组蛋白修饰
表观遗传学 第三章 组蛋白修饰

,
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
组蛋白修饰的 酶类
02
表观遗传学概 述
05
组蛋白修饰的 作用机制
03
组蛋白修饰的 种类
06
组蛋白修饰与 疾病的关系
01 添加章节标题
02 表观遗传学概述
表观遗传学的定义
表观遗传学是研究基因型未发生变化但基因的表达却发生了可遗传变化的科学。 表观遗传学主要关注DN甲基化、组蛋白修饰和非编码RN等对基因表达的影响。 表观遗传学在生物体发育、肿瘤发生和神经科学等领域有广泛应用。 表观遗传学可以通过研究基因表达的可遗传变化来揭示遗传信息与环境因素之间的相互作用。
sirtuins两类具 有不同的生物学 功能和底物特异
性。
研究意义:组蛋 白去乙酰化酶在 多种生物学过程 中发挥重要作用 如细胞分化、肿 瘤发生等是当前 表观遗传学研究
的热点之一。
组蛋白甲基化酶
定义:能够催化组蛋白甲基化反应的酶类
作用机制:通过甲基化组蛋白的特定位点 调控基因的表达
种 类 : 包 括H MTs 和 HM Ts e 等
研究意义:组蛋 白泛素化在表观 遗传学中具有重 要的研究意义对 于理解生物发育、 细胞分化和疾病 发生机制等方面 具有重要意义。
04 组蛋白修饰的酶类
组蛋白乙酰化酶
定义:组蛋白乙 酰化酶是一类能 将乙酰基团转移 至组蛋白特定位 点的酶
作用:调控基因 表达影响细胞分 化、发育和肿瘤 发生等过程
种 类 : 包 括 H Ts 和 K Ts 等 不 同 亚 型具有不同的底 物特异性和功能
与其他修饰的关系:组蛋白磷酸化可以与其他修饰如甲基化、乙酰化等相互影响共同参与基 因表达的精细调控。
组蛋白修饰测序

组蛋白修饰测序组蛋白修饰是在DNA调控中非常重要的一环,是指通过化学修饰改变组蛋白的结构和功能,实现基因的表达调控。
随着基因测序技术的快速发展,越来越多的组蛋白修饰测序技术被发明并应用于生物医学研究。
本文将介绍几种常见的组蛋白修饰测序技术以及它们的应用。
1. ChIP-seq(染色质免疫共沉淀测序)ChIP-seq技术主要基于染色质免疫共沉淀(ChIP)实验,通过免疫技术使某一种组蛋白修饰与其靶标DNA片段结合并沉淀下来,最后经过高通量测序技术,得到与该修饰相关的DNA片段序列。
这种技术被广泛应用于组蛋白修饰与基因调控的研究中。
例如,在研究某个转录因子对某个特定基因的作用时,可以利用ChIP-seq技术来确定该转录因子是否与该基因靠近,并且是否通过该转录因子的作用改变了某个组蛋白修饰。
2. MeDIP-seq(DNA甲基化免疫沉淀测序)MeDIP-seq技术是利用DNA甲基化特异性抗体免疫沉淀甲基化的DNA 片段,然后进行高通量测序。
该技术可以获取基因组范围内DNA甲基化的信息,从而研究DNA甲基化与基因表达的关系。
近年来,该技术被广泛应用于肿瘤研究中,因为DNA甲基化可以影响肿瘤相关基因的表达。
3. HAT(组蛋白乙酰转移酶)和HDAC(组蛋白去乙酰化酶)活性检测HAT和HDAC是两种与组蛋白修饰相关的酶,HAT可以引入组蛋白乙酰化修饰,而HDAC则可以去除组蛋白乙酰化修饰。
测定HAT和HDAC的活性可以帮助我们了解组蛋白修饰在基因调控中的作用。
在某些疾病如癌症中,该技术被用来评估某些药物对HAT和HDAC的抑制作用,从而探索该类药物的治疗潜力。
综上所述,组蛋白修饰测序技术在生物医学研究中发挥着重要的作用。
虽然该领域仍然有很多问题需要解决,但随着技术的不断进步,相信组蛋白修饰测序技术必将为我们揭示更多关于基因调控的奥秘和治疗疾病的新方法。
组蛋白的主要修饰类型

组蛋白的主要修饰类型组蛋白是一种存在于细胞核中的蛋白质,具有调控基因表达和维持染色体结构的重要功能。
组蛋白的修饰是指对其进行化学修饰,通过改变组蛋白的结构和功能,从而影响染色体的结构和基因的表达。
组蛋白的主要修饰类型包括甲基化、乙酰化、磷酸化和泛素化等。
本文将分别介绍这些主要修饰类型及其在基因表达调控中的作用。
一、甲基化甲基化是指在组蛋白上添加甲基基团。
甲基化通常发生在组蛋白N 端的赖氨酸残基上,也可以发生在其他氨基酸残基上。
甲基化可以通过甲基转移酶催化完成。
甲基化可以影响染色体的结构和基因的表达。
在某些情况下,甲基化可以抑制基因的转录,从而起到基因沉默的作用;在另一些情况下,甲基化可以促进基因的转录,起到激活基因的作用。
二、乙酰化乙酰化是指在组蛋白上添加乙酰基团。
乙酰化通常发生在组蛋白的赖氨酸残基上,通过组蛋白乙酰转移酶催化完成。
乙酰化可以改变组蛋白的电荷性质,从而影响其与DNA的结合能力,进而影响基因的转录激活。
此外,乙酰化还可以增加组蛋白的稳定性,促进染色质的松弛,从而有利于基因的转录。
三、磷酸化磷酸化是指在组蛋白上添加磷酸基团。
磷酸化通常发生在组蛋白的丝氨酸、苏氨酸或酪氨酸残基上,通过激酶催化完成。
磷酸化可以改变组蛋白的结构和功能,从而影响染色体的结构和基因的表达。
在某些情况下,磷酸化可以促进染色质的松弛,增加基因的转录活性;在另一些情况下,磷酸化可以抑制基因的转录。
四、泛素化泛素化是指在组蛋白上添加泛素基团。
泛素化通常发生在组蛋白的赖氨酸残基上,通过泛素连接酶催化完成。
泛素化可以标记组蛋白,促使其被降解或参与细胞过程。
泛素化还可以影响组蛋白的相互作用和结构,从而影响染色体的结构和基因的表达。
组蛋白的甲基化、乙酰化、磷酸化和泛素化是其主要的修饰类型。
这些修饰可以改变组蛋白的结构和功能,从而影响染色体的结构和基因的表达。
通过对这些修饰的研究,可以更好地理解基因表达调控的机制,并为相关疾病的治疗提供新的思路和方法。
组蛋白修饰

白, 转录沉默;
B. 组蛋白无乙酰化修饰, MBD结合甲基化的DNA,
再与SET结合,甲基化组
蛋白; C. 甲基化的组蛋白尾部招 募DNMT,对基因长期沉 默
异染色质与常染色质的基因沉默
A. 异染色质沉默:组蛋白去 乙酰化;甲基化H3K9; 招募HP1;形成异染色质 B. 常染色质沉默:转录因子 E2F通过Rb招募HP1Suv29h1; Suv29h1甲基化H3K9; HP1与H3K9结合,沉默 基因的表达
具有保守的HAT结构域
人类IFN-β基因的激活
A. DNA code: 序列模体、甲基化 模式 B. GCN5结合到启动子/增强子上 C. 修饰H4K8和H3K9 D. H3S10被RSK-2磷酸化,促使 GCN5修饰H3K14 E. SWI/SNF的BRG1特异性识别 H4K8;TFIID的TAFII250识别 H3K9和H3K14, 从而激活 IFN-β
组蛋白的乙酰化
中和赖氨酸的正电荷,C=O具有一定的负电, 能够增加与DNA的斥力,使得DNA结构变得疏松, 从而导致基因的转录活化
HATs:转乙酰基酶
Gcn5/PCAF Br, bromodomain; Nr, nuclear receptorinteracting box; CH, cysteine/histidinerich module; KIX, phospho-CREB interacting module; Q, glutamine-rich p300/CBP domain.
组蛋白乙酰化引起染色质结构改变及基因转录活
性变化的机制: ① 组蛋白尾部赖氨酸残基的乙酰化能够使组蛋白 携带正电荷量减少,降低其与带负电荷的DNA链的亲 和性,导致局部DNA与组蛋白八聚体解开缠绕,从而 促使参与转录调控的各种蛋白因子与DNA特异序列结 合,进而发挥转录调控作用;
组蛋白的修饰与转录调控

组蛋白的修饰与转录调控组蛋白是构成染色质的基本结构单元之一,它们以八块组成的亲水核一端与DNA序列结合,另一端则由N-末端突出,与其他组蛋白相互作用形成一系列码头。
在细胞核内,组蛋白在转录调控过程中发挥重要作用。
组蛋白的修饰是一种原位调控机制,它能够调节染色质的结构和稳定性,从而影响转录过程。
组蛋白的修饰方式很多,包括甲基化、磷酸化、酰化以及泛素化等等。
其中,最常见的是甲基化修饰。
某些基因的启动子区域甲基化特异性效应,也就是说,这些基因的启动子区域富含甲基化位点。
在这些基因中,甲基化在保守区域中发挥着重要的作用,同时也重要作为关键转录因子的底部调节机制,例如在EMT过程中,前列腺特异性抗原(PSA)的表达就依赖于Lys-4组蛋白甲基化状态的调节。
此外,组蛋白修饰的结果与一些特定装饰因子的相互作用有关,这些装饰因子通常包括组蛋白甲基转移酶、组蛋白乙酰转移酶和组蛋白去乙酰酶等。
这些装饰因子和组蛋白的不同组合可能有损他们的修饰能力,从而影响转录调控功能。
组蛋白修饰的影响与基因调控密切相关。
在人类基因组中,有很多基因都包含重要调控因子,它们能够通过调节组蛋白修饰完成基因表达中的转录调节。
例如,靶向及抑制Histone H3 甲基转移相互作用区,能够调控HER2阳性乳腺癌中FOXM1基因的表达,并影响细胞周期的进程。
此外,转录肠毒素E2(TcaA)的基因也是通过同一机制实现转录调控,即调节组蛋白修饰的状态。
组蛋白修饰的过程涉及到大量的蛋白质组合,为基因组功能创造了无限的可能性。
此外,组蛋白修饰还可以发生在不同的组织类型和状况中,引发不同的基因表达情况。
这与表观遗传学的重大作用密切相关。
尽管组蛋白的修饰方式有很多,其中甲基化是其中最常见的,它在人类基因组中基因的调控中有着重要的作用。
这种修饰方式可以通过调节装饰因子和组蛋白的不同组合产生不同的组蛋白状态,从而影响基因的转录调控。
这也使得组蛋白修饰成为一个广泛且受注目的领域,在对细胞和组织进行研究和治疗上具有潜在的应用。
组蛋白的修饰

H3-K9,H3-K27,H4-K20 的甲基化与染色体的
钝化过程有关。
H4-K9 的甲基化可能与大范围的染色质水平
的抑制有关。
H3-K4,
H3-K36, H3-K79 位的甲基化与染色 体转录激活过程有关,其中H3-K4的单甲基化 修饰可以对抗H4-K9甲基化所导致的基因抑 制。
组蛋白赖氨酸甲基化
甲基化与癌
将能使组蛋白特异性修饰的酶比喻为“写手
( writers )”,将能除去组蛋白修饰的酶 比喻为“擦皮( erasers )”,将能识别组 蛋白特异性修饰并与其结合的蛋白比喻为 “读者( readers )”,这样就构成了“书 写(writing)”,“阅读(reading )”和 “涂去( erasing )”的环路,调节局部染 色质的生物学活性和基因表达。
组蛋白的甲基化
核小体
在哺乳动物基因组中,组蛋白则可以有很多修饰形式.。一 个核小体由两个 H2A,两个 H2B,两个 H3 ,两个 H4组成的八 聚体和 147bp缠绕在外面的 DNA组成 . 组成核小体的组蛋白 的核心部分状态大致是均一的,游离在外的 N- 端则可以受 到各种各样的修饰,包括组蛋白末端的乙酰化,甲基化, 磷酸化,泛素化,ADP核糖基化等等,这些修饰都会影响基 因的转录活性。
组蛋白上的甲基化修饰
组蛋白赖氨酸甲基化
组蛋白精氨酸甲基化
组蛋白精氨酸甲基化
组蛋白精氨酸甲基化位点都在 H3 组蛋白上,为 H3-R2, H3R4, H3-R17, H3-R26, 它们都可以增强转录。 真核细胞中,甲基化精氨酸有三种: NG- 单甲基化精氨酸(MMA)
NGNG(不对称)- 二甲基化精氨酸(aDMA)
组蛋白修饰是什么?其作用是什么?

组蛋白修饰是什么?其作用是什么?在细胞内,基因的表达和调控是生命活动的核心过程之一。
为了实现精确的基因表达调控,细胞借助一系列复杂的机制来控制染色质的状态和基因的活性。
其中,组蛋白修饰被认为是基因表达调控中至关重要的过程之一。
本文将深入探讨什么是组蛋白修饰以及它在基因表达调控中的作用。
1.组蛋白修饰的概念:组蛋白是染色质的主要组成部分,它包裹着DNA形成染色质颗粒。
组蛋白修饰是指在组蛋白分子上特定位点上发生的化学修饰。
这些修饰包括磷酸化、乙酰化、甲基化、泛素化等。
通过这些修饰,组蛋白可以形成一系列的修饰标记,进而影响染色质的结构和功能。
2.组蛋白修饰的作用:组蛋白修饰在基因表达调控中起着重要的作用。
首先,组蛋白修饰可以改变染色质的结构,从而影响基因的可及性。
例如,乙酰化修饰可以使染色质松弛,使得基因转录因子更容易访问DNA,从而促进基因的转录。
另外,组蛋白修饰还可以招募其他蛋白质与染色质相互作用,形成复合物,进一步调控基因的表达。
例如,甲基化修饰可以招募甲基化读取蛋白,这些蛋白质可以识别甲基化标记并改变基因的表达状态。
3.组蛋白修饰的调控机制:组蛋白修饰是一个高度动态的过程,它受到多种调控机制的影响。
其中,组蛋白修饰酶是组蛋白修饰的主要调控因子。
组蛋白修饰酶包括组蛋白乙酰转移酶、组蛋白甲基转移酶、组蛋白激酶等。
这些酶可以添加或移除特定的修饰标记,从而调控基因的表达状态。
此外,组蛋白修饰还受到DNA序列、非编码RNA等因素的调节。
通过组蛋白修饰的调控,细胞可以实现基因的精确表达调控。
组蛋白修饰的异常在许多疾病中起着重要作用,包括癌症、心血管疾病、神经系统疾病等。
对组蛋白修饰的深入研究不仅有助于我们理解基因调控的机制,还为疾病的诊断和治疗提供了新的思路和靶点。
组蛋白修饰是一种重要的基因表达调控机制。
通过改变组蛋白分子上的化学修饰,细胞可以调控基因的可及性和表达状态。
组蛋白修饰的研究不仅在基础科学中具有重要意义,而且在疾病研究和药物开发中也有着广泛的应用前景。
组蛋白的修饰和影响

组蛋白的修饰和影响组蛋白是染色质的基本单位,是由碱性蛋白质和DNA组成的复合物。
组蛋白修饰是指在组蛋白分子上加上化学分子,从而改变组蛋白的结构和功能。
组蛋白修饰对于基因表达、染色质可塑性、细胞分化、肿瘤发生等方面都有着重要的影响。
组蛋白修饰有四种形式,包括磷酸化、甲基化、乙酰化和泛素化。
磷酸化是添加磷酸分子,在一定程度上使组蛋白呈现出开放的结构,保持基因处于活跃状态。
甲基化是添加甲基分子,更常见的是对组蛋白赖氨酸的侧链进行甲基化。
甲基化是稳定的基因沉默标记,参与到机体的许多生理和病理过程中。
乙酰化是添加乙酰分子,可以使组蛋白解压缩,对于转录的激活有着重要作用。
泛素化则是在组蛋白上添加泛素分子,参与到基因的转录和修复以及染色质的排列中。
组蛋白修饰是一个高度动态的过程,与许多基因调控因子相互作用。
有些修饰可以相互作用,形成修饰代码,从而影响染色质的结构和功能。
这使得组蛋白修饰的调控网络变得非常复杂。
例如,H3K4甲基化和H3K9乙酰化是相互作用、合作的修饰,这能够使得染色质形成更为紧密的结构,并保持特定基因的沉默状态。
H3K27三甲基化则是一个强制性的沉默标记,一旦有该修饰出现,基因就会被彻底关闭。
组蛋白修饰还参与到了细胞分化和发育过程中。
例如在哺乳动物分化过程中,不同的组织和细胞类型表现出不同的组蛋白修饰谱,这是形态发生变化的一个关键。
组蛋白修饰能够在转录调节中发挥基础作用,促进体内基因表达的多样性。
同时,组蛋白修饰也可以作为染色质不稳定性的标志,与DNA的突变或启动子区域的异常超外显等存在重要联系。
组蛋白修饰的研究有助于人类疾病的研究和治疗。
许多疾病的发生和进展都与组蛋白修饰的快速变化有关。
一些肿瘤的重要致病因素就是某些组蛋白修饰的异常。
因此,研究组蛋白以及其修饰的对于发现新的治疗途径和防治措施具有重要的意义。
总之,组蛋白修饰是控制基因表达以及细胞分化等多种生理和病理过程的重要因素。
组蛋白修饰的复杂性和动态性使得我们要通过系统性研究来解析这一过程的机制,为今后发现更多人类疾病的治疗方法提供必要的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组蛋白科技名词定义中文名称:组蛋白英文名称:histone定义1:一组进化上非常保守的碱性蛋白质,其中碱性氨基酸(Arg,Lys)约占25%,存在于真核生物染色质,分为5种类型(H1,H2A,H2B,H3,H4),后4种各2个形成组蛋白八聚体,构成核小体的核心,占核小体质量的一半。
所属学科:生物化学与分子生物学(一级学科);氨基酸、多肽与蛋白质(二级学科)定义2:存在于真核生物染色质中的一组进化上非常保守的碱性蛋白质。
分为H1、H2A、H2B、H3、H4五种类型,是构成核小体的核心。
所属学科:细胞生物学(一级学科);细胞化学(二级学科)百科名片组蛋白(histones)真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。
组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合物。
因氨基酸成分和分子量不同,主要分成5类。
组蛋白是真核生物染色体的基本结构蛋白,是一类小分子碱性蛋白质,有五种类型:H1、H2A、H2B、H3、H4,它们富含带正电荷的碱性氨基酸,能够同DNA中带负电荷的磷酸基团相互作用。
目录编辑本段简介histone是指所有真核生物的细胞核中,与DNA结合存在的碱性蛋白质的总称。
分子量约10 000~20 000。
真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。
组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合物。
因氨基酸成分和分子量不同,主要分成5类。
组蛋白的甲基化修饰主要是由一类含有SET结构域的蛋白来执行的,组蛋白甲基化修饰参与异染色质形成、基因印记、X染色体失活和转录调控等多种主要生理功能,组蛋白的修饰作用是表观遗传学研究的一个重要领域。
组蛋白甲基化的异常与肿瘤发生等多种人类疾病相关,可以特异性地激活或者抑制基因的转录活性。
研究发现,组蛋白甲基转移酶的作用对象不仅仅限于组蛋白,某些非组蛋白也可以被组蛋白甲基转移酶甲基化,这将为探明细胞内部基因转录、信号转导、甚至个体的发育和分化机制提供更广阔的空间。
编辑本段概述组蛋白的基因非常保守。
亲缘关系较远的种属中,四种组蛋白(H2A、H2A、H3、H4)氨基酸序列都非常相似,如海胆组织H3的氨基酸序列与来自小牛胸腺的H3的氨基酸序列间只有一个氨基酸的差异,小牛胸腺的H3的氨基酸序列与豌豆的H3也只有4个氨基酸不同。
不同生物的H1序列变化较大,在某些组织中,H1被特殊的组蛋白所取代。
如成熟的鱼类和鸟类的红细胞中H1则被H5所取代,精细胞中则由精蛋白代替组蛋白。
染色质中的组蛋白与DNA的含量之比为1:1。
真核生物细胞核中组蛋白的含量约为每克DNA 1克,大部分真核生物中有5种组蛋白,两栖类、鱼类和鸟类还有H5以替代或补充H1。
染色质是由许多核小体组成的,H2A,H2B,H3和H4各2个分子构成的8聚体是核小体的核心部分,H1的作用是与线形DNA结合以帮助后者形成高级结构。
组蛋白是已知蛋白质中最保守的,例如,人类和豌豆的H4氨基酸序列只有两个不同,人类和酵母的H4氨基酸序列也只有8个不同,这说明H4的氨基酸序列在约109年间几乎是恒定的。
早在1888年德国化学家科塞(A.Kossel)已从细胞核中分离出组蛋白,并认识到它们作为碱性物质应在核中与核酸结合,但直到1974年才了解组蛋白的确切作用。
一些实验室随后证明组蛋白以独特的方式构成核小体的组分。
编辑本段组蛋白-组成部分组蛋白是存在于染色体内的与DNA结合的碱性蛋白质,染色体中组蛋白以外的蛋白质成分称非组蛋白。
绝大部分非组蛋白呈酸性,因此也称酸性蛋白质或剩余蛋白质。
组蛋白于1834年由德国科学家A.科塞尔发现。
组蛋白对染色体的结构起重要的作用。
染色体是由重复单位──核小体组成。
每一核小体包括一个核心8聚体(由4种核心组蛋白H2A、H2B、H3和H4的各两个单体组成);长度约为200个碱基对的脱氧核糖核酸(DNA);和一个单体组蛋白H1。
长度约为140个碱基对的DNA盘绕于核心8聚体外面。
在核心8聚体之间则由长度约为60个碱基对的DNA连接。
这种DNA称为“接头”DNA。
几乎所有真核细胞染色体的组蛋白均可分成5种主要的组分,分别用字母或数字命名,命名方法也不统一,如H1或称F1,Ⅰ;H2A或称F2A2,Ⅱb1;H2B或称F2B,Ⅱb2;H3或称F3,Ⅲ;H4或称F2A1,Ⅳ。
有核的红细胞或个别生物体中,还存在特别的组蛋白成分,红细胞中为H5或F2C,Ⅴ,鲑鱼组织中为H6或T。
H2A、H2B、H3、H4组成核小体的核心,也称核心组蛋白。
根据组蛋白的一级结构,又可将它们分为3种类型:赖氨酸含量特别丰富的组蛋白(H1);赖氨酸含量较丰富的组蛋白(H2A 和H2B);精氨酸含量丰富的组蛋白(H3和H4)。
从整体来说,组蛋白在进化过程中保守性很强。
其中H1变化较大,H3和H4变化最小。
如对小牛胸腺的5种组蛋白,豌豆苗组蛋白的H3、H4和兔胸腺组蛋白H1等的一级结构比较中发现,小牛胸腺和豌豆苗的组蛋白H4间只在60位和77位上的两个氨基酸残基不同。
但已知的真菌和原生动物的组蛋白的部分一级结构和动、植物的组蛋白间的差异较大。
编辑本段合成修饰这是形成组蛋白各组分微不均一性的主要原因。
修饰的方式有:①乙酰化。
有两种,一种是H1、H2A、H4组蛋白的氨基末端乙酰化,形成α-乙酰丝氨酸,组蛋白在细胞质内合成后输入细胞核之前发生这一修饰。
二是在H2A、H2B、H3、H4的氨基末端区域的某些专一位置形成N6-乙酰赖氨酸。
②磷酸化。
所有组蛋白的组分均能磷酸化,在细胞分裂期间,H1的1~3个丝氨酸可以磷酸化。
而在有丝分裂时期,H1有3~6个丝氨酸或苏氨酸发生磷酸化,其他四个核心组蛋白的磷酸化可以发生在氨基末端区域的丝氨酸残基上。
组蛋白的磷酸化可能会改变组蛋白与DNA的结合。
③甲基化。
仅发现于H3的9和27位和H4的20位的赖氨酸,鸭红细胞组蛋白H1和H5的组氨酸。
④ADP-核糖基化。
组蛋白H1、H2A、H2B及H3和多聚ADP-核糖的共价结合,ADP-核糖基化被认为是在真核细胞内启动复制过程的扳机。
H3·H4的乙酰化可打开一个开放的染色质结构,增加基因的表达。
转录共同激活物如CBPöP300、PCAF实质上是体内的组蛋白乙酰基转移酶(HAT)。
相反,HDAC参与组成转录共同抑制复合物,已发现的两个共同抑制复合物SIN3、Mi22NHRD(核小体重塑蛋白去乙酰基酶)都含有HDAC1、HDAC2。
SIN3的组成为核心(HDAC1、HDAC2、RBAP46öRBAP48)SIN3AöSIN3B、SAP30öSAP18共同构成。
SIN3复合物通过组分SIN3A与序列特异性转录因子或共同抑制物包括mael2max,核激素受体N2CORöSMRT、甲基化CPG粘附蛋白(NECP2、MBD2)相互作用。
Mi22NHRD由核心(HDAC1、HDAC2、RBAP46öRBAP48)Mi2、MTA1öMTA2、MBD3组成,其中MBD3含有MBD 样序列,与甲基化DNA有低亲和力,分析发现MBD3与甲基化有关的氨基酸被置换,由此推测MBD3与MBD2相互作用而使Mi22NURD与甲基化DNA结合。
由此看出,DNA 甲基化和组蛋白去乙酰化协同作用共同参与转录阻遏。
此外,Mi22NURD还有染色质重塑活性,所以SIN3和Mi22NURD可能分别在长期和短期转录阻遏调节中起作用。
在哺乳动物基因组中,组蛋白则可以有很多修饰形式.一个核小体由两个H2A,两个H2B,两个H3,两个H4组成的八聚体和147bp缠绕在外面的DNA组成.组成核小体的组蛋白的核心部分状态大致是均一的,游离在外的N-端则可以受到各种各样的修饰,包括组蛋白末端的乙酰化,甲基化,磷酸化,泛素化等等。
组蛋白被甲基化的位点是赖氨酸和精氨酸.赖氨酸可以分别被一、二、三甲基化,精氨酸只能被一、二甲基化.在组蛋白H3上,共有5个赖氨酸位点可以被甲基化修饰.一般来说,组蛋白H3K4的甲基化主要聚集在活跃转录的启动子区域.组蛋白H3K9的甲基化同基因的转录抑制及异染色质有关.EZH2可以甲基化H3K27,导致相关基因的沉默,并且与X-Chromosomeinactivation相关。
H3K36的甲基化同基因转录激活相关。
编辑本段医学应用预测前列腺癌最新研究结果显示:球形组蛋白修饰模式可预测低分级前列腺癌的复发危。
该研究第一作者加利福尼亚大学的SiavashK.Kurdistani表示:这种修饰模式最终可作为前列腺或其他类型癌症的预后或诊断指标,也可作为预测何种患者患者会对一类组蛋白去乙酰酶抑制剂新药产生反应的指标。
Kurdistani解释:某些组蛋白修饰模式会在一定水平上影响基因的表达,但具体机制尚不清楚。
Kurdistani等人研究了五种组蛋白修饰模式,包括三种乙酰化作用,两种二甲基化作用,用组织芯片技术对原发前列腺癌组织样品中的组蛋白修饰水平进行检测。
研究者对104例Gleason评分小于7的样本进行染色组蛋白修饰检测,结果将研究对象分为两组,第一组十年内复发危险为17%,第二组为42%。
该预测指标与肿瘤分期,术前PSA水平或是否包膜外侵犯相独立。
研究者对另外的39例低分级前列腺癌样本的组蛋白修饰模式进行了确认,结果也分为两组,一组的复发危险为4%,另一组为31%。
研究者最后表示:考虑到组蛋白修饰模式的多样性,其他组蛋白修饰位点的信息将有助于我们对患者进行进一步分类,包括那些高分极组的患者。
应用免役组化及越来越多的的抗体检测组蛋白修饰将有助于这种检测指标在其他肿瘤中的应用。
生物钟的调控组蛋白修饰与基因表达调控有关已经被广泛的证明了。
现在-PierreEtchegary,StevenReppertandcoworkers的研究表明组蛋白修饰,特别是组蛋白乙酰化对于哺乳动物生物钟的调控是非常重要的。
调控生物钟的关键蛋白Clock和Bmal1驱动着三个period基因(Per1,2,3)和两个细胞色素基因(Cry1,2)的表达。
这5个基因的转录本覆盖了生物24小时的时间。
但奇怪的是Clock/Bmal1对Per启动子的结合相对稳定,而它们对Cry1启动子最强的结合却反应着Cry1表达的最弱。
在这篇文章中E发现是染色体结构的修饰来决定Per和Cry基因的转录的。
研究者用甲醛交连的染色体免疫沉淀CHIP和半定量的PCR反应的方法发现在Per1和Per2的启动子上组蛋白3的乙酰化在全天都存在,而RNA多聚酶II也一直被招募在这些启动子上。