03运动学圆周运动 (自然坐标系、角速度、角加速度、切向加速度、

合集下载

第3讲 圆周运动的角量描述

第3讲 圆周运动的角量描述

第四节圆周运动及其描述上一节学习了一般的平面曲线运动,本节学习一种特殊且常见的曲线运动――圆周运动。

1 圆周运动的线量描述回顾上一节,我们在自然坐标系下使用了位置、速度、加速度等量来描述曲线运动。

这些量称为线量,所以上一节对于曲线运动的描述称为线量描述。

由于圆周运动是一种特殊的曲线运动,因而上一节关于曲线运动的描述完全适用于圆周运动的描述。

所以可以把上一节的结论直接用于圆周运动的线量描述。

位置:s=s(t)速度:dsdt v=τ加速度:22d sdtτ=aτ(1a)2nvR=a n(1b)(1b)式中的R就是圆的半径,而v则是质点做圆周运动的速率。

质点作圆周运动时,如果切向加速度为0,就是所谓的匀速圆周运动......。

2 圆周运动的角量描述极坐标系2.1 角位移除了线量描述形式外,对于圆周运动还有一种常用的描述形式――角量描述。

如图1所示,以圆心为极点,沿着任意方向引出一条线作为极轴,就建立了一个坐标系,称为极坐标系。

在极坐标系中,质点的位置所对应的矢径r与极轴的夹角θ称为质点的角位置,而dθ称为dt时间内的角位移。

注意:1,角位移...d.θ.既有大小,又有方向.........(.但未必是矢量......1)。

其方向由右手定则确定,即:伸出右手,使四指沿着质点旋转的方向弯曲,与四指垂直的拇指所指的方向1矢量的严格定义是:矢量是在空间中有一定的方向和数值,并遵从平行四边形加法法则的量。

即为d θ的正方向。

2,有限大小的角位移不是矢量(因为角位移的合成不符合交换律,比如翻一本书:先x->90,再y ->90,最后z ->90得到的结果,与先x->90,再z ->90,最后y ->90得到的结果不一样),只有..当△..t . .0.时,角位移.....d .θ.才是矢量....。

3,质点作圆周运动时,其角位移只有两种可能的方向,因此可以在标量前...............................加正号或者是负号来指明角位移的方向.................。

第四章曲线运动第三节圆周运动的基本概念和规律

第四章曲线运动第三节圆周运动的基本概念和规律


知识点二 匀速圆周运动
保持不变 的圆周运动. 1.定义:线速度大小____________ 2.性质:向心加速度大小不变,方向____________ 时刻变化 ,是 变加速曲线运动. 大小不变 ,方向始终与速度方向垂直 3.条件:合力____________ 且指向圆心.
2017/7/29

2017/7/29
变式题 如图 18-5 所示,两段长均为 L 的轻质线共同系 住一个质量为 m 的小球, 另一端分别固定在等高的 A、 B 两点, A、B 两点间距也为 L.现使小球在竖直平面内做圆周运动,当 小球到达最高点时速率为 v,两段线中张力恰好均为零;若小 球到达最高点时速率为 2v,则此时每段线中张力大小为( A.2 3mg B. 3mg C.3mg D.4mg )
2017/7/29
2017/7/29
[答案] C
[解析] 在松手前,甲、乙两小孩做圆周运动的向心力均由静 摩擦力及拉力的合力提供, 且静摩擦力均达到了最大静摩擦力. 因 为这两个小孩在同一个圆盘上转动,故角速度 ω 相同,设此时手 中的拉力为 F, 则对甲: fm-F=mω2R 甲, 对乙: F+fm=mω2R 乙.当 松手时,F=0,乙所受的最大静摩擦力小于所需要的向心力,故 乙做离心运动,然后落入水中;甲所受的静摩擦力变小,直至与它 所需要的向心力相等, 故甲仍随圆盘一起做匀速圆周运动, 选项 C 正确.
2017/7/29
[点评] 解决圆周运动问题的基本步骤: (1)审清题意,确定研究对象; (2)分析物体的运动情况,即物体的线速度、角速度、周期、 轨道平面、圆心、半径等; (3)分析物体的受力情况,画出受力示意图,并确定向心力的 来源; (4) 根据牛顿第二定律列方程; (5)求解,必要时进行讨论.

大学物理 --切向加速度和法向加速度1

大学物理 --切向加速度和法向加速度1

r R 赤道
p
r R cos
P点速度的大小为
v r R cos 5 6 7.27 10 6.73 10 cos 2 4.65 10 cos (m / s)
方向:与过P点运动平面上半径为R的圆相切。 P点只有运动平面上的向心加速度,其大小为
2
2

kR k Rt
2 2
2 2
§2切向加速度、法向加速度/二、a、an
讨论下列几种运动情况:
1. a 0 , an 0 匀速直线运动;
2. a C , an 0
3. a 0 , an C 4. a 0 , an 0
匀变速直线运动;
匀速率圆周运动; 变速曲线运动;
有 即
dv dv dvn 0 n0 dt dt dt
a a 0 ann0
dv dvn an 其中: a dt dt a 由于速度大小变化产生的加速度; an 由于速度方向变化产生的加速度。
§2切向加速度、法向加速度/二、a、an
ds v vt 0 dt 0
二. 圆周运动的角量描述
设质点在oxy平面内绕o 点、沿半径为R的轨道作圆 周运动,如图。以ox轴为参 考方向,则质点的
y
B:t+t A:t
o

x
角位置为 角位移为 规定反时针为正 平均角速度为 t d lim 角速度为 t 0
角加速度为
d d 2 dt dt
2
2
2
例:一质点作半径为R的圆周运动,其速 率满足 v kRt , k为常数,求:切向 加速度、法向加速度和加速度的大小。
dv a kR 解: 切向加速度 dt 2 2 ( kRt) v 2 2 法向加速度 a n k Rt R 2 2 加速度 a a an

2013-01-2自然坐标系下的速度-加速度

2013-01-2自然坐标系下的速度-加速度

a
a
0,an
a
an
0
为匀速率曲线运动(圆 周运动)
dv dt
0
v2
n0
a an
a
a a a 2 an 2 dv dt2 v2 2
加速度总是指向曲线的凹侧
大学物理
自然坐标系中总加速度为:
a a an
改变速度大小
大小 a a 2 an2
加速度
方向 tan 1 an
下面三种情况分别代表那一类运动?
1. ,an=0, a 0, 2. =常量,an 0,a=0, 3. =常量,an 0,a 0,
1. 变速直线运动 2. 匀速率圆周运动 3. 变速率圆周运动
大学物理
讨论
质点沿固定的圆形轨道, 若速率 v 均匀增加,at 、an、
a以及加速度与速度间的夹角中哪些量随时间变化?
v lim r
t0 t
ds
dt
vr ds v v v
dt
z
v
p s
s
r q
r(t)
r(t t)
o
y x
自然坐标系下的 速度表达式
大学物理
讨论物理意义:
vr ds v v v
dt
ds v dt
1、 瞬时速率 v:
反映了质点任一时刻沿轨道运动的快 慢。
2、任何时刻质点的速度总沿轨道的 切线方向,速度只有切线分量而无法 向分量。
与切向加速度垂直
大学物理
例题
一质点沿半径为R的圆周按规律 s v0t b运t 2动/ 2,
v0、b 都是正的常量。求:
(1) t 时刻质点的总加速度的大小
(2) t 为何值时,总加速度的大小b

《大学物理》课程教学大纲

《大学物理》课程教学大纲

《大学物理》课程教学大纲一、课程基本信息总学时136学时,讲课102学时,习题讨论课26学时,演示实验8三、课程教学的有关说明1、本课程课内外学时比例:1:2;平均周学时:4。

2、本课程是公共基础课,分连续两个学期完成。

3、在教学中注意把传统教学手段和现代化教学手段相结合,充分利用现代化教学手段进行教学。

四、对于能力培养的基本要求通过大学物理课程教学,应注意培养学生以下能力:1.独立获取知识的能力——逐步掌握科学的学习方法,阅读并理解相当于大学物理水平的物理类教材、参考书和科技文献,不断地扩展知识面,增强独立思考的能力,更新知识结构;能够写出条理清晰的读书笔记、小结或小论文。

2.科学观察和思维的能力——运用物理学的基本理论和基本观点,通过观察、分析、综合、演绎、归纳、科学抽象、类比联想、实验等方法培养学生发现问题和提出问题的能力,并对所涉问题有一定深度的理解,判断研究结果的合理性。

3.分析问题和解决问题的能力——根据物理问题的特征、性质以及实际情况,抓住主要矛盾,进行合理的简化,建立相应的物理模型,并用物理语言和基本数学方法进行描述,运用所学的物理理论和研究方法进行分析、研究。

五、对于素质培养的基本要求通过大学物理课程教学,应注重培养学生以下素质:1.求实精神——通过大学物理课程教学,培养学生追求真理的勇气、严谨求实的科学态度和刻苦钻研的作风。

2.创新意识——通过学习物理学的研究方法、物理学的发展历史以及物理学家的成长经历等,引导学生树立科学的世界观,激发学生的求知热情、探索精神、创新欲望,以及敢于向旧观念挑战的精神。

3.科学美感——引导学生认识物理学所具有的明快简洁、均衡对称、奇异相对、和谐统一等美学特征,培养学生的科学审美观,使学生学会用美学的观点欣赏和发掘科学的内在规律,逐步增强认识和掌握自然科学规律的自主能力。

六、教学内容及基本要求模块1力学:第一单元质点运动学第一讲质点运动的描述,第二讲圆周运动与一般平面曲线运动,第三讲相对运动基本要求:1、质点运动的描述(1)掌握:位矢、位移、速度、加速度等物理量的定义及表达式,能够从已知的运动方程求导得到速度、加速度;同时能够从已知的速度或加速度积分得出运动方程。

第 01章 2 次课 -- 加速度 圆周运动

第 01章 2 次课 -- 加速度  圆周运动

(4)
7 /23
§1.2
圆周运动
(4)
v(t) r(t)
(4)式就是质点作圆周运动时的速率与角速度的关系. 质点作圆周运动时, 速度方向不断改变, 因此圆周运动是变速运动 ! 有加速度 ! 圆周运动的加速度有什么特点 ?
o
v2 et 2 v1 et1
r
三、圆周运动的切向加速度和法向加速度
at r
也是常数
法向加速度
加速度
an r 2
2
r
不是常数 (10)
a at an r et r 2 en
d dt
设t=0时, =0, =0; 则

d dt
d dt
0 t
2 2 02 2 ( 0 )

dy 由速度的定义得 v v0 e 1.0t dt
两边积分, 得
dy 0e1.0t dt

y
0
dy v0 e-1.0t dt
0
t

y v0[1 e
]
y
代入初速度, 得
y 10[1 e1.0t ]
上海师范大学
2 /23
§1.1
质点运动的描述
v v0e
为小球已停止运动; (2)此球体在停止运动前经历的路程有多长?
解:如图建立坐标系.
由加速度定义得
v
a
t dv 两边积分, 得 1.0 dt v0 v 0
d 1.0 dt

d 1.0dt
1.0t
o
v0
-1.0t

lnv - ln0 1.0t
化简得

自然坐标系

自然坐标系
2 ω 2 − ω0 = 2 β (θ − θ 0 )
1 2 βt 2
****************************************************** 匀速圆周运动 匀速直线运动 θ = θ 0 + ωt x = x0 + Vt 匀变速圆周运动 匀加速直线运动 ω = ω 0 + βt V = V0 + at 1 1 θ − θ 0 = ω 0t + βt 2 x − x0 = V0 t + at 2 2 2 2 2 2 2 ω − ω 0 = 2 β (θ − θ 0 ) V − V0 = 2 a ( x − x 0 ) ******************************************************
4
V2
V2 ⇒ρ= :计算曲率半径 (4) a n = ρ an 例: R =800m 的圆形轨道,汽车,静止开始,
速率均匀增加, t =3(分) , V =20m/s r , a , at , a n 求: t =2(分) 解:设 V = kt ,t=3(分)=180s, V =20m/s
k =20/180=1/9, V = t /9 dV at = = 1 / 9 = 0.111(m / s 2 ) dt t =2(分)=120s, V =120/9(m/s) V2 = 0.222m / s 2 an = R
at
α
an R
O
r a
2 a = at2 + a n = 0.248m / s 2 , tgα = a n / at =2, α = 63.4 o
第5节
P
相对运动
S ′ 相对于 S 作平动运动 r r r r = r ′ + r0 r r r ∆r = ∆r ′ + ∆r0 r r r dr dr ′ dr0 = + dt dt dt

运动学中的圆周运动与角速度分析

运动学中的圆周运动与角速度分析
汽车倒车雷达利用角 速度传感器进行后方 障碍物检测。角速度 分析有助于提高倒车 雷达的准确性。
航空器稳定系统
准确的角速 度控制
提高飞行稳 定性
电动车转向系统
01 转向控制
依赖角速度传感器
02 转向灵活性
提高效果
03
摆锤动力学
周期关系
与角速度密切相关
优化运动轨迹
通过角速度分析实现
总结
角速度分析在工程设计中起着重要作用,无论是 汽车倒车雷达、航空器稳定系统、电动车转向系 统还是摆锤动力学,都能通过角速度分析实现更 高的性能和精度。
感谢观看
THANKS
未来展望
智能制造
角速度技术在智能制造中 的应用
医疗领域
角速度分析在医疗设备中 的创新应用
交通运输
角速度在交通运输中的重 要性
军事应用
角速度分析在军事设备中 的应用前景
角速度分析
创新技术
角速度分析的新 技术发展
数据分析
使用角速度数据 进行分析
效率提升
角速度分析对工 程效率的提升
实践应用
角速度分析在实 际工程中的应用
螺旋桨设计
推进效率
螺旋桨设计需考虑不同角 速度下的推进效率 高效的角速度分析有助于 提高螺旋桨的推进效率
形状设计
角速度分析可以帮助设计 出符合要求的螺旋桨形状 不同角速度下的螺旋桨形 状对推进效率有显著影响
性能优化
优化螺旋桨设计和角速度 控制有助于提升飞行器的 性能 更高效的推进系统能够提 高整体性能水平
角速度规律
角速度与圆周运 动的关系
角速度分析
角速度分析的重 要性
角速度分析应用
角速度分析在工程设 计中扮演着至关重要 的角色。无论是机械 设计、航空航天、建 筑工程还是电子产品 制造,角速度的合理 应用都能带来更高效 和更安全的设计方案。 未来随着科技的不断 发展,我们可以预见 角速度分析将在更多 领域得到应用,并为 各行各业带来更多创
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

α与ω方向相反。质点作减速圆周运动。
α等于恒量时作匀角加速度运动。
3
对匀角加速运动有: ω=ω0+ α t
1 2 0 0t t 2
0 ( 0 )t
2 2 0 2 ( 0 )
1 2
4
2 线量与角量的关系:质点做圆周运动时也可以用速 度、加速度来描述。 由于位置矢量可以表示为 r xi yj R cosi R sin j
t=2s时
α =6t
ω=3×22+3=15(rad/s)
α=6×2=12(rad/s2)
aτ =R αห้องสมุดไป่ตู้=0.5×12=6(m/s2)
an=Rω2=0.5×152=112.5(m/s2)
7
3 用自然坐标系描述平面曲线运动的速度与加速度 自然坐标系将质点的运动轨迹 作为坐标的一个轴,在质点运 动轨道上任取一点作为坐标原 点O ,运动函数为:S=S(t) 质点在P点的坐标轴的方向由 沿S的切向及法向矢量构成。
10
例2、以仰角θ=450、初速v0=20m/s抛出 一物体。求抛出后第2秒末物体的切向加 速度、法向加速度、和轨道的曲率半径。
Vx=V0cosθ=20cos450=14.14m/s
vy
an
vx
Vy=V0sinθ-gt= -5.46m/s


V V V 15 .13m / s
g
at
v
2 x
2 y
an=gcos γ =gV x/V=9.13m/s2
aτ=gcosβ=gVy/V=3.53m/s2
ρ=V2/an=25.03m
11
5 质点运动学小结: 1、描述运动的物理量 :t、Δt、r、Δr、v、 a、s dv dr 加速度: a 2、定义:速度 v dt dt 对一维的情况:v=dx/dt a=dv/dt 3、质点运动学的两类问题: 1)已知运动方程,求速度、加速度。 解法:用求导数的方法解决。 2)已知速度(或加速度)及初始条件求运动方程。
△τ=1× △ θ 当△t→0时, dτ=1× d θ、方向指向曲率中 心(即法向)。 d d n dt dt
dv d n 得:a v dt dt
切向加速度分量 法向加速度分量
dv a dt
d v d v ds v 2 an v dt dt dt
速度大小为 v=Rω
方向在圆周的切线方向上。
5
同样可以得到加速度:
d d d aR ( sini cosj ) R ( cos i sin j) dt dt dt 2 R ( sini cosj ) R (cosi sinj )
d lim t 0 t dt
2
平均角加速度 t
t 0
瞬时角加速度 lim d
t dt
(SI)单位:rad/s2 角速度与角加速度都是矢量,角速度的方向由右手定 则确定。(规定用右手螺旋定则来判定:四指方向为 绕向,大拇指方向为角速度方向!! ) α与ω同向。质点作加速圆周运动。
dr d d v R sin i R cos j R d ( sini cos ) j dt dt dt dt
Y
V
r
d R [cos( )i sin( ) j ] dt 2 2

X
括号中的项是与r垂直的单位矢量
将沿S的切向指向弧坐标正向的单位矢量记为τ(切向单位矢量)。
沿S的法向且指向曲率中心的单位矢量记为n(法向单位矢量)。
ds v v 质点在P点的速度 dt dv d a v 质点在P点的加速度 dt dt
8
c

τ'
ρ
τ' τ
dv 其方向沿轨道的切向,称为切向 由于 dt 加速度。 d ? 再看 dt
d r dr d er er r 质点的运动速度: dt dt dt 其中 dr/dt 表示矢量 r 的模的变化率。 与圆周运动的情况比较:er r0
可以证明平面
位置矢量为:
r rer
极坐标的速度为
d r dr d er r e dt dt dt
第一章 质点运动学
1
§1-3 圆周运动
1 圆周运动的角量描述:质点做圆周运动时,轨道上 的任意点到圆心距离为R,用一个变量θ即可描述其运动。
Y
r
r =R
θ确定后:x=Rcosθ y=Rsinθ θ 单位 rad 弧度
t

X
θ=θ(t)
定义:角位置
角位移△θ=θ(t+ △t) -θ(t) 平均角速度 瞬时角速度 (SI)单位:rad/s 弧度/秒 工程单位 rev/min(转/分)
令: τ为圆周的切向上的单位矢量
sini cosj
切向加速度为 a R R d d ( R ) dv
dt dt
n为圆周法向上的单位矢量
法向加速度为
dt n (cosi sinj )
( R ) 2 v 2 an R 2 R R
9
4 平面运动的极坐标表示:
r
0
e
p
er

在 平面内取一个定点O, 叫极点,引一条射 线Ox,叫做极轴,再选定一个长度单位和角 度的正方向(通常取逆时针方向)。对于平面 内任何一点M,用r表示线段OM的长度,θ表 示从Ox到OM的角度,r叫做点M的极径,θ叫 做点M的极角,有序数对 (r,θ)就叫点M的极坐 标,这样建立的坐标系叫做极坐标系。
解法:用积分或求解微分方程的方法求解。
x x0 vdt
t0
t
v v0 adt
t0
t
12
这时加速度可以表示为 a aτ an n t
6
由于τ与n相互垂直,加速度a的大小与aτ 、an的 关系为 2 2
a a an
例1、半径R=0.5米的飞轮绕中心轴转动, 其运动函数 为θ=t3+3t(SI)求t=2秒时,轮缘上一点的角速度角加速 度以及切向加速度、法向加速度。 解:ω=3t2+3
相关文档
最新文档