最新中职数学说课教案:直线的倾斜角与斜率数学

合集下载

直线的倾斜角与斜率 教案

直线的倾斜角与斜率 教案

直线的倾斜角与斜率教案教案标题:直线的倾斜角与斜率教学目标:1. 理解直线的倾斜角和斜率的概念;2. 掌握计算直线的倾斜角和斜率的方法;3. 能够应用倾斜角和斜率解决实际问题。

教学重点:1. 直线的倾斜角和斜率的定义;2. 计算直线的倾斜角和斜率的方法。

教学难点:1. 理解斜率的概念,能够正确计算斜率;2. 能够应用斜率解决实际问题。

教学准备:1. 教师准备:投影仪、计算器、直尺;2. 学生准备:笔记本、铅笔、直尺。

教学过程:Step 1:导入(5分钟)引导学生回顾直线的定义,并提问:直线的倾斜角和斜率分别是什么?为什么要研究直线的倾斜角和斜率?Step 2:讲解直线的倾斜角(10分钟)1. 通过示意图介绍直线的倾斜角的定义:倾斜角是直线与水平线之间的夹角;2. 引导学生观察不同倾斜角的直线示意图,并讨论倾斜角的大小与直线的斜率之间的关系。

Step 3:计算直线的倾斜角(15分钟)1. 讲解如何计算直线的倾斜角:倾斜角等于直线的斜率的反正切值;2. 通过示例演示计算直线的倾斜角的步骤,并让学生进行练习。

Step 4:讲解直线的斜率(10分钟)1. 通过示意图介绍直线的斜率的定义:斜率是直线上两点的纵坐标差与横坐标差的比值;2. 引导学生观察不同斜率的直线示意图,并讨论斜率的大小与直线的倾斜角之间的关系。

Step 5:计算直线的斜率(15分钟)1. 讲解如何计算直线的斜率:斜率等于直线上两点的纵坐标差与横坐标差的比值;2. 通过示例演示计算直线的斜率的步骤,并让学生进行练习。

Step 6:应用实际问题(10分钟)1. 提供一些实际问题,要求学生应用倾斜角和斜率解决;2. 引导学生分析问题,列出解题步骤,并让学生进行解答。

Step 7:总结与拓展(5分钟)总结直线的倾斜角和斜率的概念、计算方法以及应用,并展示一些相关拓展知识。

Step 8:作业布置(5分钟)布置相关练习题,要求学生巩固直线的倾斜角和斜率的计算方法,并能够应用解决实际问题。

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 掌握直线的斜率公式,能够计算直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学重点1. 直线的倾斜角的概念。

2. 直线的斜率公式的运用。

三、教学难点1. 直线的倾斜角的求解。

2. 直线的斜率的计算。

四、教学准备1. 教师准备PPT,内容包括直线的倾斜角和斜率的定义、公式和例题。

2. 准备黑板和粉笔,用于板书和讲解。

五、教学过程1. 导入:通过提问方式引导学生回顾初中阶段学习的直线方程和倾斜角的概念,为新课的学习做好铺垫。

2. 直线的倾斜角的概念:讲解直线的倾斜角的定义,通过图形和实例让学生直观地理解直线的倾斜角。

3. 直线的斜率公式:讲解直线的斜率公式,并通过图形和实例让学生理解公式的含义和运用。

4. 例题讲解:给出几个例题,让学生上台板书和讲解,巩固对直线的倾斜角和斜率的理解和运用。

5. 课堂练习:给出几道练习题,让学生独立完成,检测对直线的倾斜角和斜率的掌握程度。

7. 作业布置:布置几道有关直线的倾斜角和斜率的作业题,让学生课后巩固。

六、教学反思通过本节课的教学,发现学生在直线的倾斜角的求解和直线的斜率的计算方面存在一定的困难。

在今后的教学中,应更加注重这两个方面的讲解和练习,让学生更好地理解和掌握。

结合实际问题,让学生感受直线的倾斜角和斜率在解决实际问题中的重要性。

七、教学评价通过课堂讲解、例题讲解和课堂练习,评价学生对直线的倾斜角和斜率的掌握程度。

关注学生在课后作业的完成情况,全面评估学生对本节课内容的掌握。

八、教学拓展1. 讲解直线的倾斜角和斜率在实际问题中的应用,如计算直线的倾斜角度数、求解直线的斜率等。

2. 引导学生思考直线的倾斜角和斜率与其他数学概念的联系,如与函数、方程等的关系。

九、教学资源1. PPT课件。

2. 直线方程和倾斜角的相关教材和辅导书。

3. 网络资源,如直线斜率的计算器等。

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案教案标题:直线的倾斜角和斜率教案教案目标:1. 了解直线的倾斜角和斜率的概念。

2. 学习如何计算直线的倾斜角和斜率。

3. 掌握直线倾斜角和斜率在实际问题中的应用。

教学步骤:引入活动:1. 引导学生回顾直线的定义,并提问:你们知道直线的倾斜角和斜率是什么吗?知识讲解:2. 解释直线的倾斜角是指直线与水平线之间的夹角,介绍如何通过直线上两点的坐标计算倾斜角。

3. 解释直线的斜率是指直线上任意两点之间的纵坐标差与横坐标差的比值,介绍如何通过直线上两点的坐标计算斜率。

示例演练:4. 给出几个直线的示例,引导学生计算每条直线的倾斜角和斜率。

5. 引导学生思考不同斜率和倾斜角对应的直线形态和特点。

应用实践:6. 提供一些实际问题,要求学生根据给定的直线斜率或倾斜角,解决问题。

- 例如:一辆汽车以每小时60公里的速度行驶,这辆汽车的倾斜角是多少?- 例如:某校田径场的跑道是直线形状,每个标准跑道的长度是400米,倾斜角是多少?拓展练习:7. 提供一些更复杂的直线问题,要求学生应用倾斜角和斜率的概念解决问题。

总结回顾:8. 总结直线的倾斜角和斜率的概念和计算方法。

9. 强调直线倾斜角和斜率在实际问题中的应用。

评估:10. 给学生提供一些练习题,检验他们对直线倾斜角和斜率的理解和应用能力。

教学资源:- 直尺、量角器等测量工具- 白板或投影仪- 实际问题的案例和练习题教学延伸:- 引导学生进一步探究直线的方程与倾斜角、斜率的关系。

- 引导学生研究曲线的倾斜角和斜率。

教学提示:- 在讲解倾斜角和斜率的计算方法时,使用具体的示例来帮助学生理解。

- 鼓励学生积极参与示例演练和应用实践,提高他们的实际运用能力。

- 鼓励学生思考和讨论直线倾斜角和斜率在现实生活中的应用场景。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明教案说明:本教案旨在帮助学生理解直线的倾斜角与斜率的概念,掌握计算方法,并能应用于解决实际问题。

通过本教案的学习,学生应能理解直线的倾斜角与斜率之间的关系,并能运用斜率计算直线的倾斜角,反之亦然。

教学目标:1. 理解直线的倾斜角的概念。

2. 掌握计算直线的斜率的方法。

3. 理解直线的斜率与倾斜角之间的关系。

4. 能运用直线的斜率和倾斜角解决实际问题。

教学内容:一、直线的倾斜角1. 直线的倾斜角的定义。

2. 直线的倾斜角的计算方法。

二、直线的斜率1. 直线的斜率的定义。

2. 直线的斜率的计算方法。

三、直线的斜率与倾斜角之间的关系1. 斜率与倾斜角的定义及关系。

2. 斜率与倾斜角的计算方法。

四、运用直线的斜率和倾斜角解决实际问题1. 运用斜率和倾斜角计算直线的长度。

2. 运用斜率和倾斜角计算直线的交点。

五、巩固练习1. 计算给定直线的斜率和倾斜角。

2. 解决实际问题,运用直线的斜率和倾斜角。

教学方法:1. 采用直观演示法,通过图形和实例引导学生理解直线的倾斜角和斜率的概念。

2. 采用讲解法,讲解直线的倾斜角和斜率的计算方法。

3. 采用实践法,让学生通过实际问题解决来运用直线的斜率和倾斜角。

教学评估:1. 课堂练习:学生在课堂上完成给定的练习题,检验对直线的倾斜角和斜率的理解和应用能力。

2. 课后作业:布置相关的作业题,巩固学生对直线的倾斜角和斜率的掌握。

3. 考试:设置有关直线的倾斜角和斜率的考试题目,全面评估学生的掌握情况。

教学资源:1. 教学PPT:提供直观的图形和实例,帮助学生理解直线的倾斜角和斜率的概念。

2. 练习题库:提供丰富的练习题,供学生课堂练习和课后作业。

3. 实际问题案例:提供实际问题,供学生解决,运用直线的斜率和倾斜角。

教学步骤:一、直线的倾斜角1. 引入直线的倾斜角的概念,引导学生理解直线的倾斜角的意义。

2. 讲解直线的倾斜角的计算方法,引导学生掌握计算直线的倾斜角的方法。

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案

直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率计算公式,能够计算直线的斜率。

3. 让学生了解直线的倾斜角与斜率之间的关系,能够运用关系解决问题。

二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,直线的倾斜角与斜率之间的关系。

2. 教学难点:直线的倾斜角与斜率之间的关系的运用。

三、教学方法:1. 采用问题驱动法,引导学生主动探究直线的倾斜角与斜率之间的关系。

2. 利用数形结合法,让学生在几何图形中观察和理解直线的倾斜角与斜率。

3. 运用实例分析法,让学生通过实际问题运用直线的倾斜角与斜率之间的关系。

四、教学准备:1. 教学课件:直线的倾斜角与斜率的定义及计算公式。

2. 教学素材:几何图形、实际问题。

3. 教学工具:黑板、粉笔、直尺、圆规。

五、教学过程:1. 导入新课:通过复习平面几何中直线的基本概念,引导学生进入直线的倾斜角与斜率的学习。

2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解如何求直线的倾斜角。

3. 讲解直线的斜率:介绍直线的斜率计算公式,讲解如何计算直线的斜率。

4. 探究直线的倾斜角与斜率之间的关系:引导学生通过几何图形和实际问题,探究直线的倾斜角与斜率之间的关系。

5. 巩固知识:通过实例分析,让学生运用直线的倾斜角与斜率之间的关系解决问题。

6. 课堂小结:总结直线的倾斜角与斜率的概念、计算方法和关系。

7. 布置作业:布置有关直线的倾斜角与斜率的练习题,巩固所学知识。

六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角与斜率的概念和计算方法,以及是否能够运用关系解决问题。

如有问题,要及时调整教学方法,提高教学质量。

七、课时安排:本节课安排2课时,第一课时讲解直线的倾斜角和斜率的概念及计算方法,第二课时讲解直线的倾斜角与斜率之间的关系和巩固知识。

八、教学评价:通过课堂讲解、练习题和实际问题解决,评价学生对直线的倾斜角与斜率的掌握程度。

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 知识与技能:(1)理解直线的倾斜角的概念,能够求出直线的倾斜角;(2)掌握直线的斜率与倾斜角的关系,能够计算直线的斜率;(3)能够运用直线的倾斜角和斜率解决实际问题。

2. 过程与方法:通过观察实际情境,让学生感受直线的倾斜角和斜率的概念,培养学生的观察能力和思维能力。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。

二、教学重点与难点1. 教学重点:(1)直线的倾斜角的概念;(2)直线的斜率与倾斜角的关系;(3)运用直线的倾斜角和斜率解决实际问题。

2. 教学难点:直线的斜率与倾斜角的计算。

三、教学过程1. 导入新课:通过展示实际情境,如倾斜的梯子、斜坡等,引导学生思考直线的倾斜角和斜率的概念。

2. 讲解直线的倾斜角:(1)介绍直线的倾斜角的概念,即直线与水平线之间的夹角;(2)引导学生通过观察和思考,理解直线的倾斜角的大小与直线的斜率之间的关系。

3. 讲解直线的斜率:(1)介绍直线的斜率的概念,即直线的倾斜角的正切值;(2)引导学生通过观察和思考,掌握直线的斜率与倾斜角的关系;(3)举例说明如何计算直线的斜率。

4. 练习与巩固:布置一些有关直线的倾斜角和斜率的练习题,让学生独立完成,巩固所学知识。

四、课后作业1. 请描述直线的倾斜角和斜率的概念,并说明它们之间的关系。

(1)直线y = 2x + 3;(2)直线x = 4。

五、教学反思通过本节课的教学,学生应该能够理解直线的倾斜角和斜率的概念,并掌握它们之间的关系。

在教学过程中,要注意引导学生通过观察和思考,培养学生的观察能力和思维能力。

布置适量的练习题,让学生巩固所学知识。

在课后,要关注学生的学习情况,及时进行教学反思,不断提高教学质量。

六、教学拓展1. 探讨直线的倾斜角与斜率在实际应用中的例子,如建筑设计中的斜屋顶、物理学中的倾斜面等。

2. 引导学生思考直线的倾斜角和斜率在几何图形中的作用,如在三角形、四边形等图形中的运用。

说明直线的倾斜角与斜率教案

说明直线的倾斜角与斜率教案

说明直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率与倾斜角的关系。

2. 教学难点:直线的斜率的计算,倾斜角与斜率的应用。

三、教学方法:1. 采用问题驱动法,引导学生思考直线的倾斜角与斜率的关系。

2. 利用数形结合法,直观地展示直线的倾斜角与斜率的变化。

3. 通过例题讲解,让学生掌握直线的斜率的计算方法。

四、教学准备:1. 教学课件。

2. 直角坐标系图。

3. 练习题。

五、教学过程:1. 导入新课:通过生活中的实例,引入直线的倾斜角与斜率的概念。

2. 讲解直线的倾斜角:解释直线的倾斜角是指直线与水平线的夹角,引导学生理解直线的倾斜角的概念。

3. 讲解直线的斜率:介绍直线的斜率是直线的倾斜角的正切值,引导学生掌握直线的斜率与倾斜角的关系。

4. 演示直线的倾斜角与斜率的变化:利用直角坐标系图,展示不同倾斜角对应的直线的斜率的变化。

5. 例题讲解:讲解如何计算给定直线的斜率,引导学生运用所学知识解决实际问题。

6. 练习与讨论:让学生独立完成练习题,引导学生互相讨论,巩固所学知识。

六、教学拓展:1. 引导学生思考直线的倾斜角与斜率在实际应用中的重要性,如物理学中的运动学方程、工程学中的结构分析等。

2. 探讨直线的倾斜角与斜率在其他数学领域中的应用,如线性方程组、线性函数等。

七、巩固练习:1. 布置一些有关直线的倾斜角与斜率的练习题,让学生巩固所学知识。

2. 鼓励学生自主探索,尝试解决更复杂的问题。

八、作业布置:1. 请学生完成一份关于直线的倾斜角与斜率的练习卷,加深对知识点的理解。

九、教学反馈:1. 在课后及时了解学生的学习情况,针对学生的薄弱环节进行有针对性的辅导。

2. 鼓励学生提出问题,及时解答学生的疑惑。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。

3. 让学生能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容:1. 直线的倾斜角的概念。

2. 直线的斜率的概念。

3. 直线的倾斜角与斜率的关系。

4. 求直线的倾斜角和斜率的方法。

5. 直线的倾斜角和斜率在实际问题中的应用。

三、教学重点与难点:1. 直线的倾斜角的概念。

2. 直线的斜率的概念。

3. 直线的倾斜角与斜率的关系。

四、教学方法:1. 采用讲解法,讲解直线的倾斜角和斜率的概念。

2. 采用案例分析法,分析直线的倾斜角和斜率在实际问题中的应用。

3. 采用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。

五、教学过程:1. 导入:通过生活中的实例,引导学生思考直线的倾斜角和斜率的概念。

2. 讲解直线的倾斜角和斜率的概念,让学生掌握直线的倾斜角和斜率的定义。

3. 通过案例分析,让学生了解直线的倾斜角和斜率在实际问题中的应用。

4. 互动环节:引导学生参与课堂讨论,探讨直线的倾斜角和斜率的关系。

5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的重要性。

6. 作业布置:布置有关直线的倾斜角和斜率的练习题,巩固所学知识。

说明:本教案根据学生的实际情况,采用讲解法、案例分析法和互动教学法,旨在让学生掌握直线的倾斜角和斜率的概念,并能运用到实际问题中。

在教学过程中,注意启发学生的思维,培养学生的动手能力。

六、教学评估:1. 课堂讲解过程中,观察学生对直线的倾斜角和斜率概念的理解程度。

2. 案例分析环节,观察学生对实际问题中直线倾斜角和斜率的应用能力。

3. 课堂互动环节,评估学生对直线倾斜角和斜率关系的掌握情况。

七、教学反思:1. 课后对学生的作业进行批改,总结学生在直线的倾斜角和斜率方面的掌握情况。

2. 针对学生存在的问题,调整教学方法,以便更好地让学生理解和掌握直线的倾斜角和斜率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的倾斜角与斜率
一、教材分析
1、地位及作用:
该节是是解析几何的入门课,担负着开启全章的重任.倾斜角是几何概念,它主要起过渡作用,是联系新旧知识的纽带;斜率不但是本节课的核心内容,更是整个解析几何的重要概念之一,也为后续学习奠定了基础.
2、教学目标:
基于上述分析,根据中等职业数学教学大纲要求,考虑到学生已有的认知结构、心理特征,制定如下的三维目标:
(1)知识目标:理解倾斜角和斜率的概念,掌握两点斜率公式及应用.
(2)能力目标:通过坐标法的引入,培养学生观察归纳、对比、转化等辩证思维,初步感悟用代数方法解决几何问题的思想方法,提高抽象概括能力.(3)情感目标:通过主动探索、合作交流来感受数学学习的乐趣.鼓励学生积极、主动的参与教学过程,激发求知的欲望.
3、教学重难点:
(4)重点:直线倾斜角和斜率的概念,两点斜率公式及其应用.
(5)难点:斜率概念的理解,两点斜率公式的推导.
二、教学方法
本节课作为直线与方程的第一节起始课,需要建立概念模型.考虑到高一学生的认知结构,我以讲解法为主.为提高学生的参与度,让学生亲身体验知识的形成过程,以探究式教学法为辅.在教学过程中师生互动,小组讨论,借助多媒体,积极开展探究活动.
三、教学过程
教学过程中主要分为复习思考、探究新知、讲练结合、总结归纳、分层练习五个环节.
1、复习思考
首先通过两个问题,“直角坐标系中怎么确定一条直线”“过一个定点能确定
一条直线吗”,引导学生注意过定点的直线束其倾斜程度不同.
设计意图:
者,体现了奥苏泊尔的同化理论学说.
2、探究新知
(探究活动一:倾斜角概念的得出)
将过定点的直线束抽象出来,如图1
“经过一点P 的直线有无数条,怎样借助x 轴描述直线倾斜程
度?”请看大屏幕,我借助【PPT 】在图1中动态展示倾斜角的定义,以此引导
学生通过观察,自主定义倾斜角,培养学生的观察归纳能力.
知识注重应用.因而,当这部分知识讲解完后,我将通过例1中前三个题来强化学生对知识的理解.利用第四个题引出对倾斜角取值范围的探究,并借助几何画板动态展示,得出倾斜角的范围.
例1 请同学们画出前3条直线的倾斜角.
(探究活动二:斜率概念的得出)
为得出斜率,我首先提问:“生活中,有没有表示倾斜程度的量?”,学生不难想到初中经常遇到的坡度实例.通过课件展示,强调坡度等于升高量比上前进量.将坡放到直角坐标系中,画出坡面所在直线.如图
2
由老师提出问题:“坡度是表示坡倾斜程度的量,
坡面所在直线倾斜程度是否可以用类似于坡度的
量表示”,学生得出结论.进一步提问:“这个量与刚才所学倾斜角有何关系”.在问题驱动下让学生观察、类比得出斜率的概念.这个过程让学生感受数学源于生活,并体验从直观到抽象的过程,培养学生观察、归纳、联想的能力.为了巩固这个陈述性知识,设计了两个练习题,一个口答题:“例2 当倾斜角时30α=,45α=,135α=这条直线的斜率分别等于多少?”一个关于倾斜角与斜率关系的表格题:“例3 当倾斜角分别为零角、锐角、直角、钝角的直线的斜率的取值范围分别是什么?” 表格题直观清晰,有助于加深学生对倾斜角与斜率关系的理解.
(探究活动三:斜率公式的发现)
斜率概念已经建立,在此基础上向学生提出问题:“坐标系中,两点确定,直线确定,直线斜率确定,两点与直线斜率有何关系呢?”,这个问题直接指向了本节课的一个重点和难点即两点斜率公式的发现.怎样能更好的突出重点,突破难点,设计了如下环节.
首先我会在讲斜率时着重强调了坡度的定义:升高量比上前进量.此时提示学生可以转化到直角三角形中求斜率.新课标中提出:学生是学习的主体,老师是学习的引导者。

因此提示之后我把学生分为两个组,同时讨论倾斜角为锐角的情况.大胆放手,把课堂交给学生,学生相互讨论,老师巡视观察并适时给予一定的指导.之后请学生代表阐述自己小组的成果,无论学生能否找到正确方法,对于其过程都予以肯定.对于思路正确的学生,老师用多媒体配合学生,师生共同交流探讨,进而得出斜率公式:212121
()y y k x x x x -=≠-.对于倾斜角为钝角的情况,引导学生将钝角转化成锐角,提示tan tan()tan απαθ=--=-,剩余证明过程作为课后作业,让学生完成.为了深化对公式的理解,我设计了如下两个思考问题:
思考1:当直线平行于x 轴,或与x 轴重合时,上述公式还适用吗?为什么? 思考2:当直线平行于y 轴,或与y 轴重合时,上述公式还适用吗?为什么? 设计意图:知识是师生合作的产物,通过探究活动,让学生深刻理解体会斜率公式的
本质.体现了新课改中的探究学习、合作学习的教学理念.其中问题层层深入,不断突破教学难点,突出教学重点.既符合布鲁纳和奥苏泊尔的认知观点,又体现出夸美纽斯的直观性特点,还展示出数学的简洁美.
3 讲练结合
为了把陈述性知识转化为程序性知识,我引用了书上的一个例题.
例1 已知点(3,2)
A,(4,1)
C-,求直线AB,BC,CA的斜率, 并判断
B-,(0,1)
它们的倾斜角是钝角还是锐角.
这个题综合考察了倾斜角、斜率、两点斜率公式,让学生体会到三者内在关系.本题老师完成一个小问,其它两个小问请学生上台练习.
让学生上台板书,主要为了发现学生解题时有可能出现的错误,及时纠正,给学生一个示范.体现了陶行知先生的“教学做”合一的教育思想.
4 总结归纳
(1)知识梳理:倾斜角、斜率概念;两点斜率公式.
(2)方法归纳:定义法、数形结合解题法.
(3)思想提炼:几何问题代数化,数形结合的思想.
让学生在表格提示下自主归纳本节课所学知识,学生可能会有很多形式各异的体会、观点,既培养学生的归纳概括能力,又使学生更多的参与到教学的每一个环节,然后从知识梳理、方法归纳、思想提炼三个方面进行点拨,使得知识结构板块化,网络化.让学生具有完整的认知结构,掌握学习数学的方法技巧,体会数学思想,真正做到授之以渔.
5 分层练习
必做部分——基础练习题:
(1)已知直线l经过(18,8)
D-两点,则l的倾斜角为( )
C,(4,4)
(A)锐角(B)钝角(C)直角(D)不确定
(2)练习:2,3
选做部分——综合题:
习题3.1B组:5,6.
设计意图:首先布置基础练习题,对所学知识进行及时巩固,同时注重个体差异,布置综合题,加强作业的针对性,使不同的学生得到不同的发展.
四、板书设计
主要设计了多媒体辅助教学和非多媒体板书教学两种板书,这样的设计有利于学生把握主干,提高教学效果.
1、非多媒体辅助教学板书。

相关文档
最新文档