控制系统仿真综合实验报告
控制系统仿真综合实验报告

图 2-1
校正前系统阶跃响应曲线
可以看出原系统的响应速度非常慢, 所以要通过校正来改善系统的动态性能, 可以采用串联超前校正。 原系统为Ⅰ型系统,容易求出系统的速度误差系数为
K lim
s 0
s 400 2 s ( s 30 s 200)
2
根据实验要求速度误差系数为 10 ,那么 KV 10 / 2 5 ,此时系统的开环 传函为: G s
5 400 ,用 MATLAB 计算得相角裕量为 32.6°,由于采 s s 30 s 200
2
用串联超前校正能够增大系统的相角裕量,所以综合考虑,采用串联超前校正。 2. 经过第一步的分析,采用串联校正,可以计算出串联校正装置传递函数为 5 (1 0.12 s ) ,因此校正后的开环传递函数为: 1 0.048s
K Ess Overshoot(%) Ts(s) 5 0.2857 34.6099 4.7766
表1
8 0.20000 43.5125 5.6730
9 0.1818 45.7812 5.5325
12 0.1429 51.6704 5.7655
不同 K 值下系统响应的参数
(四)实验结果与分析 从理论上分析,系统的传递函数为 G s
ulxxlgxx?????????????????????????????????????????????????????????????????4301004300100000000010????uxxxy????????????????????????????????????0001000001???实际系统摆杆转动轴心到杆质心的长度为l025m则系统的状态方程为
(二)实验要求 1. 使用 Matlab 进行仿真; 2. 分析不同 K 值的情况下,系统的单位阶跃响应曲线,并绘图进行比较; 3. 列表对系统响应各性能进行比较,并确定你认为合适的参数值。 (三)实验内容及步骤 1.运行 MATLAB,进行仿真实验。
自控仿真实验报告

一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。
2. 学习控制系统模型的建立与仿真方法。
3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。
4. 掌握控制系统性能指标的计算方法。
二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。
1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。
第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。
(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。
(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。
2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。
其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。
(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。
三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。
(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。
2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。
《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。
二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。
本实验中我们选择了一个简单的比例控制系统模型。
2.设定输入信号我们需要为控制系统提供输入信号进行仿真。
在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。
本实验中,我们选择了一个阶跃信号作为输入信号。
3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。
MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。
4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。
常见的性能指标包括系统的稳态误差、超调量、响应时间等。
四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。
2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。
3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。
4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。
5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。
五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。
通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。
六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。
通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。
七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。
MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。
基于MATLAB控制系统仿真实验报告

tf 4
y0
0 1
6、求出 G1(s)
2 (s2 2s 1) 与 G2 (s)
1 (2s3
3s2
1)
的单位阶跃响应,并分别
求出状态空间模型。
解:(1) G1(s) 2 (s2 2s 1) 的状态空间模型求解如下:
function shiyan2 b1=[2];
D(z)
0.62(1 0.136z 1)(1 0.183z (1 0.045z 1)(1 0.53z 1)
1 )
分别用仿真算法得到系统在单位阶跃输入作用下的响应,系统在单位速度输
入是的输出响应。
解:(1)首先将 W1(s)转换为 W1(z),采样周期 T=0.2s,程序清单如下: function shiyan42 num=[10];den=[0.005 0.15 1 0]; ts=0.2;[nc,dc]=c2dm(num,den,ts)
INTRO(注意:intro 为一个用 MATLAB 语言编写的幻灯片程序,主要演示
常用的 MATLAB 语句运行结果。)
然后,根据现实出来的幻灯片右面按钮进行操作,可按 START——NEXT—
—NEXT 按钮一步步运行,观察。
3、自编程序并完成上机编辑,调试,运行,存盘:
(1)用 MATLAB 命令完成矩阵的各种运算,例如:
5、利用 ode23 或 ode45 求解线性时不变系统微分方程 y(t) Ay(t) ,并绘制出 y(t)
曲线,式中
A
0.5
1
1 0.5
t t0 t 如下: function xdot=fun21(t,x) A=[-0.5 1;-1 -0.5]; xdot=A*x; function fzsy22 t0=0;tf=4;tol=1e-6; x0=[0;1];trace=1; [t,x]=ode23('fun21',t0,tf,x0,tol,trace); plot(t,x) 得到的实验结果如下图所示:
控制系统实训实验报告

一、实验目的1. 了解控制系统的基本组成和原理。
2. 掌握控制系统调试和性能测试方法。
3. 培养动手能力和团队协作精神。
4. 熟悉相关实验设备和软件的使用。
二、实验原理控制系统是指通过某种方式对某个系统进行控制,使其按照预定的要求进行运行。
控制系统主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号,通过调节输入信号,实现对被控对象的控制。
本实验主要研究PID控制系统的原理和应用。
三、实验仪器与设备1. 实验箱:用于搭建控制系统实验电路。
2. 数据采集卡:用于采集实验数据。
3. 计算机:用于运行实验软件和数据处理。
4. 实验软件:用于控制系统仿真和调试。
四、实验内容1. 控制系统搭建:根据实验要求,搭建PID控制系统实验电路,包括控制器、被控对象和反馈环节。
2. 控制系统调试:对搭建好的控制系统进行调试,包括控制器参数的整定、系统稳定性和响应速度的调整等。
3. 控制系统性能测试:对调试好的控制系统进行性能测试,包括系统稳定性、响应速度、超调量等指标。
4. 控制系统仿真:利用实验软件对控制系统进行仿真,分析系统在不同参数下的性能。
五、实验步骤1. 控制系统搭建:按照实验要求,连接控制器、被控对象和反馈环节,搭建PID控制系统实验电路。
2. 控制系统调试:根据实验要求,调整控制器参数,使系统达到预定的性能指标。
3. 控制系统性能测试:对调试好的控制系统进行性能测试,记录测试数据。
4. 控制系统仿真:利用实验软件对控制系统进行仿真,分析系统在不同参数下的性能。
六、实验结果与分析1. 控制系统搭建:成功搭建了PID控制系统实验电路。
2. 控制系统调试:通过调整控制器参数,使系统达到预定的性能指标。
3. 控制系统性能测试:系统稳定性、响应速度、超调量等指标均达到预期效果。
4. 控制系统仿真:仿真结果表明,系统在不同参数下具有良好的性能。
七、实验总结1. 通过本次实验,了解了控制系统的基本组成和原理。
控制系统仿真实验报告书

一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。
二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。
首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。
2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。
3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。
4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。
调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。
五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。
《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告实验报告:MATLAB与控制系统仿真引言在现代控制工程领域中,仿真是一种重要的评估和调试工具。
通过仿真技术,可以更加准确地分析和预测控制系统的行为和性能,从而优化系统设计和改进控制策略。
MATLAB是一种强大的数值计算软件,广泛应用于控制系统仿真。
实验目的本实验旨在掌握MATLAB在控制系统仿真中的应用,通过实践了解控制系统的建模与仿真方法,并分析系统的稳定性和性能指标。
实验内容1.建立系统模型首先,根据控制系统的实际情况,建立系统的数学模型。
通常,控制系统可以利用线性方程或差分方程进行建模。
本次实验以一个二阶控制系统为例,其传递函数为:G(s) = K / [s^2 + 2ζω_ns + ω_n^2],其中,K表示放大比例,ζ表示阻尼比,ω_n表示自然频率。
2.进行系统仿真利用MATLAB软件,通过编写代码实现控制系统的仿真。
可以利用MATLAB提供的函数来定义传递函数,并通过调整参数来模拟不同的系统行为。
例如,可以利用step函数绘制控制系统的阶跃响应图像,或利用impulse函数绘制脉冲响应图像。
3.分析系统的稳定性与性能在仿真过程中,可以通过调整控制系统的参数来分析系统的稳定性和性能。
例如,可以改变放大比例K来观察系统的超调量和调整时间的变化。
通过观察控制系统的响应曲线,可以判断系统的稳定性,并计算出性能指标,如超调量、调整时间和稳态误差等。
实验结果与分析通过MATLAB的仿真,我们得到了控制系统的阶跃响应图像和脉冲响应图像。
通过观察阶跃响应曲线,我们可以得到控制系统的超调量和调整时间。
通过改变放大比例K的值,我们可以观察到超调量的变化趋势。
同时,通过观察脉冲响应曲线,我们还可以得到控制系统的稳态误差,并判断系统的稳定性。
根据实验结果分析,我们可以得出以下结论:1.控制系统的超调量随着放大比例K的增大而增大,但当K超过一定值后,超调量开始减小。
2.控制系统的调整时间随着放大比例K的增大而减小,即系统的响应速度加快。
控制系统仿真实验报告

控制系统仿真实验报告(总19页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除昆明理工大学电力工程学院学生实验报告实验课程名控制系统仿真实验称:开课实验室:计算中心2082015 年 6月 16日实验一电路的建模与仿真一、实验目的1、了解KCL 、KVL 原理;2、掌握建立矩阵并编写M 文件;3、调试M 文件,验证KCL 、KVL ;4、掌握用simulink 模块搭建电路并且进行仿真。
二、实验内容电路如图1所示,该电路是一个分压电路,已知13R =Ω,27R =Ω,20S V V =。
试求恒压源的电流I 和电压1V 、2V 。
IVSV 1V 2图1三、列写电路方程(1)用欧姆定律求出电流和电压 (2)通过KCL 和KVL 求解电流和电压(1) I=Vs/(R1+R2)=2A , V1=I*R1 =6V , V2=I*R2=14V (2) I*R1+I*R2-Vs=0 , V1=I*R1 , V2=I*R2 ,=> I=2A,V1=6V,V2=14V.四、编写M 文件进行电路求解(1)M文件源程序(2)M文件求解结果(1)M文件源程序R1=3;R2=7;Vs=20;I=Vs/(R1+R2)V1=I*R1V2=Vs-V1(2)M文件求解结果I=2V1=6V2=14五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值电流I波形I=2A电压U1波形,U1=6V电压U2波形,U2=14V六、结果比较与分析根据M文件编程输入到matlab中,实验结果与理论计算结果一致。
实验二 数值算法编程实现一、实验目的掌握各种计算方法的基本原理,在计算机上利用MATLAB 完成算法程序的编写拉格朗日插值算法程序,利用编写的算法程序进行实例的运算。
二、实验说明1.给出拉格朗日插值法计算数据表;2.利用拉格朗日插值公式,编写编程算法流程,画出程序框图,作为下述编程的依据;3.根据MATLAB 软件特点和算法流程框图,利用MATLAB 软件进行上机编程; 4.调试和完善MATLAB 程序;5.由编写的程序根据实验要求得到实验计算的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际系统摆杆转动轴心到杆质心的长度为 l=0.25m,则系统的状态方程为:
1 0 0 0 0 0 0 29 .4
1 y 0
0 0
0 1
x1 0 x2 0 u 0 x3 0 x4
编写程序观察系统的单位阶跃响应曲线,程序如下: m = 0.109;M = 1.096; b = 0.1;l = 0.25;
实验四
一级倒立摆状态反馈设计及时间响应
(一)实验题目 设计状态反馈阵 K (1)直线一级倒立摆系统稳定性分析; (2)检验系统可控性; (3)根据调整时间和超调量的要求,并留有一定的裕量,选取期望的闭 环极点;写出希望的闭环特征多项式。 (4)状态反馈设计
u r Kx
式中 r — r × 1 参考输入; K — r × n 状态反馈阵。 状态反馈闭环系统希望的极点:
图 4-3 状态反馈闭环系统时间响应波形
(四)实验分析 从图 4-3 中可以看出, 引入状态反馈改变系统的极点后,系统状态响应波形 明显得到改善, 状态变量的过渡过程均变得平稳且快速。由于状态反馈改变了极 点,从而影响了系统的静态增益值,要恢复原系统的静态增益值,需要在输出端 补偿一个倍数。 静态补偿状态反馈的闭环系统结构图以及其时间响应波形如下图所示:
I = 0.0034;g = 9.8; G = tf(m*l,[I+m*l^2,0,-m*g*l]); t = 0:0.1:5; c = step(G,t); plot(t,c); grid;
图 3-2
直线一级倒立摆单位阶跃响应曲线
2. 按照状态变量图做出 Simulink 仿真模型如下图所示:
图 3-3 Simulink 仿真模型
0 x x 0 0 0
0 1 x x 0 2 x3 0 0 x4
1 0 0
0
0 0 3g 0 4l
0 x 0 x 0 1 1 0 u 3 0 4l
K Ess Overshoot(%) Ts(s) 5 0.2857 34.6099 4.7766
表1
8 0.20000 43.5125 5.6730
9 0.1818 45.7812 5.5325
12 0.1429 51.6704 5.7655
不同 K 值下系统响应的参数
(四)实验结果与分析 从理论上分析,系统的传递函数为 G s
图 1-2 用 MATLAB 编写程序
程序如下: k=6; z=-2; p=[-1;-1-1.732j;-1+1.732j]; G=zpk(z,p,k); H=feedback(G,1); t=0:0.05:7; C=step(H,t); plot(t,C,'-'); grid on;
3.取不同 K 值,观察系统的单位阶跃响应曲线,绘图进行比较。
图 2-1
校正前系统阶跃响应曲线
可以看出原系统的响应速度非常慢, 所以要通过校正来改善系统的动态性能, 可以采用串联超前校正。 原系统为Ⅰ型系统,容易求出系统的速度误差系数为
K lim
s 0
s 400 2 s ( s 30 s 200)
2
根据实验要求速度误差系数为 10 ,那么 KV 10 / 2 5 ,此时系统的开环 传函为: G s
0 x1 0 x 0 2 1 u 1 x3 0 0 x 3 4
x x 1 0 0 0 x 0 y 0 u 0 0 1 0
控制系统仿真综合实验 设计与报告
班级:自动化四班 姓名:王经纬 学号:201200171162
实验一
遥控侦查车速度控制
(一)实验背景 此遥控车曾用于联合国维和任务。考虑其速度控制系统如下图所示,参考 速度 R(s)通过无线通讯发送给小车,小车运动过程受到石块、凹凸地形等的扰 动为 Td(s),控制目标是实现较低的稳态误差和低超调的单位阶跃响应。
0.015 CartPos CartSpd PendAng PendSpd
0.01
0.005
0
-0.005
-0.01
0
0.5
1
1.5
2
2.5
3
图 4-1
状态反馈后时间响应曲线
2.按照状态变量图做出 Simulink 仿真模型如下图所示:
图 4-2 状态反馈闭环系统 Simulink 结构图
3.设置仿真参数,启动仿真过程,得到的响应波形如下图所示:
(一)实验题目 用现代控制理论对直线一级倒立摆系统进行分析, 并用 Simulink 对系统进 行仿真。
图 3-1 直线一级倒立摆
(二)实验要求 1. 用解析法求出系统的单位阶跃响应表达式,分析系统的响应性能; 2. 使用 Simulink 实现系统的仿真模型,观察系统的单位阶跃响应波形; 3. 整理实验数据和波形记录,比较仿真结果与解析结果的区别。 (三)实验步骤与内容 1. 用解析法建立倒立摆数学模型如下:
3. 设置仿真参数,启动仿真过程,得到的响应波形如下图所示:
图 3-4
Simulink 仿真响应波形
(四)实验分析 系统的特征方程:
s 1 0 0 0 s 0 0 sI A s 4 29.4 s 2 0 0 s 1 0 0 29.4 s
系统的四个特征根为[0 0 -5.42 5.42],由于有一个特征根在 s 的右半 平面,所以系统是不稳定的。从图 3-2 和图 3-4 中可以看出,系统在单位阶跃响 应输入下,不能稳定在平衡位置,系统几乎没有任何调节作用。
图 1-3
不同 K 值时系统曲线图 1
图 1-4
不同 K 值时系统曲线图 2
4.编写程序得到不同 K 值下的系统参数,并列表进行比较。 程序如下: k=8; z=-2; p=[-1;-1-1.732j;-1+1.732j]; G=zpk(z,p,k); H=feedback(G,1); C=dcgain(H); Ess=1-C [c,t]=step(H); [Y,k]=max(c); Overshoot=100*(Y-C)/C n=1; while c(n)<C n=n+1; end risetime=t(n); i=length(t); while(c(i)>0.98*C)&&(c(i)<1.02*C) i=i-1; end Ts=t(i)
(二)实验要求 1. 使用 Matlab 进行仿真; 2. 分析不同 K 值的情况下,系统的单位阶跃响应曲线,并绘图进行比较; 3. 列表对系统响应各性能进行比较,并确定你认为合适的参数值。 (三)实验内容及步骤 1.运行 MATLAB,进行仿真实验。
图 1-1
运行 MATLAB
2.编写遥控车速度控制系统在单位阶跃响应下的曲线程序。
Pj=poly(J); M=[B A*B A^2*B A^3*B]; W=[Pa(4) Pa(3) Pa(2) 1;Pa(3) Pa(2) 1 0;Pa(2) 1 0 0;1 0 0 0]; T=M*W; K=[Pj(5)-Pa(5) Pj(4)-Pa(4) Pj(3)-Pa(3) Pj(2)-Pa(2)]*inv(T) Ac=[(A-B*K)]; Bc=[B]; Cc=[C]; Dc=[D]; T=0:0.005:5; U=0.2*ones(size(T)); Cn=[1 0 0 0]; [Y X]=lsim(Ac,Bc,Cc,Dc,U,T); plot(T,X(:,1),'-'); hold on; plot(T,X(:,2),'- .'); hold on; plot(T,X(:,3),'.'); hold on; plot(T,X(:,4),'-') legend('CartPos','CartSpd','PendAng','PendSpd') 计算得 K= -95.2381 -46.2585 137.5460 24.7528 状态反馈后时间响应曲线如下:
实验二
(一)实验题目 被控对象传函为 G s (1)速度误差系数为 10 (2)相角裕量为 45 度
连续系统的频率法校正
400 ,要求: s s 30 s 200
ห้องสมุดไป่ตู้
2
(二)实验要求 1. 描述你的校正方法,并利用 MATLAB 编程计算; 2. 写出校正后系统的开环传递函数,并画出伯德图,计算相角裕度等; 3. 比较校正前后系统的阶跃响应曲线及性能指标,说明校正装置的作用。 (三)实验步骤与内容 1. 选取校正方法,进行理论计算 首先,观察一下原系统的阶跃响应曲线,程序如下: sys1=tf(2,[0.005,0.15,1,0]); H1=feedback(sys1,1); step(H1); grid; 曲线如下:
K s 2 ,容易推知,在 s 1 s 2 2s 4
单位阶跃输入下, 系统稳态误差会随着 K 值的增大而减小,超调量和调节时间都 随着 K 值的增大而增大,这和仿真实验的结果是相吻合的。从图 1-3 和 1-4 中可 以看见,当 K 值取 6 到 11 时,系统的性能是比较好的,加上表 1 的参数分析, 当 K 值取 9 时,系统的调节时间和超调量都比较适中,稳态误差相对较小。
图 2-2
校正前系统阶跃响应曲线
3.编写程序观察校正前后系统的阶跃响应曲线及性能指标 程序如下: sys1=tf(2,[0.005,0.15,1,0]); sys2=tf(10*[0.12,1],conv([0.005,0.15,1,0],[0.048,1])); H1=feedback(sys1,1); H2=feedback(sys2,1); step(H1); hold; step(H2,'r'); grid;