第二章 腐蚀热力学
合集下载
第2章 电化学腐蚀热力学

序言
研究腐蚀现象需要从两方面着手: 一方面是看腐蚀的自发倾向大小——热力学; 另一方面是看腐蚀进程的快慢——动力学。
2.1 腐蚀倾向的热力学判据
序言 注意事项: 腐蚀倾向不等于腐蚀速度。没有倾向,不 会有速度;小的倾向,不可能出现大的速 度;但大的倾向和大的速度没有必有必然 联系,它们或是、或不是和大的腐蚀速度 关联。这属于腐蚀动力学研究的内容。
第2章 电化学腐蚀热力学
2.1 腐蚀倾向的热力学判据
序言
金属材料腐蚀的根本原因:除个别金属(Au、 Pt等)外,绝大多数金属均处于热力学不稳定 状态,有自动发生腐蚀的倾向,即这些金属在 一定外界环境下会自发地由金属原子状态转变 为离子状态,生成相应的氧化物、硫化物或相 应的盐,从而发生腐蚀。
2.1 腐蚀倾向的热力学判据
(G )T , p (G )T , p (G )T , p
vi i 0 自发过程 i vi i 0 0 平衡状态 i vi i 0 非自发过程 i
2.1 腐蚀倾向的热力学判据
吉布斯自由能 i化学势变化热力学判据: i ci ) i RT ln i i RT ln(
2.2 腐蚀电池及其工作历程
二、金属腐蚀的电化学历程
腐蚀原电池特征:
短路的原电池
材料表面分为阳极和阴极,阴极和阳极具有不同电 位,位于不同位臵;
阳极和阴极之间要有两个电性连接:电子导体通道 和离子导体通道; 离子导体为腐蚀环境。
2.2 腐蚀电池及其工作历程
二、金属腐蚀的电化学历程
结论:Mg,Cu在潮湿的环境下有自发腐蚀的倾向,且 前者倾向大于后者,而Au在该类环境中则是惰性的。
腐蚀热力学

方向进行时,阴极反应。
第二章 腐蚀热力学
(3)电极电位
➢ 双电层
电子导体相(金属)和离子导体相(溶液)都存在一个内电位(即, , ),由
于两相内电位的不同,在电极系统的离子导体相和金属导体相之间就存在电位差
( − ),导致在两相之间存在一个相界区,称为双电层
假设双电层为一个均匀电场,其电场强度可以表示为
腐蚀原电池示意图
➢ 腐蚀电池的定义是:只导致金属材料腐蚀破坏而不能对外做有用功的短路原电池
• 导致金属的腐蚀破坏
腐蚀原电池的特点
• 释放的能量不能对外做有用功
• 电极反应最大程度不可逆
第二章 腐蚀热力学
腐蚀原电池的构成及其工作过程
阳极
构成
阴极
电解质溶液
电路
➢ 工作过程
阳极过程: ⟶ + +
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
2.2 电极系统与电极反应
2.3 电化学位与电极电位
2.4 电化学腐蚀倾向的判断
2.5 Ee–pH图
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
原电池
干电池(左)以及原电池工作原理(右)示意图
➢ 阳极反应:负极上发生的反应,金属失去
负极(锌皮): → 2+ + 2
从右至左自发进行:
∆ = + + − − = >
反应平衡时:
∆ = + + − − = =
对任意含有j种物质的化学反应,化学反应达到平衡的条件
∆ = σ =
第二章 腐蚀热力学
(2)电化学位及可逆电极反应的平衡条件
第二章 腐蚀热力学
(3)电极电位
➢ 双电层
电子导体相(金属)和离子导体相(溶液)都存在一个内电位(即, , ),由
于两相内电位的不同,在电极系统的离子导体相和金属导体相之间就存在电位差
( − ),导致在两相之间存在一个相界区,称为双电层
假设双电层为一个均匀电场,其电场强度可以表示为
腐蚀原电池示意图
➢ 腐蚀电池的定义是:只导致金属材料腐蚀破坏而不能对外做有用功的短路原电池
• 导致金属的腐蚀破坏
腐蚀原电池的特点
• 释放的能量不能对外做有用功
• 电极反应最大程度不可逆
第二章 腐蚀热力学
腐蚀原电池的构成及其工作过程
阳极
构成
阴极
电解质溶液
电路
➢ 工作过程
阳极过程: ⟶ + +
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
2.2 电极系统与电极反应
2.3 电化学位与电极电位
2.4 电化学腐蚀倾向的判断
2.5 Ee–pH图
第二章 腐蚀热力学
2.1 原电池和腐蚀原电池
原电池
干电池(左)以及原电池工作原理(右)示意图
➢ 阳极反应:负极上发生的反应,金属失去
负极(锌皮): → 2+ + 2
从右至左自发进行:
∆ = + + − − = >
反应平衡时:
∆ = + + − − = =
对任意含有j种物质的化学反应,化学反应达到平衡的条件
∆ = σ =
第二章 腐蚀热力学
(2)电化学位及可逆电极反应的平衡条件
腐蚀学原理-第二章腐蚀热力学

问题:
电偶的概念, 危害、用途?
2.3 电位—pH图
金属的电化学腐蚀:金属同水溶液相互作 用。水溶液:H+和OH-离子。
电位—pH图 金属在水溶液中的稳定性不但与它的电极电位有 关,还与水溶液的pH值有关。若将金属腐蚀体系 的电极电位与溶液pH值的关系绘成图,就能直接 从图上判断给定条件下发生腐蚀反应的可能性。
极化图与腐蚀极化图?
金属在25℃的标准电极电位E°
Mg=Mg2++2e:-2.363 Al=A13++3e:-1.662 Ti=Ti3++3e:-1.210 Fe =Fe2++2e:-0.440V Cu=Cu2++2e:+0.337 Pd=Pd2++2e:+0.987 Au=Au++e:+1.691 注:均相对于SHE
2.4 腐蚀电池及其工作历程
(1)阳极过程 金属溶解,以离子形式进入溶液,并把当量的电子留在 金属上
(2)阴极过程 从阳极流过来的电子被阴极表面溶液中能够接受电子的 物质所吸收,即发生阴极还原反应。 阴极还原反应中能够吸收电子的氧化性物质D,在腐蚀学中通常称为 去极化剂。因为如果没有去极化剂,阴极区将由于电子的积累而发生 阴极极化而阻碍腐蚀的进行。最常见的阴极去极化剂是溶液中的O2和 H+离子。
比利时学者M.Pourbaix在1938年首先提出,又称 Pourbaix图。
Fe-H2O电位-pH图
a线为析氢电极反应:
E
E
2.3RT
lg
a2 H
2F
pH2
b线为O2与H2O间的 电化学反应:
2H2O
腐蚀第二章

④线表示反应: 2Fe3++3H2O=Fe2O3+6H+ pH=0.28-(1/3)lgaFe3+ (25℃) 为一组垂线 。 ⑤线表示反应: Fe=Fe2++2e φ = -0.44+0.0295lgaFe2+ (25℃) 为一水平线。 ⑥线表示反应: Fe+2H2O=HFeO2-+3H++2e φ =0.400-0.0886pH+0.0295lgaHFeO2- (25℃) 为一斜线。 ⑦线表示反应: 2Fe2++3H2O=Fe2O3+6H++2e φ =0.728-0.177pH-0.059lgaFe2+ (25℃) 为一组斜线。 ⑧线表示反应: 3Fe2++4H2O=Fe3O4+8H++2e φ =0.975-0.236pH-0.0886lgaFe2+ (25℃) 为一组斜线。
§2. 4 金属-水体系的电位-PH平衡图
( 以Fe- H2O体系为例) 一、图的绘制
1. 列出体系中可能存在的物质
Fe, Fe2+ , Fe3+ Fe2 O3, Fe 3O4 , Fe(OH)3 , Fe(OH)2 HFeO− O 2, H+,H2O,OH2. 列出各反应的平衡关系式,计算平衡数据
在电位- pH坐标图上画出各反应对应的平衡线,最后汇 总,即得电位- pH图。图2-7 ①线表示反应: Fe2+= Fe3++e 25℃时, a
E 0.771 0.059lg
Fe3
aFe2
当aFe2+=aFe3+时, φ =0.771V, 为一水平直线。 ②线表示反应: 3Fe+4H2O=Fe3O4+8H++8e 25℃时, φ =0.086 - 0.059pH,为一斜线。 ③线表示反应: 2Fe3O4+ H2O=3Fe2O3+2H++2e 25℃时, φ =0.215 - 0.059pH, 为一斜线。
腐蚀 第2章 腐蚀热力学

Fe Fe2++2e
i corr
lg i
平衡电位 – 热力学, E0 H2/H+ , E0 Fe/Fe2+ …. 非平衡电位 – 动力学/测量, 腐蚀电位,混合电位或偶合电位
2.2 金属在介质中的腐蚀倾向
2.2.1 腐蚀倾向热力学判断
从热力学可知,判断化学变化的方向和限度,对于不同 的条件,有不同的热力学判据。 对于孤立体系可用熵变判据; 对于等温等容下的体系,可用亥姆霍兹自由能判据; 在等温等压条件下,可用吉布斯自由能判据: 自发过程
+
i — i 组分内电位 i — i 组分外电位 I — i 组分表面电位
i= i + i 电功 i
相
当两相电化学位相等,电化学平衡建立:
Me Men+ + ne 对应电位差为平衡电极电位
Fe Fe 2+ + 2e Fe 2+ + 2e Fe
电荷平衡: ia = ic 物质平衡: M = Mn+
化学热力学- 化学位不同 相间粒子转移,粒子自发地从高化学位相转入低化学 位相,直到两相化学位相等。 iI = 0 在电场作用下,两相电化学位不同 相间粒子转移,带电粒子自发的从高电化 学位相转入低电化学位相,直到两相的电化学位相等。 iI = 0 电化学位与化学位关系: i= I + nFI = 化学功 + 电功
腐蚀热力学 (反应方向) 电极电位 (产生原因,双电层模型,腐蚀电池)
应用 (电动序,电偶序,电位-pH图)
2.1 电极体系和电极电位
2.1.1 双电层
腐蚀总是发生在相间界面,重要概念-电极电位,即电极各 相间电位差之和。双电层普遍存在-相间电位差本质原因
腐蚀与防护-第二章 电化学腐蚀热力学

的电动势就等于铜电极的标准电极电势。
负极
正极
标准 氢电极
标准 铜电极
电池反应: Cu2+ + H2 ⇌ Cu + 2H+
E = θ(Cu2+/Cu) - θ(H+/H2)
= θ(Cu2+/Cu)=0.337V
• 参比电极
条件:① 电极反应是可逆的
② 电位稳定而不随时间变化 ③ 交换电流密度大,不极化或难极化 ④ 参比电极内溶液与腐蚀介质不渗污 ⑤ 温度系数小
• 腐蚀是以电化学反应为主的化学变化,用热力学 理论来刻画其变化方向,回答材料在具体环境中 是否发生腐蚀和发生腐蚀的倾向大小。 • 腐蚀热力学以电极电位作为腐蚀倾向判别函数, 建立相应理论和方法。 • 注意:腐蚀倾向不等于腐蚀速度。没有倾向,不 会有速度;小的倾向,不可能出现大的速度;但 大的倾向和大的速度没有必然。
本身不反应,是溶液中的阳离子 得电子发生还原反应。 注意: 要用到金属活动性顺序表: K,Ca,Na,Mg,Al,Zn,Fe,Sn,Pb,(H),Cu,Hg,Ag,Pt,Au…
活泼性,还原性依次 减弱。
腐蚀电池(腐蚀原电池)
• 实质上是个短路的原电池
• 包括四部分: 阳极、阴极、电解质溶液、外电路
微观腐蚀电池
• 化学成分不均匀性。如:金属中杂质。 • 杂质的组成、性质不同于基体,有的相对 基体呈阳极,减缓腐蚀;有的杂质呈阴极, 加速腐蚀。
• 如: 金属锌中的Al、Pb、Hg等杂质,呈阳 极,它们可以减缓金属锌在硫酸中腐蚀; • 金属锌中的Fe、Cu等杂质,呈阴极, 它们 加速锌在硫酸中腐蚀。
腐蚀电池工作要素
• 电化学腐蚀的本质是形成了腐蚀电池。 • 腐蚀电池起作用的要素为:
第二章-电化学腐蚀热力学
24
测量Zn的标准电极电位
25
2.2.4 非平衡电极电位
水合金属离子能够回到金属中去,水合-金属化过程速率 相等且又可逆-平衡电极电位 在实际中,与金属接触的溶液大部分不是金属自身离子 的溶液,所以涉及的电极电位大部分都是非平衡电极电 位 当金属和电解质溶液建立的双电层的电极过程为不可逆 时,其电极电位成为非平衡电极电位
j
R-理想气体常数 F-法拉第常数 T-热力学温度
20
对数项前取“+”号,反应式中含电子一侧的所有物质活 度乘积为分子,另一侧物质为分母。如果反应式中某物 质前有系数则该系数作为该物质活度的指数。 纯固体活度被规定为1。反应中浓度保持恒定的物质, 如:溶液中水的活度也规定为1。气体物质活度等于其 逸度,常压下近似等于大气压(atm)为单位的该气体分压。 能斯特方程反应了平衡电极电位与温度、参与反应的各 物质活度和压强间的关系。 能斯特方程只能用于计算平衡电极电位。
t:电流持续时间,s
在电极反应中,当1mol的氧化体转化为还原体,前者 需要从电极取得n个法拉第常数的电量的电子;而当1mol 还原体转化为氧化体时,电极从还原体得到数值等于n个 5 法拉第常数的电量的电子。
(6) 电极:电极系统中的电子导体相 阳极:发生氧化反应的电极 阳极反应:失去电子的反应 阴极:发生还原反应的电极 阴极反应:得到电子的反应 原电池产生电流:两电极之间的电位差引起 ——电极反应的驱动力:电池的电位差 阴极电位高:正极;阳极电位低:负极
8
Zn本来是电中性的,因离子进入溶液 而把电子留在金属上,这时金属Zn带 负电;在Zn2+进入溶液的同时破坏了 溶液的电中性,使溶液带正电
金属上过剩的负电荷吸引溶液中过剩 的阳离子,使之靠近金属表面,形成 带异号电荷的离子双电层,在两相界 面上产生一定的电位差
腐蚀学第二章 金属电化学腐蚀热力学课件
阴极 Cathode (+)
Zn --> Zn2+ + 2e
正极 2NH4+ +2e -->2 NH3 + H2
24
燃料电池
25
2.2.2 电化学位
电化学体系与静电学中的带电体系区别 静电学只考虑电量不考虑物质性,只考 虑库仑力不考虑非库仑力 电极反应与化学反应区别 (电极反应的电化学位)除了物质变化 外,还有电荷在两相间流动,化学能和 电能都发生变化。 电能:荷电粒子
46
电 - =Zn2+ 阳极: Zn-2e 极 反 ++2e- =H ↑ 2H 阴极: 应 2 总反应: Zn+2H+=Zn2++H ↑ 2 Zn+H2SO4=ZnSO4+H2↑
各种电化学腐蚀现象的实质相同:都是浸在电解质溶 液中的金属表面上形成了以金属为阳极的腐蚀电池。
47
腐蚀电池的基本构成
—
40
2.3 非平衡电极电位
41
2.3.1 电极反应的过电位
电极反应偏离平衡状态,电极系统的电 极电位就偏离平衡时的电位。
E Ee
42
i 0
平衡状态下,两者都为0。 非平衡状态下,两者必须同号。
体系偏离平衡状态很小时,
RF i
43
2.3.2 原电池中的不可逆过程
原电池与负载接通回路,通过电流时,两个 电极端电压为:
参比电极
标准氢电极SHE 以镀铂黑的铂片浸在含1摩尔氢离子活度、 并用1atm氢气饱和的溶液中,在任何温度 下的平衡电极电位都等于零
电极反应
2H 2e H 2 ( gas)
Zn --> Zn2+ + 2e
正极 2NH4+ +2e -->2 NH3 + H2
24
燃料电池
25
2.2.2 电化学位
电化学体系与静电学中的带电体系区别 静电学只考虑电量不考虑物质性,只考 虑库仑力不考虑非库仑力 电极反应与化学反应区别 (电极反应的电化学位)除了物质变化 外,还有电荷在两相间流动,化学能和 电能都发生变化。 电能:荷电粒子
46
电 - =Zn2+ 阳极: Zn-2e 极 反 ++2e- =H ↑ 2H 阴极: 应 2 总反应: Zn+2H+=Zn2++H ↑ 2 Zn+H2SO4=ZnSO4+H2↑
各种电化学腐蚀现象的实质相同:都是浸在电解质溶 液中的金属表面上形成了以金属为阳极的腐蚀电池。
47
腐蚀电池的基本构成
—
40
2.3 非平衡电极电位
41
2.3.1 电极反应的过电位
电极反应偏离平衡状态,电极系统的电 极电位就偏离平衡时的电位。
E Ee
42
i 0
平衡状态下,两者都为0。 非平衡状态下,两者必须同号。
体系偏离平衡状态很小时,
RF i
43
2.3.2 原电池中的不可逆过程
原电池与负载接通回路,通过电流时,两个 电极端电压为:
参比电极
标准氢电极SHE 以镀铂黑的铂片浸在含1摩尔氢离子活度、 并用1atm氢气饱和的溶液中,在任何温度 下的平衡电极电位都等于零
电极反应
2H 2e H 2 ( gas)
3电化学腐蚀热力学
电极系统和电极电位
n 电子导体 在电场作用下,向一定方向移动的电荷粒子是电
子或带正电荷空穴。 如金属、半导体
n 离子导体 在电场作用下,向一定方向移动的电荷粒子是带
正电荷或负电荷的离子。 如电解质溶液或熔融盐
n相 由化学性质和物理性质一致的物质所组成而与系
统中其他部分之间有界面隔开的集合体。
电极系统和电极电位
2 第二类金属的电极反应 Ag+Cl-=AgCl+e
3 气体电极反应 2H++2e=H2 (Pt)
4 氧化还原电极反应 Fe2+=Fe3++e
电极反应的特点 :
n 金属材料是电极反应进行的场所和参与 者。
n 金属电极是腐蚀电池的阳极反应。
n 气体电极反应和氧化还原电极反应都可 能作为腐蚀电池的阴极反应。
电极电位
n 电极电位
金属和溶液两相之间的电位差叫做电极
系统的绝对电极电位,简称电位,记为
=m s
n 内电位
= +
n 双电层
由于金属和溶液的内电位不同,在电极系统的金属相 和溶液相之间存在电位差,因此,两相之间有一个相界区, 叫做双电层。
电极系统中发生电极反应,两相之间有电荷转移,是 形成双电层的一个重要原因。 例如:Zn/Zn2+,Cu/Cu2+
n 标准电位只取决于电极反应的本性,而平 衡电位还与参与电极反应各组分的活度(或 分压),以及温度有关。
金属在25度时的标准电极电位EO(V,SHE)
腐
电极反应
K=K++e Na=Na++e Mg=Mg2++2e Al=Al3++3e Ti=Ti2++2e Mn=Mn2++2e Cr=Cr2++2e Zn=Zn2++2e Cr=Cr3++3e Fe=Fe2++2e Cd=Cd2++2e Mn=Mn3++3e Co=Co2++2e
第二章 电化学腐蚀理论——【腐蚀与防腐】
子,导致晶界比晶粒内活泼,电极电位更负,成为 微电池阳极,腐蚀从晶界开始(晶间腐蚀)
22
• 物理状态不均匀
❖ 机械加工时造成金属某些部位变形量和应力状态不 均匀
❖ 变形大和应力集中部位为阳极
23
金属组织、表面状态等不均匀所导致的微观腐蚀原电池
a) Zn与杂质形成的原电池 b) 晶粒与晶界形成的原电池
26
1)定义
电子导体和离子导体接触时界面产生的电位差
2)电极电位的产生
?
双电层
27
• 双电层
• 两种不同的相相互接触瞬间,在相界上可能发生带电 粒子的转移。开始电荷主要从一个方向越过界面迁入 另一相内,结果在两相中都出现剩余电荷(符号相 反),或多或少集中在界面两侧,形成“双电层”, 产生相间电位差 • 电位差影响电荷交换动力学,使带电质点在两个方向 的转移速度趋于一致。
演示
电化学腐蚀过程
9
3)电化学腐蚀的次生过程
• 阳极过程和阴极过程的产物因扩 散作用在相遇处导致腐蚀次生反 应的发生,形成难溶性产物。
• 如Zn、Cu和NaCl溶液组成的腐 蚀电池
• 沉淀物在从阳极扩散来的金属离 子和从阴极区迁移来的OH-相遇 处生成,结构疏松
• 二次腐蚀产物在一定程度上可阻 止腐蚀过程进行,保护性比金属 表面直接发生化学反应时生成的 初生膜差得多
❖ 对数前系数RT/nF:用常用对数代替自然对数时,此系数前
乘以2.303;25°C时, 2.303RT 0.0592/ n
nF
ln 2.303lg
使用很频
繁
44
•例题
• 电池:Zn/0.5MZnCl2¦¦酸溶液/Pt(氢电极)的电动势为0.55V,求酸 溶液的PH值(25ºC, EZn0=-0.763V, 0.5MZnCl2的活度系数为0.38)
22
• 物理状态不均匀
❖ 机械加工时造成金属某些部位变形量和应力状态不 均匀
❖ 变形大和应力集中部位为阳极
23
金属组织、表面状态等不均匀所导致的微观腐蚀原电池
a) Zn与杂质形成的原电池 b) 晶粒与晶界形成的原电池
26
1)定义
电子导体和离子导体接触时界面产生的电位差
2)电极电位的产生
?
双电层
27
• 双电层
• 两种不同的相相互接触瞬间,在相界上可能发生带电 粒子的转移。开始电荷主要从一个方向越过界面迁入 另一相内,结果在两相中都出现剩余电荷(符号相 反),或多或少集中在界面两侧,形成“双电层”, 产生相间电位差 • 电位差影响电荷交换动力学,使带电质点在两个方向 的转移速度趋于一致。
演示
电化学腐蚀过程
9
3)电化学腐蚀的次生过程
• 阳极过程和阴极过程的产物因扩 散作用在相遇处导致腐蚀次生反 应的发生,形成难溶性产物。
• 如Zn、Cu和NaCl溶液组成的腐 蚀电池
• 沉淀物在从阳极扩散来的金属离 子和从阴极区迁移来的OH-相遇 处生成,结构疏松
• 二次腐蚀产物在一定程度上可阻 止腐蚀过程进行,保护性比金属 表面直接发生化学反应时生成的 初生膜差得多
❖ 对数前系数RT/nF:用常用对数代替自然对数时,此系数前
乘以2.303;25°C时, 2.303RT 0.0592/ n
nF
ln 2.303lg
使用很频
繁
44
•例题
• 电池:Zn/0.5MZnCl2¦¦酸溶液/Pt(氢电极)的电动势为0.55V,求酸 溶液的PH值(25ºC, EZn0=-0.763V, 0.5MZnCl2的活度系数为0.38)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ Anode Cathode
阳极 Anode (+) 正极
ClNa+ H2O
2 Cl-
→ Cl2(g) + 2e
阴极 Cathode (-)负极
2 H2O + 2e金属腐蚀与防护(2011-2012学年)
→
H2 + 2 OH54
14
只导致金属材料破坏而不能对外界作有用功的短路原电池 称为腐蚀电池。 例如,碳钢在不含O2的稀HCl中有气泡析出,同时铁被腐蚀。 其电池反应为: Fe+2H+→Fe2++H2 阳极反应: Fe→Fe2++2e 阴极反应 : 2H++2e→H2 而且,阳、阴极反应速度相等。 碳钢在含O2稀HCl中,铁发生腐蚀: 阳极反应 : Fe→Fe2++2e 阴极反应 : 2H++2e→H2 O2+4H++4e→2H2O 不管有几个阳极反应或阴极反应在进行,腐蚀时总的氧化 速度等于总的还原速度。
常见的电极反应类型
1 第一类金属的电极反应 Zn=Zn2++2e
2 第二类金属的电极反应
Ag+Cl-=AgCl+e
3 气体电极反应
2H++2e=H2 (Pt) 4 氧化还原电极反应 Fe2+=Fe3++e
金属腐蚀与防护(2011-2012学年) 3
金属电极反应的特点 :
• 金属材料是电极反应进行的场所和参与者。 • 金属电极的氧化是腐蚀电池的阳极反应。 • 气体电极反应和氧化还原电极反应都可能作为腐蚀 电池的阴极反应。
金属腐蚀与防护(2011-2012学年)
7
电动序
将各种金属的标准电位 0 的数值从小到大排列起来, 就得到 “电动序” 。 电动序可以清楚地表明各种金属转变为氧化状态的倾 向。在氢之前的金属的 0为负值,称负电性金属;在氢之 后的金属的E0为正值,称正电性金属。 ※电动序可以用来粗略地判断金属的腐蚀倾向
产物有二种: 可溶性离子,如Fe-2e=Fe2+ 不溶性固体,如2Fe+3H2O=Fe2O3+6H++6e
金属腐蚀与防护(2011-2012学年)
18
2. 阴极反应 通式:D+me=[D.me]
常见的去极化剂(氧化剂)是 H+和 O2 2H++2e=H2 析氢腐蚀或氢去极化腐蚀 O2+4H++4e=2H2O (酸性溶液中) O2+2H2O+4e=4OH-(中性或碱性溶液中)
腐蚀电池的构成
金属腐蚀与防护(2011-2012学年) 16
腐蚀电池的特点:
1. 阳极反应都是金属的氧化反应,造成金属材料 的破坏。 2. 反应最大限度的不可逆。 3. 阴、阳极短路,不对外做功。
金属腐蚀与防护(2011-2012学年)
17
腐蚀电池的工作环节
1. 阳极反应 通式:Me→Mn++ne
★微电池的阴、阳极位置不断变化,腐蚀形态是 全面腐蚀;阴、阳极位置固定不变,腐蚀形态是 局部腐蚀。
金属腐蚀与防护(2011-2012学年)
32
金属腐蚀与防护(2011-2012学年)
33
金属腐蚀与防护(2011-2012学年)
34
金属腐蚀与防护(2011-2012学年)
35
金属腐蚀与防护(2011-2012学年)
金属腐蚀与防护(2011-2012学年) 38
从热力学知: (ΔG)T,P=w´= - nFE电 即可逆电池所做的最大功(nFE)等于体系 自由能的减少。在忽略液体接界电位和金属接触 电位的情况下, E电= Ec-Ea 在腐蚀电池中,金属阳极发生溶解,其电位 为Ea;腐蚀剂在阴极还原,其电位为Ec。依金属 腐蚀倾向的热力学判据,得出金属腐蚀倾向的电 化学判据: Ea < Ec , 即E电 > 0 电位为Ea的金属自发进行腐蚀 Ea = Ec , 即E电 = 0 平衡状态 Ea > Ec , 即E电 < 0 电位为Ea的金属不会自发腐蚀
36
金属腐蚀与防护(2011-2012学年)
37
2.3 电化学腐蚀倾向的判断
对于金属腐蚀和大多数化学反应,一般在恒 温恒压的敞开体系条件下进行,通常用Gibbs自由 能来进行判断。即在等温等压条件下: (ΔG)T.P <0 自发过程 (ΔG)T.P =0 平衡状态 (ΔG)T.P >0 非自发过程 自由焓准则 当△G<0,则腐蚀反应能自发进行。|G|愈大, 则腐蚀倾向愈大。 当△G= 0,腐蚀反应达到平衡。、 当△G> 0,腐蚀反应不能自发进行。
Sn=Sn2++2e Pb=Pb2++2e
Fe=Fe3++3e H2=2H++2e Cu=Cu2++2e Cu=Cu++e 2Hg=Hg22++2e Ag=Ag++e Hg=Hg2++2e Pt=Pt2++2e Au=Au3++3e
EO VS SHE
+0.189
+0.799 +0.854 +1.19 +1.50
铁
(a)不同金属组合
(b)金属中含杂项
(c)表面状态不同
应力集中 砂土
表面状态不同缝内Cu2+浓度 比缝外高
铜 铜
粘土
(d)应力及形变差异
(e)氧浓度差异
金属腐蚀与防护(2011-2012学年)
(f)金属离子浓度差异
27
腐蚀电池的种类
大电池(宏观腐蚀电池):
指阴极区和阳极区的尺寸较大,区分明显。
金属腐蚀与防护(2011-2012学年) 15
A
K Cu Zn Cu
Zn
Cu
Cu
Cu
HCl溶液
(a)Zn块和Cu块通 过导线联接 阳极Zn: 阴极Cu:
HCl溶液
(b)Zn块和Cu块直 接接触(短路) Zn → Zn2++2e (氧化反应) 2H++2e → H2 ↑(还原反应)
Zn
(c)Cu作为杂质分 布在Zn表面
Ni=Ni2++2e Mo=Mo3++3e
金 属 在 度 时 的 标 准 电 极 电 位 ( , )
9
25
Mg=Mg2++2e Al=Al3++3e
Ti=Ti2++2e Mn=Mn2++2e Cr=Cr2++2e Zn=Zn2++2e Cr=Cr3++3e Fe=Fe2++2e Cd=Cd2++2e Mn=Mn3++3e Co=Co2++2e
腐蚀电池的初生产物与次生产物
Zn—Cu 电偶电池 Zn2+ Zn(OH)2
。
OH-
Zn
Cu
Zn
e
Cu
水平电极
[直立电极] NaCl溶液
金属腐蚀与防护(2011-2012学复杂,若
金属有更高价态时,则腐蚀产物可能被进一步氧化。
4 Fe(OH)2+O2+2H2O→4 Fe(OH)3 4 Fe(OH)2+O2→2Fe2O3• H2O+2H2O 产物脱水后即为铁锈。 腐蚀次生产物并不直接生成在金属表面遭受腐 蚀的阳极区,而是在溶液中阴、阳极一次产物相遇 处形成。
金属腐蚀与防护(2011-2012学年)
10
2.2 腐蚀电池
1. 原电池(Cell) 2. 腐蚀电池(Corrosion Cell) 腐蚀电池 (Corrosion Cell)
3. 腐蚀电池的电化学历程 (Electrochemistry Process of Corrosion Cell)
4. 电化学腐蚀的次生过程 (Secondary Process of Electrochemistry Corrosion)
5. 腐蚀电池的类型 (Type of Corrosion Cell)
金属腐蚀与防护(2011-2012学年) 11
原电池的电化学过程是由阳极的氧化过程、阴
极的还原过程、离子的迁移、电子流动过程组成,
整个电池体系形成一个回路。 电池中离子的迁移和电子的流动,其动力是电 池电动势。金属发生电化学腐蚀的难易,在热力学 上取决于腐蚀原电池的电动势。
2. 列出可能的化学或电化学反应式; 3. 计算电位、浓度、pH关系式; 4. 绘制电位—pH图。
金属腐蚀与防护(2011-2012学年)
腐蚀电流
腐蚀电流:icor
icorr
I m zF S MSt
金属腐蚀与防护(2011-2012学年)
22
腐蚀过程的产物
初生产物:阳极反应和阴极反应的生成物。 次生产物:初生产物继续反应的产物。
初生和次生产物都有可溶和不可溶性产物。
★只有不溶性产物才能产生保护金属的作用。
金属腐蚀与防护(2011-2012学年) 23
★大电池的腐蚀形态是局部腐蚀,腐蚀破坏主要集中在阳极区。
金属腐蚀与防护(2011-2012学年)
28
金属腐蚀与防护(2011-2012学年)
29
金属腐蚀与防护(2011-2012学年)
30
金属腐蚀与防护(2011-2012学年)
31
微电池(微观腐蚀电池):
指阳极区和阴极区尺寸小,很难区分。
第二章