函数与方程教学讲义

合集下载

函数与方程的基本概念教案

函数与方程的基本概念教案

函数与方程的基本概念教案导入部分:本节课主要介绍函数与方程的基本概念,帮助学生对这两个数学概念有清晰的理解。

函数和方程在数学中起到了重要的作用,是许多数学领域的基础。

了解它们的定义和性质,对于学习和应用数学知识都具有重要的意义。

一、函数的基本概念1.1 函数的定义函数是一个变量与另一组变量之间的关系。

它将一个集合的元素映射到另一个集合上。

函数可以用符号表示,也可以用图像表达。

函数的定义包括定义域、值域和对应关系。

1.2 函数的性质- 单调性:函数的增减趋势。

- 奇偶性:函数关于原点的对称性。

- 周期性:函数具有的重复性质。

二、方程的基本概念2.1 方程的定义方程是等式的一种特殊形式,它表示两个表达式相等。

方程中的未知数可以是一个或多个,我们通过解方程来求解未知数的值。

2.2 方程的解解方程就是找到使得方程成立的未知数的值。

方程的解可以是一个或多个,也可能没有解。

求解方程的方法有代入法、加减消法、配方法等。

三、函数与方程的关系3.1 方程可以表示函数一个函数可以用方程的形式表示。

方程中的一个未知数作为自变量,方程的解作为函数的取值。

3.2 函数的图像可以帮助解方程函数的图像是函数的可视化表示,可以用来解方程。

当我们对函数的图像有一定的了解时,可以通过观察图像找到方程的解。

四、函数与方程的应用4.1 函数与数学建模函数与方程在数学建模中起着重要的作用。

通过建立数学模型,我们可以用函数和方程来描述和解决实际问题。

4.2 函数与图像的应用函数的图像可以帮助我们更直观地理解函数的性质和特点。

在图像的基础上,我们可以进行函数的分析和应用。

五、巩固练习通过一些小题目和案例分析,帮助学生巩固所学的知识。

总结部分:本节课我们学习了函数与方程的基本概念。

函数是一种变量间的映射关系,可以用符号或图像表示,并具有一些特性,如单调性、奇偶性和周期性等。

方程是等式的一种形式,可以通过解方程求解未知数的值。

函数与方程之间存在密切的关系,方程可以表示函数,函数的图像可以帮助解方程。

函数与方程讲课稿

函数与方程讲课稿

x x4
则实数 k 的取值范围是 . kx 2 有四个不同的实数根,
x
(2)已知直线 y=kx+1 与曲线 f(x)= k 的取值范围为 .
1 1 x x x 恰有五个不同的交点,则实数
(3)若方程 x 2 x 2 a x 2 恰有 3 个互异的实数根,则实数 a 的取值集合 为为 .
0,0 x 1 , 则方程 | f ( x) g ( x) | 1 2 | x 4 | 2, x 1
例 3 根据零点的个数确定参数的范围 类型一
(1)已知函数 y

2 x ( x 1) 3
.
x2 x2
, 若关于 x 的方程 f(x)=k 有两个不同的实根,
2 x x
取值范围是____.
3 2 (2)已知函数 f x ax 3x 1 ,若 f x 存在唯一的零点 x0 ,且 x >0,则实
数 a 的取值范围是_____.
3 2 变式: 函数 f x ax 3 x 1 在 ,0 有唯一零点, 求实数 a 的取值范围是_.
则实数 k 的取值范围是
(2 x x 2 )e x , x ≤ 0, (2)已知函数 f ( x) 2 g(x) f (x) 2k ,若函数 g ( x) 恰有两个 x 4 x 3, x 0,
不同的零点,则实数 k 的取值范围为 (3) 已知 f ( x) 则 a 的取值范围是


Байду номын сангаас
x3 , x a
2 x , x a
, 若存在实数 b , 使函数 g ( x) f ( x) b 有两个零点,

函数与方程教案

函数与方程教案

函数与方程教案教案:函数与方程一、教学目标:1. 知识与能力:(1)理解函数和方程的概念;(2)掌握函数和方程的基本性质;(3)能够根据实际问题建立函数和方程模型。

2. 过程与方法:(1)讲授与实例演示相结合的教学方法;(2)引导学生独立思考和探究,培养解决实际问题的能力。

3. 情感态度价值观:培养学生对数学知识的兴趣和热爱,提高解决实际问题的能力。

二、教学内容:1. 函数的概念:(1)函数的定义;(2)函数的图象和性质;(3)函数的自变量和因变量。

2. 函数相关的概念:(1)定义域和值域;(2)函数的增减性和奇偶性;(3)函数的图象与方程。

3. 方程的概念:(1)方程的定义;(2)方程的解;(3)实际问题转化为方程。

4. 方程的解法:(1)等式的加减消元法;(2)等式的乘除消元法;(3)方程的解集。

三、教学过程:1. 导入新知识:通过实例引出函数和方程的概念,并让学生思考函数和方程的联系与区别。

2. 讲解函数的定义:(1)讲解函数的定义和符号表示;(2)通过实例演示函数的图象和性质。

3. 探究函数的相关概念:(1)讲解函数的定义域和值域的概念,并通过实例计算;(2)引导学生思考函数的增减性和奇偶性。

4. 引入方程的概念:(1)讲解方程的定义和解的概念;(2)通过实例演示方程的解法。

5. 培养实际问题转化为方程的能力:通过实际问题实例,让学生学会将问题转化为方程,并通过解方程得到答案。

6. 强化训练:设计一定数量的练习题,让学生巩固所学内容,并检查学生的掌握程度。

7. 总结归纳:对本节课所学的内容进行总结和归纳,帮助学生理清思路,掌握学习要点。

四、教学评价:1. 观察学生对函数和方程的理解程度;2. 检查学生在实际问题中能否正确转化为方程;3. 分析学生的解题思路和解题能力;4. 对学生的作业进行批改和评价。

五、教学资源:1. 教材和课件;2. 实物、图片等辅助教具;3. 习题集和参考答案。

一次函数与方程和不等式讲义(经典)

一次函数与方程和不等式讲义(经典)

一次函数与方程和不等式讲义(经典)-CAL-FENGHAI.-(YICAI)-Company One1一次函数与方程和不等式讲义函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

1、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

2、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

3、正比例函数及性质一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式 y =kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k >0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,•直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k >0时,图像经过一、三象限;k <0时,•图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 4、一次函数及性质一般地,形如y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y =kx +b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移)(1)解析式:y =kx +b (k 、b 是常数,k ≠0 (2)必过点:(0,b )和(-kb,0)(3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小.(5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴. (6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位.当b <0时,向下平移).5、直线y =k 1x +b 1与y =k 2x +b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:k 1·k 2= –1 6、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 7、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.8、一次函数与一元一次方程的关系:任何一元一次方程都可以转化为kx+b=0(k ,b 为常数,k≠0)的形式,可见一元一次方程是一次函数的一个特例,这就是说,在y=kx+b 中,当y=0时,即为一元一次方程. 9、一次函数与二元一次方程(组)的关系:(1)任何二元一次方程ax+by=c (a ,b ,c 为常数,且a≠0,b≠0)都可以化为y=-a b x+ cb的形式,所以每个二元一次方程都对应着一个一次函数;(2)从“数”的角度看,解方程组相当考虑求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,解方程组相当于确定两条相应直线的交点坐标.10、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x轴的交点(kb-,0).直线(b ≠0)与两坐标轴围成的三角形面积为s =k b b k b 2212=⨯⨯ 例题讲解:探究类型之一 一次函数与一元一次方程综合【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.类似性问题1、把直线y=-x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是( ) <m<7 <m<4 >1 <4探究类型之二 一次函数与一元一次不等式【例4】 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方;(2)y 轴左侧; (3)第一象限.(2)已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( ) A .5x >B .12x <C .6x <-D .6x >-【例6】 已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少类似性问题1、 如图,函数1y =|x |,2y =13x+43,当1y >2y 时,x 的取值范围是( )A. x <-1B. -1<x <2C. x <-1或x >2D. x >22、 如图,直线y=kx+b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b <0的解集为( ) A. x >-3 B. x <-3 C. x >3 D. x <33、如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点 P (1,m ),则不等式组mx >kx+b >mx -2的解集是________.探究类型之三 一次函数、方程(组)、不等式(组)与几何等知识的综合例3、已知一次函数y=kx+b 的图象经过点(-1,-5),且与函数y=12x+1的图象相交于点A (83,a ).(1)求a 的值;(2)求不等式组0<kx+b <12x+1的正整数解;(3)若函数y=kx+b图象与x轴的交点是B,函数y=12x+1的图象与y轴的交点是C,求四边形ABOC的面积.例4、如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y 轴以每秒1个单位的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求直线l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.类似性问题1.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司签订月租车合同.设汽车每月行驶x(cm),应付给个体车主的月费用为y1元,•应付给汽车出租公司的月费用为y2元,y1,y2分别与x之间的函数关系的图像(两条射线)如图所示,观察图像回答下列问题:(1)每月行驶的路程在什么范围内,租出租公司的车合算(2)每月行驶的路程等于多少时,租两家车的费用相同(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家车合算2.某学校计划购买若干台电脑,•现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(元)与所买电脑台数x之间的关系式是________.乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(元)与所买电脑台数x之间的关系式是_________.(1)什么情况下到甲商场购买更优惠(2)什么情况下到乙商场购买更优惠(3)什么情况下两家商场的收费相同探究应用拓展性训练1.(与现实生活联系的应用题)某单位要制作一批宣传材料.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.问:让哪家公司制作这批宣传比较合算2.(学科内综合题)下图表示学校浴室淋浴器水箱中的水量y(L)•与进水时间x(min)的函数关系.(1)求y与x之间的函数关系式.(2)进水多少分钟后,水箱中的水量超过100L3.小明准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元.(1)试写出小明的存款数与从现在开始的月份数之间的函数关系式.(2)小明的同学小丽以前没有存过零用钱,听到小明在存零用钱,•表示从现在起每个月存18元,争取超过小明.请你在同一平面直角坐标系中分别画出小明和小丽存款数和月份数的函数关系的图像.半年以后小丽的存款数是多少能否超过小明•至少几个月后小丽的存款数超过小明4.(探究题)某企业急需一辆汽车,但无资金购买,公司经理决定租一辆汽车,•使用期限为一个月.甲汽车出租公司的出租条件为每千米的租车费为1.2元,•乙汽车出租公司的条件是每月须支付司机800元的工资,另外每千米的租车费为1元,设在这一个月中汽车行驶x(km),租用甲公司的费用为y1(元),租用乙公司的费用为y2(元).(1)试分别写出y 1,y 2与x 之间的函数关系式.(2)当汽车行驶路程为多少千米时,租用乙公司的汽车合算一次函数与方程和不等式 课后练习1:一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( )A .x =2B .y =2C .x =1-D .y =1-2:一次函数y =ax +b 的图象如图所示,则不等式ax +b >0的解集是( ) A .x <2 B .x >2 C .x <1 D .x >13:已知一次函数y =ax +b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x 1)b >0的解集为( ) A .x <1 B .x >1 C .x >1 D .x <14:如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax by kx=+=⎧⎨⎩的解是 .5:如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=-=⎧⎨⎩B .121x y x y -=--=-⎧⎨⎩C .121x y x y -=--=⎧⎨⎩D .121x y x y -=-=-⎧⎨⎩6:(1)已知关于x 的方程mx +n =0的解是x =-2,那么,直线y =mx +n 与x 轴的交点坐标是 .(2)如图,在平面直角坐标系中,直线AB :y =kx +b 与直线OA :y =mx 相交于点A (1,2),则关于x 的不等式kx +b <mx 的解是 .(3)如图,直线l 1和l 2的交点坐标为( ) A .(4,2) B .(2,-4) C .(-4,2) D .(3,1)7:(1)已知方程2x +1=-x +4的解是x =1,那么,直线y =2x +1与直线y =-x +4的交点坐标是 __ __ .(2)在平面直角坐标系中,直线y =kx +1关于直线x =1对称的直线l 刚好经过点(3,2),则不等式3x >kx +1的解集是__ __ . (3)如图,直线l 1、l 2交于点A ,试求点A 的坐标.8:已知一次函数y1=kx+b和正比例函数y2=1x的图象交于点A(2,m),又一2次函数y1=kx+b的图象过点B(1,4).(1)求一次函数的解析式;(2)根据图象写出y1>y2的取值范围.9:如图,已知一次函数的图象经过点A(1,0)、B(0,2).(1)求一次函数的关系式;(2)设线段AB的垂直平分线交x轴于点C,求点C的坐标.10:如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C,经过点D(1,0)的直线DE平行于OA,并与直线AB交于点E.(1)求直线AB的解析式;(2)求直线DE的解析式;(3)求△EDC的面积.11:随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于品牌价格A品牌电动摩托B品牌电动摩托进价(元/辆)40003000售价(元/辆)50003500设该商场计划进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.(1)写出y与x之间的函数关系式;(2)该商场购进A品牌电动摩托多少辆时获利最大,最大利润是多少。

函数与方程课件

函数与方程课件

06
函数与方程的未来发展
函数与方程在其他学科中的应用
数学建模
函数与方程在数学建模中扮演着 重要的角色,通过建立数学模型 ,可以描述现实世界中的各种现 象,如物理、化学、生物等学科
中的问题。
计算机科学
在计算机科学中,函数与方程被 广泛应用于算法设计、数据结构 、离散概率论等领域,为计算机 科学的发展提供了重要的理论支
函数与方程ppt课件
• 函数的概念与性质 • 方程的种类与解法 • 函数与方程的关系 • 函数的应用 • 方程的应用 • 函数与方程的未来发展
01
函数的概念与性质
函数的定义
函数是数学上的一个概念,它描述了两个集合之间的对应关系。具体来说,对于 给定的集合X中的每一个元素x,按照某种规则,总有集合Y中的唯一一个元素y与 之对应。这种关系通常用符号f表示,即f: X→Y。
03
函数与方程的关系
函数图像与方程解的关系
函数图像是方程解在坐标系中的 表现形式,通过观察函数图像可 以直观地了解方程的解的情况。
函数图像的交点表示方程的根, 函数图像的极值点也可能对应方
程的根。
通过函数图像的变化可以推测方 程解的变化趋势。
函数的最值与方程根的关系
函数的最值点可能是方程的根,因为函数在极值点附近的导数会发生变化,导致函 数值发生突变。
如果函数在某区间内单调递增或递减,那么该区间内函数的最大值或最小值可能对 应方程的一元一次根。
对于多元函数,最值问题可能转化为方程组问题,需要利用方程组的解来判断最值 的存在性和性质。
函数图像的变换与方程解的变换
函数图像的平移、伸缩、旋转 等变换会影响函数的值,从而 影响方程的解。
通过对方程进行变量替换或参 数调整,可以改变方程的形式 和结构,从而影响方程的解。

《函数与方程》章节精品说课课件

《函数与方程》章节精品说课课件

2 X
❖“傻瓜不是瓜”、 零点亦非点!
§3.1.1 方程的根与函数的零点
二、 “零点的存在性定理”教学 问题串2: 问题1:判断函数y x2 2x 1零点的个数,并说明理由。
问题2:函数 y x2 2x 1 在区间 (2,3)上存在零点吗? 问题3:判断函数y 10 x2 42 x 39 在区间(1,1)上是否有 零点?
❖问题4:请同学们思考为什么上述命题对此类函数不成
立,而对二次函数则是成立的?
❖问题5:你能够补上合适的条件,使上述命题对任意的
函数都成立吗?
Y
对定理的反思:
①、该定理有哪些关键词?
a c0
bX
②、“不间断”这个条件能够去掉吗?
③、在这些条件下的函数零点唯一吗?
④、反之,若函数有零点就一定能够得出 f (a) f (b) 0?
应值表:x
1
2
3
4
5
6
7
f(x) 23 9 –7 11 –5 –12 –26
那么函数在区间[1,6]上的零点至少有( )个
A.5个
B.4个
C.3个
D.2个
2、函数 f (x) x(x2 16)的零点为(
A.(0,0), (4,0) B.(4,0), (0,0), (4,0)
)
C.0,4
D. 4,0,4
四、教学设想:
§3.1.1 方程的根与函数的零点 ❖一、“函数的零点”概念的教学
❖二、 “零点的存在性定理”教学
§3.1.2 用二分法求方程的近似解 ❖一、“中央电视台购物街栏目---猜价格游戏” ❖二、“二分法”教学
§3.1.1 方程的根与函数的零点
❖一、“函数的零点”概念的教学 ❖引言:古诗云:横看成岭侧成峰,远近高低各不

函数与方程公开课课件

函数与方程公开课课件
m<1.
∴-5<m<-1.故 m 的取值范围为(-5,-1).
课前自助餐
授人以渔
自助餐
方法二:由题意,知
Δ->m0,>-1, f-1>0,
m2-3m-4>0, 即m<1,
1-2m+3m+4>0.
∴-5<m<-1.∴m 的取值范围为(-5,-1).
【答案】 (1)m=4 或 m=-1 (2)(-5,-1)
1.结合二次函数的图像,判断一元二次方程根的存在性及 根的个数,了解函数的零点与方程根的联系.
2.根据具体函数的图像,能够用二分法求相应方程的近似 解.
课前自助餐
授人以渔
自助餐
请注意!
作为函数的零点经常与方程的根、函数的图像、函数的性质 等知识相结合,必须把这些知识点都掌握好,灵活地运用数形结 合思想才能将函数的零点问题处理得游刃有余.
授人以渔
自助餐
②∵f(x)=x2+x-2x1+1=xx+-112, 令xx+-112=0,解得 x=-1. ∴f(x)=x2+x-2x1+1的零点是 x=-1. 【答案】 ①x=-1 ②x=-1
课前自助餐
授人以渔
自助餐
(2)判断下列函数在给定区间是否存在零点. ①f(x)=x2-3x-18,x∈[1,8]; ②f(x)=log2(x+2)-x,x∈[1,3].
【答案】 ①存在零点 ②存在零点
课前自助餐
授人以渔
自助餐
探究 1 函数零点个数的判定有下列几种方法: (1)直接求零点:令 f(x)=0,如果能求出解,那有几个解就 有几个零点. (2)零点存在性定理:利用该定理不仅要求函数在[a,b]上是 连续的曲线,且 f(a)·f(b)<0,还必须结合函数的图像和性质(如单 调性)才能确定函数有多少个零点. (3)画两个函数图像,看其交点的个数有几个,其中交点的 横坐标有几个不同的值,就有几个不同的零点.

关于《函数与方程讲义》的教案

关于《函数与方程讲义》的教案

关于《3.1函数与方程讲义》的教案
一、课程内容
1. 函数的概念
- 函数是一种特殊的数学关系,它把一个变量的值映射到另
一个变量的值。

- 函数的表达式、域、定义域、值域、增减性、对称性、最
值点等概念。

2. 方程的概念
- 方程是一种表达数学关系的形式,它把两个或多个变量之
间的关系表达出来。

- 一元二次方程、二元一次方程、不等式等概念。

二、教学目标
1. 能够正确理解和掌握函数和方程的概念,熟练运用数学关系解决实际问题。

2. 掌握一元二次方程、二元一次方程、不等式的概念,能够熟练求解。

三、教学重点
1. 正确理解和掌握函数和方程的概念。

2. 熟练掌握一元二次方程、二元一次方程、不等式的概念,能够熟练求解。

四、教学方法
1. 教师引导学生理解函数和方程的概念,并讲解其相关的概念。

2. 教师通过实例讲解一元二次方程、二元一次方程、不等式的概念,让学生熟练掌握。

3. 教师结合实际问题,带领学生练习解决实际问题。

五、教学效果
1. 学生能够正确理解和掌握函数和方程的概念,能够熟练运用数学关系解决实际问题。

2. 学生能够熟练掌握一元二次方程、二元一次方程、不等式的概念,能够熟练求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程教学讲义1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使__f(x)=0__成立的实数x叫做函数y=f(x)(x∈D)的零点.注:函数的零点不是点.是函数f(x)与x轴交点的横坐标,而不是y=f(x)与x轴的交点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与__x轴__有交点⇔函数y=f(x)有__零点__. (3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有__f(a)f(b)<0__,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得__f(c)=0__,这个c也就是方程f(x)=0的根.2.二分法(1)对于在区间[a,b]上连续不断且__f(a)f(b)<0__的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__一分为二__,使区间的两个端点逐步逼近__零点__,进而得到零点近似值的方法叫做二分法.(2)给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:①确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;②求区间(a,b)的中点c;③计算f(c);(Ⅰ)若f(c)=0,则c就是函数的零点;(Ⅱ)若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));(Ⅲ)若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).④判断是否达到精确度ε,即:若|a-b|<ε,则得到零点近似值a(或b);否则重复②③④.1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)由函数y=f(x)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示.所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶个零点)时,函数值才变号,即相邻两个零点之间的函数值同号.(5)若函数f(x)在[a,b]上单调,且f(x)的图象是连续不断的一条曲线,则f(a)·f(b)<0⇒函数f(x)在[a,b]上只有一个零点.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0)(x2,0)(x1,0)无交点零点个数两个零点一个零点无零点1.(教材改编)已知函数f(x)的图象是连续不断的,且有如下对应值表:x12345f(x)-4-2147在下列区间中,函数f(x)必有零点的区间为(B)A.(1,2)B.(2,3)C.(3,4)D.(4,5)[解析]由所给的函数值的表格可以看出,x=2与x=3这两个数字对应的函数值的符号不同,即f(2)·f(3)<0,所以函数在(2,3)内有零点,故选B.2.(教材改编)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值(精确度0.1)如下表所示:x 1.25 1.3125 1.375 1.4375 1.5 1.5625f(x)-0.8716-0.5788-0.28130.21010.328430.64115则方程2x +3x =7的近似解(精确到0.1)可取为( C ) A .1.32 B .1.39 C .1.4D .1.3[解析] 通过上述表格得知函数唯一的零点x 0在区间(1.375,1.4375)内,故选C . 3.若函数f (x )=ax +b 的零点是2,则函数g (x )=bx 2-ax 的零点是( C ) A .0,2 B .0,12C .0,-12D .2,-12[解析] 2a +b =0,∴g (x )=-2ax 2-ax =0,得x =0或-12,故选C .4.(教材改编)函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x (x +2),x ≤0的零点个数是( D )A .0B .1C .2D .3[解析] ln x =0解得x =1,-x (x +2)=0解得x =0或-2,∴g (x )有三个零点. 5.函数f (x )=ln x +2x -6的零点所在的大致区间是( C ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)[解析] 因为y =ln x 与y =2x -6在(0,+∞)上都是增函数,所以f (x )=ln x +2x -6在(0,+∞)上是增函数.又f (1)=-4,f (2)=ln2-2<lne -2<0,f (3)=ln3>0.所以零点在区间(2,3)上,故选C .6.下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( C )[解析] A ,B 图中零点两侧不异号,D 图不连续.故选C .考点1 确定函数零点所在区间——自主练透例1 (1)若函数f (x )的图象是连续不断的,且f (0)>0,f (1)·f (2)·f (4)<0,则下列命题正确的是( D )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点(2)(2018·河南天一大联考)函数f (x )=x +ln x -3的零点位于区间( C ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)(3)(2018·全国名校联考,3)若函数y =ln(x +1)与y =21-x 的图象的交点为(x 0,y 0),则x 0所在的区间是( B ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)[分析] 利用零点存在定理进行判断或用数形结合法画图求解.[解析] (1)因为f (1)·f (2)·f (4)<0,所以f (1)、f (2)、f (4)中至少有一个小于0. 若f (1)<0,则在(0,1)内有零点,在(0,4)内必有零点; 若f (2)<0,则在(0,2)内有零点,在(0,4)内必有零点; 若f (4)<0,则在(0,4)内有零点.故选D . (2)∵f (1)=1+ln1-3=-2<0, f (2)=2+ln2-3=ln2-1<0, f (3)=3+ln3-3=ln3>0,∴f (2)·f (3)<0,∴f (x )在区间(2,3)内有零点,故选C .另解:f (x )的零点即为y =ln x 与y =3-x 图象交点的横坐标,由图可知零点位于区间(2,3)内,故选C .(3)设f (x )=ln(x +1)-21-x 可以判断f (x )为增函数,又f (1)=ln2-1<0,f (2)=ln3-12>0,故选B .名师点拨 ☞确定函数零点所在区间的方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.考点2 函数零点个数的确定——师生共研例2 (1)(2018·课标Ⅲ,15)函数f (x )=cos(3x +π6)在[0,π]的零点个数为__3__.(2)(文)(2018·云南昆明一中摸底)若函数f (x )=|x |,则函数y =f (x )-log 12|x |的零点个数是( D )A .5个B .4个C .3个D .2个(理)(2018·江淮十校联考)已知函数f (x )=⎩⎪⎨⎪⎧5|x -1|-1,x ≥0x 2+4x +4,x <0,则关于x 的方程f 2(x )-5f (x )+4=0的实数根的个数为( D ) A .2 B .3 C .6D .7[分析] 画出函数图象,结合图象确定零点的个数,若方程f (x )=0可解,也可直接解方程求解.[解析] (1)本题考查函数与方程.令f (x )=0,得cos(3x +π6)=0,解得x =k π3+π9(k ∈Z ).当k=0时,x =π9;当k =1时,x =4π9;当k =2时,x =7π9,又x ∈[0,π],所以满足要求的零点有3个.(2)(文)在同一坐标系中作出f (x )=|x |、g (x )=log 12|x |的图象,由图可知选D .(理)解法一:由f 2(x )-5f (x )+4=0得f (x )=1或4.若f (x )=1,当x ≥0时,即5|x -1|-1=1, 5|x -1|=2解得x =1±log 52,当x <0时,即x 2+4x +3=0,解得x =-1或-3.若f (x )=4,当x ≥0时,5|x -1|-1=4,|x -1|=1解得x =0或2, 当x <0时即x 2+4x =0,解得x =-4. 故所求实根个数共有7个.解法二:由f 2(x )-5f (x )+4=0得f (x )=1或4.由f (x )图象可知:f (x )=1有4个根,f (x )=4有3个根.∴方程f 2(x ) -5f (x )+4=0有7个根. 名师点拨 ☞函数零点个数的判定有下列几种方法(1)直接求零点:令f (x )=0,如果能求出解,那么有几个解就有几个零点.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b ]上是连续的曲线,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:利用函数y =f (x )的图象与x 轴的交点的个数,从而判定零点的个数,或转化为两个函数图象交点个数问题.画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点. 〔变式训练1〕(1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是__2__.(2)设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e x +x -3,则f (x )的零点个数为( C ) A .1 B .2 C .3D .4[解析] (1)x 2-2=0,解得x =±2,∵x <0,∴x =-2,2x -6+ln x =0,设y =ln x ,y =6-2x ,分别画函数图象(图略)可得一个交点,故原函数有两个零点.(2)f (x )=e x +x -3在(0,+∞)上为增函数,f (12)=e 12-52<0,f (1)=e -2>0,∴f (x )在(0,+∞)上只有一个零点,由奇函数性质得f (x )在(-∞,0)上也有一个零点,又f (0)=0,所以f (x )有三个零点,故选C .考点3 函数零点的应用——多维探究角度1 与零点有关的比较大小例3 已知函数f (x )=2x +x ,g (x )=x -log 12x ,h (x )=log 2x -x 的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系为( D ) A .x 1>x 2>x 3 B .x 2>x 1>x 3 C .x 1>x 3>x 2D .x 3>x 2>x 1[解析] 由f (x )=2x +x =0,g (x )=x -log 12x =0,h (x )=log 2x -x =0,得2x =-x ,x =log 12,log 2x =x ,在平面直角坐标系中分别作出y =2x 与y =-x 的图象;y =x 与y =log 12x 的图象;y =log 2x 与y =x 的图象,由图可知:-1<x 1<0,0<x 2<1,x 3>1.所以x 3>x 2>x 1.角度2 已知函数的零点或方程的根求参数例4 (2018·课标Ⅰ,9)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则实数a 的取值范围是( C ) A .[-1,0) B .[0,+∞) C .[-1,+∞)D .[1,+∞)[解析] 本题主要考查函数的零点及函数的图象.g (x )=f (x )+x +a 存在2个零点等价于函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0与h (x )=-x -a 的图象存在2个交点,如图,当x =0时,h (0)=-a ,由图可知要满足y =f (x )与y =h (x )的图象存在2个交点,需要-a ≤1,即a ≥-1.故选C .名师点拨 ☞1.比较零点大小常用方法:(1)确定零点取值范围,进而比较大小; (2)数形结合法.2.已知函数有零点(方程有根)求参数值常用的方法和思路:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解. 〔变式训练2〕(1)(角度1)(文)(2018·安徽蚌埠月考)已知函数f (x )=2x +x ,g (x )=log 2x +x ,h (x )=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为( B ) A .a <b <c B .a <c <b C .a >b >cD .c >a >b(理)已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,g (x )=ln x +x -2的零点为b ,则f (a ),f (1),f (b )的大小关系为__f (a )<f (1)<f (b )__.(2)已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,x +2,x ≤0,方程|f (x )|=a 有三个零点,则实数a 的取值范围是( D )A .(-∞,0)B .[0,e)C .(0,2)D .(2,+∞)[分析] 解法一:依据零点存在定理,确定a ,b ,c 所在区间,进而比较大小;解法二:分别作出y =3x 、y =log 3x 、y =x 3与y =-x 的图象,比较其交点横坐标的大小即可. [解析] (1)(文)解法一:∵f (-1)=3-1-1=-23,f (0)=1,∴a ∈(-23,0),又g (13)=log 313+13=-23,g (1)=1,∴b ∈(13,1),显然c =0,∴a <c <b ,故选B .解法二:数形结合法,在同一坐标系中分别作出y =3x 、y =log 2x 、y =-x 的图象,结合图象及c =0可知a <c <b ,故选B .(理)因为f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=-1>0,所以f (x )的零点a ∈(0,1),又g (1)=ln1+-2=-1<0,g (2)=ln2+2-2=ln2>0,所以g (x )的零点b ∈(1,2),又f (x )=e x +x -2为单调增函数,且e x <a <1<b <2,所以f (a )<f (1)<f (b ).(2)当a =0时,|f (x )|=0,由y =|f (x )|的图象与x 轴有两个交点,即函数y =|f (x )|-a 有两个零点1与-2,舍去;当a <0时,因为y =|f (x )|的图象都在x 轴上或x 轴的上方,所以y =|f (x )|的图象与函数y =a 没有交点,即函数y =|f (x )|-a 没有零点,舍去;当a >0时,在平面直角坐标系中,画出y =|f (x )|的图象,观察图象可知,当a >2时,y =|f (x )|与y =a 才有三个交点.考点4 二分法及其应用——自主练透例5 (1)用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈__(0,0.5)__,第二次应计算__f (0.25)__.(2)在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可判定该根所在的区间为 (32,2) .(3)在用二分法求方程x 2=2的正实数根的近似解(精确度0.001)时,若我们选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算的次数是__7__.[解析] (1)因为f (0)<0,f (0.5)>0,由二分法原理得一个零点x 0∈(0,0.5);第二次应计算f (0+0.52)=f (0.25).(2)区间(1,2)的中点x 0=32,令f (x )=x 3-2x -1,f (32)=278-4<0,f (2)=8-4-1>0,则根所在区间为(32,2).(3)设至少需要计算n 次,由题意知1.5-1.42n<0.001,即2n >100.由26=64,27=128,知n =7. 名师点拨 ☞1.用二分法求函数零点的方法:定区间,找中点,中值计算两边看,同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断. 2.利用二分法求近似解需注意的问题(1)在第一步中:①区间长度尽量小;②f (a ),f (b )的值比较容易计算且f (a )·f (b )<0; (2)根据函数的零点与相应方程根的关系,求函数的零点与相应方程的根是等价的. (3)虽然二分法未单独考过,但有可能像算法中的“更相减损术”一样,嵌入到程序框图中去考查.。

相关文档
最新文档