文档
最新文档