宣威市第一中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载

宣威市高中2018-2019学年上学期高二数学12月月考试题含解析

宣威市高中2018-2019学年上学期高二数学12月月考试题含解析

宣威市高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.执行如图所示的程序框图,输出的结果是()A.15 B.21 C.24 D.352.长方体ABCD﹣A1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是()A.30°B.45°C.60°D.120°3.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为()A.(﹣,﹣2] B.[﹣1,0] C.(﹣∞,﹣2] D.(﹣,+∞)4.复数z=(其中i是虚数单位),则z的共轭复数=()A.﹣i B.﹣﹣i C.+i D.﹣+i5.如图所示,在平行六面体ABCD﹣A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则()A.x=﹣B.x=C.x=﹣D.x=6.已知某运动物体的位移随时间变化的函数关系为,设物体第n秒内的位移为a n,则数列{a n}是()A.公差为a的等差数列B.公差为﹣a的等差数列C.公比为a的等比数列D.公比为的等比数列7.已知a>b>0,那么下列不等式成立的是()A.﹣a>﹣b B.a+c<b+c C.(﹣a)2>(﹣b)2D.8.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+19.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]10.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.0 C.﹣2或0 D.﹣2或211.已知直线a平面α,直线b⊆平面α,则()A.a b B.与异面C.与相交D.与无公共点12.487被7除的余数为a(0≤a<7),则展开式中x﹣3的系数为()A.4320 B.﹣4320 C.20 D.﹣20二、填空题13.设m是实数,若x∈R时,不等式|x﹣m|﹣|x﹣1|≤1恒成立,则m的取值范围是.14.函数f(x)=log a(x﹣1)+2(a>0且a≠1)过定点A,则点A的坐标为.15.已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(﹣1)=.16.若正数m、n满足mn﹣m﹣n=3,则点(m,0)到直线x﹣y+n=0的距离最小值是.17.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.18.已知面积为的△ABC中,∠A=若点D为BC边上的一点,且满足=,则当AD取最小时,BD的长为.三、解答题19.已知数列{a n}的首项为1,前n项和S n满足=+1(n≥2).(Ⅰ)求S n与数列{a n}的通项公式;(Ⅱ)设b n=(n∈N*),求使不等式b1+b2+…+b n>成立的最小正整数n.20.已知函数f(x)=,求不等式f(x)<4的解集.21.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.22.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.23.已知函数f(x)=aln(x+1)+x2﹣x,其中a为非零实数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若y=f(x)有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)24.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)宣威市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C2.【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(﹣1,1,0),B(1,1,0),G(0,1,1),=(﹣1,0,1),设直线A1C1与BG所成角为θ,cosθ===,∴θ=60°.故选:C.【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.3.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.4.【答案】C【解析】解:∵z==,∴=.故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础题.5.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x=﹣,y=,故选:A.【点评】本题考查了空间向量的应用问题,是基础题目.6.【答案】A【解析】解:∵,∴a n=S(n)﹣s(n﹣1)==∴a n﹣a n﹣1==a∴数列{a n}是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用7.【答案】C【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,故选C.【点评】本题主要考查不等式的基本性质的应用,属于基础题.8.【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.9.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。

宣威市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

宣威市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

宣威市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .2. 由直线与曲线所围成的封闭图形的面积为( )A B1C D3. 下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=4. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈ 5. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.6. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或 D .或7. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 8. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .29. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.10.已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A .B .C .D .11.下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.12.已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.二、填空题13.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

宣威市高中2018-2019学年高二上学期第一次月考试卷数学

宣威市高中2018-2019学年高二上学期第一次月考试卷数学

宣威市高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .2. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .b <a <c D .a <c <b3. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.4. 设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( )A .1B .C .D .5. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}6. 图1是由哪个平面图形旋转得到的( )A .B .C .D . 7. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|8. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( )A .B .C .D .9. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( ) A.(,1)B .(﹣∞,)∪(1,+∞) C.(﹣,) D .(﹣∞,﹣)∪(,+∞)10.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,511.设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( ) A .(0,+∞) B .(-∞,-12)C .(-12,+∞)D .(-12,0)12.已知函数(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( ) A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.二、填空题13.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .14.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a且•=24,则△ABC 的面积是 .16.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .17.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆外接圆的标准方程为_________.18.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.三、解答题19.已知等差数列{a n }中,a 1=1,且a 2+2,a 3,a 4﹣2成等比数列. (1)求数列{a n }的通项公式;(2)若b n =,求数列{b n }的前n 项和S n .20.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.21.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。

宣州区一中2018-2019学年上学期高二数学12月月考试题含解析

宣州区一中2018-2019学年上学期高二数学12月月考试题含解析

宣州区一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )A .B .C .D .2. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15B .30C .31D .643. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.4. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)6. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+zA .1B .2C .3D .47. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sin C A =( )A .2︰3B .4︰3C .3︰1D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力. 8. 函数f (x )=1﹣xlnx 的零点所在区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)9.某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为()A.4320 B.2400 C.2160 D.132010.在平面直角坐标系中,直线y=x与圆x2+y2﹣8x+4=0交于A、B两点,则线段AB的长为()A.4B.4C.2D.211.阅读下面的程序框图,则输出的S=()A.14 B.20 C.30 D.5512.已知f(x)=,则“f[f(a)]=1“是“a=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件二、填空题13.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .14.已知数列{a n}满足a n+1=e+a n(n∈N*,e=2.71828)且a3=4e,则a2015=.15.调查某公司的四名推销员,其工作年限与年推销金额如表由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元.16.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m,n∈N*,则m+n=.17.由曲线y=2x2,直线y=﹣4x﹣2,直线x=1围成的封闭图形的面积为.18.设函数f(x)=若f[f(a)],则a的取值范围是.三、解答题19.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.(1)证明:平面AED⊥平面BCDE;(2)求二面角E﹣AC﹣B的余弦值.20.已知cos(+θ)=﹣,<θ<,求的值.21.已知S n为数列{a n}的前n项和,且满足S n=2a n﹣n2+3n+2(n∈N*)(Ⅰ)求证:数列{a n+2n}是等比数列;(Ⅱ)设b n=a n sinπ,求数列{b n}的前n项和;(Ⅲ)设C n=﹣,数列{C n}的前n项和为P n,求证:P n<.22.若{a n}的前n项和为S n,点(n,S n)均在函数y=的图象上.(1)求数列{a n}的通项公式;(2)设,T n是数列{b n}的前n项和,求:使得对所有n∈N*都成立的最大正整数m.23.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.24.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取7080100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.2.072 2.7063.841 5.024(参考公式:,其中n=a+b+c+d)宣州区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.2. 【答案】A【解析】解:∵等差数列{a n }, ∴a 6+a 8=a 4+a 10,即16=1+a 10, ∴a 10=15, 故选:A .3. 【答案】D 【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.4. 【答案】B【解析】解:∵z=cos θ+isin θ对应的点坐标为(cos θ,sin θ), 且点(cos θ,sin θ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B .【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.5. 【答案】B【解析】解:∵f (x )是偶函数 ∴f (﹣x )=f (x )不等式,即也就是xf (x )>0①当x >0时,有f (x )>0∵f (x )在(0,+∞)上为减函数,且f (2)=0 ∴f (x )>0即f (x )>f (2),得0<x <2; ②当x <0时,有f (x )<0∵﹣x >0,f (x )=f (﹣x )<f (2), ∴﹣x >2⇒x <﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2) 故选B6. 【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A .【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.7. 【答案】C【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .8. 【答案】C【解析】解:∵f (1)=1>0,f (2)=1﹣2ln2=ln <0, ∴函数f (x )=1﹣xlnx 的零点所在区间是(1,2). 故选:C .【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.9.【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D.【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.10.【答案】A【解析】解:圆x2+y2﹣8x+4=0,即圆(x﹣4)2+y2 =12,圆心(4,0)、半径等于2.由于弦心距d==2,∴弦长为2=4,故选:A.【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.11.【答案】C【解析】解:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故答案为C.【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.12.【答案】B【解析】解:当a=1,则f(a)=f(1)=0,则f(0)=0+1=1,则必要性成立,若x≤0,若f(x)=1,则2x+1=1,则x=0,若x>0,若f(x)=1,则x2﹣1=1,则x=,即若f[f(a)]=1,则f(a)=0或,若a>0,则由f(a)=0或1得a2﹣1=0或a2﹣1=,即a2=1或a2=+1,解得a=1或a=,若a≤0,则由f(a)=0或1得2a+1=0或2a+1=,即a=﹣,此时充分性不成立,即“f[f(a)]=1“是“a=1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可.二、填空题13.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。

宣威市实验中学2018-2019学年上学期高二数学12月月考试题含解析

宣威市实验中学2018-2019学年上学期高二数学12月月考试题含解析

宣威市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设M={x|﹣2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()A.B.C.D.2.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个3.下列函数中,为奇函数的是()A.y=x+1 B.y=x2C.y=2x D.y=x|x|4.在△ABC中,已知a=2,b=6,A=30°,则B=()A.60°B.120°C.120°或60°D.45°5.“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的()A.充要条件B.充分不必要条件C.必要不充分条件D.不充分不必要条件6.已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,] C.(0,)D.[,1)7. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )A .B .﹣C .3D .﹣38. 已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x9. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .242510.已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .11.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .12.在极坐标系中,圆的圆心的极坐标系是( )。

宣威市高级中学2018-2019学年高二上学期第一次月考试卷数学

宣威市高级中学2018-2019学年高二上学期第一次月考试卷数学

宣威市高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在区域内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )A .0B .C .D .2. 设命题p :,则p 为( )A .B .C .D .3. 抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)4. 已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D .5. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}可.6. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧qC .p ∧¬qD .¬p ∧¬q7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 8. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )A .B .C .D .9. 函数f (x )=tan (2x+),则( )A .函数最小正周期为π,且在(﹣,)是增函数B .函数最小正周期为,且在(﹣,)是减函数C .函数最小正周期为π,且在(,)是减函数D .函数最小正周期为,且在(,)是增函数 10.下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤11.设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥βC .若b ⊂α,b ∥c ,则c ∥αD .若c ∥α,c ⊥β,则α⊥β12.点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .二、填空题13.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .14.设抛物线24y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 . 15.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .16.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .17.已知函数f (x )=x m 过点(2,),则m= .18.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .三、解答题19.(本小题满分12分)如图长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =4,D 1F =8,过点E ,F ,C 的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由); (2)求平面α将长方体分成的两部分体积之比.20.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ). (1)当a=12时,求f (x )在区间[1,e]上的最大值和最小值; (2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x )的“活动函数”.已知函数()()221121-a ln ,2f x a x ax x ⎛⎫=-++ ⎪⎝⎭.()22122f x x ax =+。

宣威市一中2018-2019学年上学期高二数学12月月考试题含解析

宣威市一中2018-2019学年上学期高二数学12月月考试题含解析

宣威市一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 设函数f (x )=,f (﹣2)+f (log 210)=()A .11B .8C .5D .23. 设x ∈R ,则x >2的一个必要不充分条件是()A .x >1B .x <1C .x >3D .x <34. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=05. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形6. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A .1:2:3B .2:3:4C .3:2:4D .3:1:27. 在区间上恒正,则的取值范围为()()()22f x ax a =-+[]0,1A .B .C .D .以上都不对0a >0a <<02a <<8. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=()A .2B .4C .8D .169. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数10.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A .20+2πB .20+3πC .24+3πD .24+3π11.线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对12.已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则y x ,⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y mx y z -=)3,1(实数的取值范围是( )m A .B .C .D .1-<m 10<<m 1>m 1≥m 【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.二、填空题13.设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机()xxf x e =[0,3]0x ()f x ()00,()x f x k 事件“”的概率为_________.0k <14.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 16.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取19.0100人,则应在高三年级中抽取的人数等于 .17.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则 .a =18.若log 2(2m ﹣3)=0,则e lnm ﹣1= .三、解答题19.设函数f (x )=lnx+,k ∈R .(Ⅰ)若曲线y=f (x )在点(e ,f (e ))处的切线与直线x ﹣2=0垂直,求k 值;(Ⅱ)若对任意x 1>x 2>0,f (x 1)﹣f (x 2)<x 1﹣x 2恒成立,求k 的取值范围;(Ⅲ)已知函数f (x )在x=e 处取得极小值,不等式f (x )<的解集为P ,若M={x|e ≤x ≤3},且M ∩P ≠∅,求实数m 的取值范围.20.如图,在Rt △ABC 中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE ,CE 为边向Rt △BEC 外作正△EBA 和正△CED .(Ⅰ)求线段AD 的长;(Ⅱ)比较∠ADC 和∠ABC 的大小.21.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.111](1)求{}n a ,{}n b 的通项公式;(2)求数列{}nna b 的前项和n S .22.若函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大,求a 的值. 23.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD ,平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点.(Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.24.已知x2﹣y2+2xyi=2i,求实数x、y的值. 宣威市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.2.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.3.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.4.【答案】C【解析】解:圆x2+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l 的方程是:y+2=﹣(x ﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C .【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题. 5. 【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin (A+C )=sinAcosC+sinCcosA=2cosCsinA ,∴sinCcosA ﹣sinAcosC=0,即sin (C ﹣A )=0,∴A=C 即为等腰三角形.故选:D .【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础. 6. 【答案】D【解析】解:设球的半径为R ,则圆柱、圆锥的底面半径也为R ,高为2R ,则球的体积V 球=圆柱的体积V 圆柱=2πR 3圆锥的体积V 圆锥=故圆柱、圆锥、球的体积的比为2πR 3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键. 7. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则()()22f x ax a =-+[]0,1,即,解得,故选C.(0)0(1)0f f >⎧⎨>⎩2020a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.8. 【答案】D【解析】解:由等差数列的性质可得a 3+a 13=2a 8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16.故选:D.9.【答案】B【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B.【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.10.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.11.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.12.【答案】C【解析】画出可行域如图所示,,要使目标函数取得最大值时有唯一的最优解,则需)3,1(A mx y z -=)3,1(直线过点时截距最大,即最大,此时即可.l A z 1>l k二、填空题13.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.,由得,,∴随机事件“”的概率为.0001()x x k f x e -'==0()0f x '<01x >0k <2314.【答案】 6 .【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2,f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4,令f ′(x )>0⇒x <或x >2,f ′(x )<0⇒<x <2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式. 15.【答案】 0 .【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,即新数列{b n }是周期为6的周期数列,∴b 2016=b 336×6=b 6=0,故答案为:0.【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题. 16.【答案】25【解析】考点:分层抽样方法.17.【答案】2【解析】试题分析:第一组数据平均数为,2)((()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x .22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=考点:方差;标准差.18.【答案】 .【解析】解:∵log 2(2m ﹣3)=0,∴2m ﹣3=1,解得m=2,∴e lnm ﹣1=e ln2÷e=.故答案为:.【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用. 三、解答题19.【答案】【解析】解:(Ⅰ)由条件得f ′(x )=﹣(x >0),∵曲线y=f (x )在点(e ,f (e ))处的切线与直线x ﹣2=0垂直,∴此切线的斜率为0,即f′(e)=0,有﹣=0,得k=e;(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立…(*)设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h′(x)=﹣﹣1≤00在(0,+∞)上恒成立,得k≥﹣x2+x=(﹣x﹣)2+(x>0)恒成立,∴k≥(对k=,h′(x)=0仅在x=时成立),故k的取值范围是[,+∞);(Ⅲ)由题可得k=e,因为M∩P≠∅,所以f(x)<在[e,3]上有解,即∃x∈[e,3],使f(x)<成立,即∃x∈[e,3],使m>xlnx+e成立,所以m>(xlnx+e)min,令g(x)=xlnx+e,g′(x)=1+lnx>0,所以g(x)在[e,3]上单调递增,g(x)min=g(e)=2e,所以m>2e.【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题.20.【答案】【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,在△ADE中,AE=BE=,DE=CE=1,∠AED=150°,由余弦定理可得AD==;(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,∴问题转化为比较∠ADE与∠EBC的大小.在△ADE中,由正弦定理可得,∴sin∠ADE=<=sin30°,∴∠ADE<30°∴∠ADC<∠ABC.【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.21.【答案】(1)2,2==q d ;(2)12326-+-=n n n S .【解析】(2)1212--=n n n n b a ,………………6分122121223225231---+-++++=n n n n n S ,①nn n n n S 212232252321211321-+-++++=- .②……………8分①-②得n n n n n S 2122222222212`1221--+++++=-- 23112222211222222n n n n S --=++++-,…………10分所以12326-+-=n n n S .………………12分考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {nn b 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S .22.【答案】【解析】解:由题意可得:∵当a>1时,函数f(x)在区间[1,2]上单调递增,∴f(2)﹣f(1)=a2﹣a=a,解得a=0(舍去),或a=.∵当0<a<1时,函数f(x)在区间[1,2]上单调递减,∴f(1)﹣f(2)=a﹣a2=,解得a=0(舍去),或a=.故a的值为或.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题. 23.【答案】【解析】(本小题满分12分)(Ⅰ)证明:因为AE=AF,点G是EF的中点,所以AG⊥EF.又因为EF∥AD,所以AG⊥AD.…因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,AG⊂平面ADEF,所以AG⊥平面ABCD.…(Ⅱ)解:因为AG⊥平面ABCD,AB⊥AD,所以AG、AD、AB两两垂直.以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系则A(0,0,0),B(4,0,0),C(4,4,0),设AG=t(t>0),则E(0,1,t),F(0,﹣1,t),所以=(﹣4,﹣1,t),=(4,4,0),=(0,1,t).…设平面ACE的法向量为=(x,y,z),由=0,=0,得,令z=1,得=(t,﹣t,1).因为BF与平面ACE所成角的正弦值为,所以|cos<>|==,…即=,解得t2=1或.所以AG=1或AG=.…【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.24.【答案】【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题.。

云南省曲靖市宣威第一中学高二数学理月考试题含解析

云南省曲靖市宣威第一中学高二数学理月考试题含解析

云南省曲靖市宣威第一中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 如果实数满足等式(-2)2+y2=3,那么的最大值是()A. B. C. D.参考答案:D2. 完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,一共有多少种选法?A.20 B.9 C. 5 D.4参考答案:B3. 原命题“若x≤﹣3,则x<0”的逆否命题是()A.若x<﹣3,则x≤0B.若x>﹣3,则x≥0C.若x<0,则x≤﹣3 D.若x≥0,则x>﹣3参考答案:D【考点】四种命题.【专题】简易逻辑.【分析】直接利用四种命题中题设和结论之间的关系求出结果.【解答】解:原命题“若x≤﹣3,则x<0”则:逆否命题为:若x≥0,则x>﹣3故选:D【点评】本题考查的知识要点:四种命题的应用转换.属于基础题型.4. 设是函数的导函数,的图象如图所示,则的图象最有可能的是()参考答案:C略5. 已知满足则的最大值是 ( )A. B.C.2 D.参考答案:B6. 当∈[0,2]时,函数在时取得最大值,则实数的取值范围是A.[ B.[ C.[ D.参考答案:D7. 某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元参考答案:B【考点】BK:线性回归方程.【分析】首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为6代入,预报出结果.【解答】解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故选:B.【点评】本题考查线性回归方程.考查预报变量的值,考查样本中心点的应用,本题是一个基础题,这个原题在2011年山东卷第八题出现.8. |x|≤2是|x+1|≤1成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既非充分又非必要条件参考答案:B略9. 若直线2x﹣y﹣4=0在x轴和y轴上的截距分别为a和b,则a﹣b的值为()A.6 B.2 C.﹣2 D.﹣6参考答案:A【考点】直线的截距式方程.【专题】计算题;转化思想;定义法;直线与圆.【分析】先将直线的方程化成截距式,结合在x轴和y轴上的截距分别为a和b,即可求出a,b的值,问题得以解决.【解答】解:直线2x﹣y﹣4=0化为截距式为+=1,∴a=2,b=﹣4,∴a﹣b=2﹣(﹣4)=6,故选:A.【点评】本题考查直线的截距式,直线的一般式方程,考查计算能力,是基础题.10. 圆截直线所得的弦长是()A.2 B.1 C.D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 命题“任意,都有”的否定是_____ ________.参考答案:存在实数x,使得x<2,12. 甲、乙两人下棋,已知甲获胜的概率为0.3,且两人下成和棋的概率为0.5,则乙不输的概率为______________.参考答案:0.7.【分析】乙不输分两种情况:乙赢或两人和棋.由条件确定乙赢的概率,可得答案.【详解】因为甲获胜的概率为0.3,且两人下成和棋的概率为0.5,所以乙赢的概率为1-0.3-0.5=0.2,所以乙不输的概率为0.2+0.5=0.7.故答案为0.7.【点睛】本题考查两个对立事件的概率性质,属于基础题.13. 计算sin 600°=.参考答案:-sin 600°=sin(360°+240°)=sin(180°+60°)=-sin 60°=-.14. 若向量a=(1,λ,2),b=(2,-1,2),且a与b的夹角余弦值为,则λ等于参考答案: -2或15. 已知矩形ABCD 中,AB =2,AD =4,E ,F 分别在线段AD ,BC 上,且AE =1, BF =3.如图所示,沿EF 将四边形AEFB 翻折成,则在翻折过程中,二面角的正切值的最大值为▲ .参考答案:16. 两个等差数列的前n 项和分别是参考答案:17. 在a 克糖水中含有b 克塘(a>b>0),若在糖水中加入x 克糖,则糖水变甜了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宣威市第一中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( )A .p ∧qB .¬p ∧qC .p ∧¬qD .¬p ∧¬q2. 下列结论正确的是()A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α 3. 已知,若存在,使得,则的()(2)(0)x b g x ax a e a x =-->0(1,)x ∈+∞00()'()0g x g x +=b a取值范围是()A .B .C.D .(1,)-+∞(1,0)-(2,)-+∞(2,0)-4. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( )A .2日和5日B .5日和6日C .6日和11日D .2日和11日5. 某三棱锥的三视图如图所示,该三棱锥的体积是( )A . 2B .4C .D .3438【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.6. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( )A .[﹣9,+∞)B .[0,+∞)C .(﹣9,1)D .[﹣9,1)7. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形9. 一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体M AB FMC E -积为,多面体的体积为,则( )1111]1V BCE ADF -2V =21V V A .B .C .D .不是定值,随点的变化而变化413121M10.在极坐标系中,圆的圆心的极坐标系是( )。

AB C D11.给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .412.设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为()A .B .C .D .二、填空题13.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .14.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .15.= .16.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .17.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= . 18.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .三、解答题19.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ;(2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .20.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.21.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.22.已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f(x)=x+,x∈[1,3],利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得h (x2)=g(x1)成立,求实数a的值.23.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.24.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).(Ⅰ)判断f(x)奇偶性,并证明;(Ⅱ)当0<a<1时,解不等式f(x)>0.宣威市第一中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.2.【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交.故选:B.【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.3.【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).4. 【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C .【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础. 5. 【答案】B6. 【答案】D【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减,由于函数的值域为(﹣∞,1],则lg(1﹣x)≤1,则有0<1﹣x≤10,解得,﹣9≤x<1.则定义域为[﹣9,1),故选D.【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.7.【答案】C【解析】解:由a2b>ab2得ab(a﹣b)>0,若a﹣b>0,即a>b,则ab>0,则<成立,若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,若<则,即ab(a﹣b)>0,即a2b>ab2成立,即“a2b>ab2”是“<”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.8.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.9.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.10.【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。

11.【答案】A【解析】解:①在区间(0,+∞)上,函数y=x﹣1,是减函数.函数y=为增函数.函数y=(x﹣1)2在(0,1)上减,在(1,+∞)上增.函数y=x3是增函数.∴有两个是增函数,命题①是假命题;②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;③若函数f(x)是奇函数,则其图象关于点(0,0)对称,∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.∴假命题的个数是1个.故选:A.【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.12.【答案】C【解析】解:F1,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.二、填空题13.【答案】 (1,2) .【解析】解:∵f(x)=log a x(其中a为常数且a>0,a≠1)满足f(2)>f(3),∴0<a<1,x>0,若f(2x﹣1)<f(2﹣x),则,解得:1<x<2,故答案为:(1,2).【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.14.【答案】 16 .【解析】解:∵等比数列{a n}的前n项积为Πn,∴Π8=a1•a2a3•a4•a5a6•a7•a8=(a4•a5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.15.【答案】 2 .【解析】解:=2+lg100﹣2=2+2﹣2=2,故答案为:2.【点评】本题考查了对数的运算性质,属于基础题.16.【答案】 4 .【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b时“=”成立,故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.17.【答案】 1 .【解析】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.18.【答案】 3 .【解析】解:∵抛物线y 2=4x=2px ,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4,∴x=3,故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.三、解答题19.【答案】(1)n a n 2=;(2)=n T )1(2+n n .考点:1.一元二次方程;2.裂项相消法求和.20.【答案】【解析】解:∀x ∈[2,4],x 2﹣2x ﹣2a ≤0恒成立,等价于a≥x2﹣x在x∈[2,4]恒成立,而函数g(x)=x2﹣x在x∈[2,4]递增,其最大值是g(4)=4,∴a≥4,若p为真命题,则a≥4;f(x)=x2﹣ax+1在区间上是增函数,对称轴x=≤,∴a≤1,若q为真命题,则a≤1;由题意知p、q一真一假,当p真q假时,a≥4;当p假q真时,a≤1,所以a的取值范围为(﹣∞,1]∪[4,+∞).21.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i,b=1+i;或a=﹣1+i,b=﹣1﹣i;或a=﹣1﹣i,b=﹣1+i.【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.22.【答案】【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)>f(3)所以f(x)max=f(1)=5所以f(x)在x∈[1,3]的值域为[4,5].(2)y=g(x)==2x+1+﹣8设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.23.【答案】【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8﹣p,|MF|=x1+,|NF|=x2+,∴|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t≠0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y12﹣y22=4(x1﹣x2)∴k MN=,∴直线MN的方程为y﹣t=(x﹣3),∴B的横坐标为x=3﹣,直线MN代入y2=4x,可得y2﹣2ty+2t2﹣12=0△>0可得0<t2<12,∴x=3﹣∈(﹣3,3),∴点B横坐标的取值范围是(﹣3,3).【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题. 24.【答案】【解析】解:(Ⅰ)由,得,即﹣1<x<1,即定义域为(﹣1,1),则f(﹣x)=log a(1﹣x)﹣log a(1+x)=﹣[log a(1+x)﹣log a(1﹣x)]=﹣f(x),则f(x)为奇函数.(Ⅱ)当0<a<1时,由f(x)>0,即log a(1+x)﹣log a(1﹣x)>0,即log a(1+x)>log a(1﹣x),则1+x<1﹣x,解得﹣1<x<0,则不等式解集为:(﹣1,0).【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.。

相关文档
最新文档