根心定理
根轴

根轴定义在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴。
根轴方程设两圆O1,O2的方程分别为:(x-a1)^2+(y-b1)^2-(r1)^2=0(1)(x-a2)^2+(y-b2)^2-(r2)^2=0(2)由于根轴上任意点对两圆的圆幂相等,所以根轴上任一点(x,y),有(x-a1)^2+(y-b1)^2-(r1)^2=圆幂=(x-a2)^2+(y-b2)^2-(r2)^2两式相减,得根轴的方程(即x,y的方程)为2(a2-a1)x+2(b2-b1)y+f1-f2=0其中f1=(a1)^2+(b1)^2-(r1)^2,f2类似。
解的不同可能(1)(2)连立的解,是两圆的公共点M(x1,y1),N(x2,y2)如果是两组不等实数解,MN不重合且两圆相交,根轴是两圆的公共弦。
如果是相等实数解,MN重合,两圆相切,方程表示两圆的公切线。
如果是共轭虚数解,两圆相离,只有代数规律发挥作用,在坐标系内没有实质。
称M,N是共轭虚点。
相关定理1,平面上任意两圆的根轴垂直于它们的连心线;2,若两圆相交,则两圆的根轴为公共弦所在的直线;3,若两圆相切,则两圆的根轴为它们的内公切线;4,蒙日定理(根心定理):平面上任意三个圆心不共线的圆,它们两两的根轴或者互相平行,或者交于一点,这一点叫做它们的根心;笛沙格定理笛沙格定理1、笛沙格同调定理(同调三角形定理)Desargues' Homology Theorem (T heorem of Homologous Triangles)平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C 和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
根心定理

根心定理根心定理:三个两两不同心的圆,形成三条根轴,则必有下列三种情况之一:(1)三根轴两两平行;(2)三根轴完全重合;(3)三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心。
该定理是平面几何上非常重要的定理。
一、点对圆的幂平面上任意一点对圆的幂定义为以下函数:考虑到圆的方程也可以写为圆心-半径的形式:由此也可以把点对圆的幂定义为:这里是点到圆心的距离,是圆的半径。
点对圆的幂的几何意义是明显的:若点在圆外,则幂为点到圆的切线长度的平方;若点在圆上,则幂为0;若点在圆内,则幂为负数,其绝对值等于过点且垂直于的弦长的一半的平方。
二、根轴平面上两不同心的圆显然,对两圆等幂的点集是直线:该直线称为两圆的根轴。
根轴必垂直于两圆的连心线。
若两圆相交,则根轴就是连接二公共点的直线;若两圆相切,则根轴就是过切点的公切线;若两圆相离或内含,则根轴完全位于两圆之外,但仍垂直于两圆的连心线。
当圆1和圆2相离或内含时,用尺规作出这两圆的根轴需要依赖“根心定理”(见第三部分)。
具体的做法是:另作一个适当的圆3与前两圆都相交,圆3分别与前两圆形成根轴,这两条根轴的交点即是圆1、圆2和圆3的根心,它必定在圆1和圆2所形成的根轴上;同理,再找一个适当的圆4,找到圆1、圆2和圆4的根心。
连接所找到的两个根心,即得到圆1和圆2的根轴。
三、根心与根心定理(解析几何证法)三个两两不同心的圆任意两圆形成一条根轴,因而共有三条根轴:这三条根轴的直线方程(以下简称为根轴方程)是线性相关的,即由其中两个根轴方程进行线性组合,可以得出第三个根轴方程。
因此:(i)若平面上某一点是其中两个根轴方程的公共解(亦即两根轴的公共点),则必定也是第三条根轴上的点。
(ii)若某两个根轴方程无公共解(即平行),则三个根轴方程中的任意两个均无公共解(即三条根轴两两平行)。
具体而言,三个两两不同心的圆的根轴,仅仅包含下面三种情况:(1)三根轴两两平行;(2)三根轴完全重合;(3)三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心。
高二数学竞赛班二试平面几何讲义.第七讲-----三角形的五心(一)7

高二数学竞赛班二试平面几何讲义第七讲三角形的五心(一)班级姓名一、知识要点:1.三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.2.外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.3.重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题.4.蒙日定理(根心定理):平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它们的根心;若三圆圆心共线,则三条根轴互相平行。
注:在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴。
另一角度也可以称两不同心圆的等幂点的轨迹为根轴,或者称作等幂轴。
(1)平面上任意两圆的根轴垂直于它们的连心线;(2)若两圆相交,则两圆的根轴为公共弦所在的直线;(3)若两圆相切,则两圆的根轴为它们的内公切线;5.莱莫恩(Lemoine)定理:过△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB所在直线交于P、Q、R,则P、Q、R三点共线。
直线PQR称为△ABC的莱莫恩线。
证明:由弦切角定理可以得到:sin∠ACR=sin∠ABC ,sin∠BCR=sin∠BACsin∠BAP=sin∠BCA,sin∠CAP=sin∠ABCsin∠CBQ=sin∠BAC sin∠ABQ=sin∠BCA所以,我们可以得到:(sin∠ACR/sin∠BCR)*(sin∠BAP/sin∠CAP)*(sin∠CBQ/sin∠ABQ)=1,这是角元形式的梅涅劳斯定理,所以,由此,得到△ABC被直线PQR所截,即P、Q、R共线。
二、例题精析:例1.在△ABC的边AB,BC,CA上分别取点P,Q,S.证明以△APS,△BQP,△CSQ的外心为顶点的三角形与△ABC相似.(B·波拉索洛夫《中学数学奥林匹克》)AB C KP O OO .. ..S123例2. AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△P AD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和.(第26届莫斯科数学奥林匹克)例3. △ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心. 证明OE 丄CD . (加拿大数学奥林匹克训练题)AA 'F F 'G EE 'D 'C 'PCBDABC DE FOKG例4. (2003年联赛)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B , 所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ= ∠PBC . 求证:∠DBQ=∠P AC .三、精选习题:1.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)2.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)OQ CDBAP3..AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.5.如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE=∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等.ABCE MNF四、拓展提高:6.在ΔABC 中,∠BAC=60︒,AB >AC ,点O 为ΔABC 的外心,两条高BE 、CF 的交于点H ,点M 、N 分别在线段BH 与HF 上,且满足BM=CN . 求MH +HNOH 的值.7.(2004年联赛)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K .已知25BC =,20BD =,7BE =,求AK 的长.高二数学竞赛班二试平面几何讲义第七讲 三角形的五心(一)例1. 分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外 心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K )BABCK PO O O ....S123=21(∠O 2O 1S +∠PO 1O 2) =21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .另法:△APS ,△BQP ,△CSQ 的外接圆交于一点(密克点) 例2. 分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′.易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △P AD +S △PCF . 例3. 分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设 CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证:DG :GK =31DC :(3121-)DC =2:1.∴DG :GK =DE :EF ⇒GE ∥MF . ∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心. 易证OE 丄CD .例4. 分析:由∠PBC=∠CDB ,若∠DBQ=∠P AC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立. 而要证∆BDQ ∽∆DAQ , 只要证BD AD =DQAQ 即可. 证明:连AB .∵ ∆PBC ∽∆PDB ,∴ BD BC =PD PB ,同理,AD AC =PD P A .A A 'FF 'G EE 'D 'C 'PCBDABCDE FOKG OQ CDBAP∵ P A=PB ,∴ BD AD =BCAC .∵ ∠BAC=∠PBC=∠DAQ ,∠ABC=∠ADQ . ∴ ∆ABC ∽∆ADQ . ∴ BC AC =DQ AQ .∴ BD AD =DQ AQ . ∵ ∠DAQ=∠PBC=∠BDQ . ∴ ∆ADQ ∽∆DBQ .∴ ∠DBQ=∠ADQ=∠P AC .证毕.4.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF . (1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有CF =2222221c b a -+,BE =2222221b a c -+, AD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c . 故有△∽△′. (2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴∆∆S S '=(a CF )2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43. ∴22a CF =43⇒3a 2=4CF 2=2a 2+b 2-c 2 ⇒a 2+c 2=2b 2.结论:O 为外心,G 为重心,则a 2,b 2,c 2成等差数列⇔OG BG ⊥ 5.证明:连MN ,则由FM ⊥AM ,FN ⊥AN 知A 、M 、F 、N 四点共圆,且该圆的直径为AF .又∠AMN=∠AFN ,但∠F AN=∠MAD ,故∠MAD +∠AMN=∠F AN +∠AFN=90︒.∴MN ⊥AD ,且由正弦定理知,AMNMN=AF sin A .∴S AMDN =12 AD ·MN=12 AD ·AF sin A .连BD ,由∠ADB=∠ACF ,∠DAB=∠CAF ,得⊿ABD ∽⊿AFC . ∴ AD ∶AB=AC ∶AF ,即AD ·AF=AB ·AC . ∴ S AMDN =12 AD ·AF sin A=12 AB ·AC sin A=S ABC .6.解:记∠ACB=α,连OB 、OC ,则∠BOC=∠BHC=120︒,∴ B 、O 、H 、C 四点共圆.设此圆的半径为R ', 则2R '=BC sin120︒ =BCsin60︒=2R .HM +NH=(BH -BM )+(CN -CH )=BH -CH . 在ΔBCH 中,∠CBH=90︒-α. ∠HCB=90︒-(120︒-α)=α-30︒,∴HM +NH=BH -CH=2R (sin(α-30︒)-sin(90︒-α))=2R (sin αcos30︒-cos αsin30︒-cos α)=2 3 R sin(α-60︒).在ΔOCH 中,OH=2R sin ∠HCO=2R sin(α-30︒-30︒)=2R sin(α-60︒). ∴MH +HNOH = 3 .法2:由托勒密定理,OH BC OB HC OC BH ⋅+⋅=⋅7.在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.解:∵ BC=25,BD=20,BE=7, ∴ CE=24,CD=15.∵ AC ·BD=CE ·AB ,⇒ AC=65AB , ①24252015CD GHP∵BD⊥AC,CE⊥AB,⇒B、E、D、C共圆,⇒AC(AC-15)=AB(AB-7),⇒65AB(65AB-15)=AB(AB-18),∴AB=25,AC=30.⇒AE=18,AD=15.∴DE=12AC=15.延长AH交BC于P,则AP⊥BC.∴AP·BC=AC·BD,⇒AP=24.连DF,则DF⊥AB,∵AD=DC,DF⊥AB.⇒AF=12AE=9.∵D、E、F、G共圆,⇒∠AFG=∠ADE=∠ABC,⇒∆AFG∽∆ABC,∴AKAP=AFAB,⇒AK=9⨯2425=21625.法2:由托勒密定理,算15DE=11。
圆的基本定理

平面几何基础知识(基本定理、基本性质)1.勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍.(2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2.射影定理(欧几里得定理)3.中线定理(巴布斯定理)设△ABC的边BC的中点为P,则有;中线长:.4.垂线定理:.高线长:.5.角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC中,AD平分∠BAC,则;(外角平分线定理).角平分线长:(其中为周长一半).6.正弦定理:,(其中为三角形外接圆半径).7.余弦定理:.8.张角定理:.9.斯特瓦尔特(Stewart)定理:设已知△ABC及其底边上B、C两点间的一点D,则有AB2•DC+AC2•BD-AD2•BC=BC•DC•BD.10.圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11.弦切角定理:弦切角等于夹弧所对的圆周角.12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.14.点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA•PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC•BD=AB•CD+AD•BC,(逆命题成立) .(广义托勒密定理)AB•CD+AD•BC≥AC•BD.【圆的平面几何性质和定理】〖有关圆的基本性质与定理〗圆的确定:不在同一直线上的三个点确定一个圆。
十大高中平面几何几何定理汇总及证明

高中平面几何定理汇总及证明1.共边比例定理有公共边AB的两个三角形的顶点分别是P、Q,AB与PQ的连线交于点M,则有以下比例式成立:△ PAB的面积:△ QAB的面积=PM:QM.证明:分如下四种情况,分别作三角形高,由相似三角形可证S△PAB=S△PAM-S△PMB=S△PAM/S△PMB-1×S△PMB=AM/BM-1×S△PMB等高底共线,面积比=底长比同理,S△QAB=AM/BM-1×S△QMB所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM等高底共线,面积比=底长比定理得证特殊情况:当PB∥AQ时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB,反之,S△PAB=S△QAB,则PB∥AQ;2.正弦定理在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2r=Rr为外接圆半径,R为直径证明:现将△ABC,做其外接圆,设圆心为O;我们考虑∠C及其对边AB;设AB长度为c;若∠C为直角,则AB就是⊙O的直径,即c= 2r;∵特殊角正弦函数值∴若∠C为锐角或钝角,过B作直径BC`交⊙O于C`,连接C'A,显然BC'= 2r=R; 若∠C为锐角,则C'与C落于AB的同侧,此时∠C'=∠C同弧所对的圆周角相等∴在Rt△ABC'中有若∠C为钝角,则C'与C落于AB的异侧,BC的对边为a,此时∠C'=∠A,亦可推出;考虑同一个三角形内的三个角及三条边,同理,分别列式可得;3.分角定理在△ABC中,D是边BC上异于B,C或其延长线上的一点,连结AD,则有BD/CD=sin∠BAD/sin∠CADAB/AC;证明:S△ABD/S△ACD=BD/CD………… 1.1S△ABD/S△ACD=1/2×AB×AD×sin∠BAD/1/2 ×AC×AD×sin∠CAD= sin∠BAD/sin∠CAD ×AB/AC…………1.2由1.1式和1.2式得BD/CD=sin∠BAD/sin∠CAD ×AB/A C4.张角定理在△ABC中,D是BC上的一点,连结AD;那么;证明:设∠1=∠BAD,∠2=∠CAD由分角定理,S△ABD/S△ABC=BD/BC=AD/ACsin∠1/sin∠BAC→ BD/BCsin∠BAC/AD=sin∠1/AC 1.1S△ACD/S△ABC=CD/BC=AD/ABsin∠2/sin∠BAC→ CD/BCsin∠BAC/AD=sin∠2/AB 1.21.1式+1.2式即得 sin∠1/AC+sin∠2/AB=sin∠BAC/AD5.帕普斯定理直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD交于G,AF,DC交于I,BF,EC交于H,则G,I,H共线;6.蝴蝶定理设S为圆内弦AB的中点,过S作弦CF和DE;设CF和DE各相交AB于点M和N,则S 是MN的中点;证明:过O作OL⊥ED,OT⊥CF,垂足为L、T,连接ON,OM,OS,SL,ST,易明△ESD∽△CSF∴ES/CS=ED/FC根据垂径定理得:LD=ED/2,FT=FC/2∴ES/CS=EL/CT又∵∠E=∠C∴△ESL∽△CST∴∠SLN=∠STM∵S是AB的中点所以OS⊥AB∴∠OSN=∠OLN=90°∴O,S,N,L四点共圆,一中同长同理,O,T,M,S四点共圆∴∠STM=∠SOM,∠SLN=∠SON∴∠SON=∠SOM∵OS⊥AB∴MS=NS7.西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线上的垂线,则三垂足共线;此线常称为西姆松线;证明:若L、M、N三点共线,连结BP,CP,则因PL⊥BC,PM⊥AC,PN⊥AB,有B、L、P、N和P、M、C、L分别四点共圆,有∠NBP = ∠NLP = ∠MLP= ∠MCP.故A、B、P、C四点共圆;若A、P、B、C四点共圆,则∠NBP= ∠MCP;因PL⊥BC,PM⊥AC,PN⊥AB,有B、L、P、N和P、M、C、L四点共圆,有∠NBP = ∠NLP= ∠MCP= ∠MLP.故L、M、N三点共线;西姆松逆定理:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上;证明:PM⊥AC,PN⊥AB ,所以A,M,N,P共圆8.清宫定理设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上.证明:A、B、P、C四点共圆,因此∠PCE=∠ABP点P和V关于CA对称所以∠PCV=2∠PCE又因为P和W关于AB对称,所以∠PBW=2∠ABP从这三个式子,有∠PCV=∠PBW另一方面,因为∠PCQ和∠PBQ都是弦PQ所对的圆周角,所以∠PCQ=∠PBQ两式相加,有∠PCV+∠PCQ=∠PBW+∠PBQ即∠QCV=∠QBW即△QCV和△QBW有一个顶角相等,因此但是,,所以同理,于是根据梅涅劳斯定理的逆定理,D、E、F三点在同一直线上;9.密克定理三圆定理:设三个圆C1, C2, C3交于一点O,而M, N, P分别是C1 和C2, C2和C3, C3和C1的另一交点;设A为C1的点,直线MA交C2于B,直线PA交C3于C;那么B, N, C这三点共线;逆定理:如果是三角形,M, N, P三点分别在边AB, BC, CA上,那么△AMP、△BMN、△CPN 的外接圆交于一点O;完全四线形定理如果ABCDEF是完全四线形,那么三角形的外接圆交于一点O,称为密克点;四圆定理设C1, C2,C3, C4为四个圆,A1和B1是C1和C2的交点,A2和B2是C2 和C3的交点,A3和B3是C3和C4的交点,A4和B4是C1和C4的交点;那么A1, A2, A3, A4四点共圆当且仅当B1, B2, B3, B4四点共圆;证明:在△ABC的BC,AC,AB边上分别取点W,M,N,对AMN,△BWN和△CWM分别作其外接圆,则这三个外接圆共点;该定理的证明很简单,利用“圆内接四边形对角和为180度”及其逆定理;现在已知U是和的公共点;连接UM和UN,∵四边形BNUW和四边形CMUW分别是和的内接四边形,∴∠UWB+∠UNB=∠UNB+∠UNA=180度∴∠UWB=∠UNA;同理∠UWB+∠UWC=∠UWC+∠UMC=180度∴∠UWB=∠UMC;∵∠UMC+∠UMA=180度∴∠UNA+∠UMA=180度,这正说明四边形ANUM是一个圆内接四边形,而该圆必是,U必在上;10.婆罗摩笈多定理圆内接四边形ABCD的对角线AC⊥BD,垂足为M;EF⊥BC,且M在EF上;那么F是A D 的中点;证明:∵AC⊥BD,ME⊥BC∴∠CBD=∠CME∵∠CBD=∠CAD,∠CME=∠AMF∴∠CAD=∠AMF∴AF=MF∵∠AMD=90°,同时∠MAD+∠MDA=90°∴∠FMD=∠FDM∴MF=DF,即F是AD中点逆定理:若圆内接四边形的对角线相互垂直,则一边中点与对角线交点的连线垂直于对边;证明:∵MA⊥MD,F是AD中点∴AF=MF∴∠CAD=∠AMF∵∠CAD=∠CBD,∠AMF=∠CME∴∠CBD=∠CME∵∠CME+∠BME=∠BMC=90°∴∠CBD+∠BME=90°∴EF⊥BC11.托勒密定理圆内接四边形中,两条对角线的乘积两对角线所包矩形的面积等于两组对边乘积之和一组对边所包矩形的面积与另一组对边所包矩形的面积之和.圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①;又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②;①+②得ACBP+DP=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.12.梅涅劳斯定理当直线交三边所在直线于点时,;证明:过点C作CP∥DF交AB于P,则两式相乘得梅涅劳斯逆定理:若有三点F、D、E分别在边三角形的三边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线;证明:先假设E、F、D三点不共线,直线DE与AB交于P;由梅涅劳斯定理的定理证明如利用平行线分线段成比例的证明方法得:AP/PBBD/DCCE/EA=1;∵ AF/FBBD/DCCE/EA=1;∴ AP/PB=AF/FB ;∴ AP+PB/PB=AF+FB/FB ;∴ AB/PB=AB/FB ;∴ PB=FB;即P与F重合;∴ D、E、F三点共线;13.塞瓦定理在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则BD/DC×CE/EA×AF/FB=1;∵△ADC被直线BOE所截,∴CB/BDDO/OAAE/EC=1①∵△ABD被直线COF所截,∴BC/CDDO/OAAF/FB=1②②/①约分得:DB/CD×CE/EA×AF/FB=114.圆幂定理相交弦定理:如图Ⅰ,AB、CD为圆O的两条任意弦;相交于点P,连接AD、BC,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以;所以有:,即:;割线定理:如图Ⅱ,连接AD、BC;可知∠B=∠D,又因为∠P为公共角,所以有,同上证得;切割线定理:如图Ⅲ,连接AC、AD;∠PAC为切线PA与弦AC组成的弦切角,因此有∠PBC=∠D,又因为∠P为公共角,所以有,易证图Ⅳ,PA、PC均为切线,则∠PAO=∠PCO=90°,在直角三角形中:OC=OA=R,PO为公共边,因此;所以PA=PC,所以;综上可知,是普遍成立的;弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数;点对圆的幂P点对圆O的幂定义为点P在圆O内→P对圆O的幂为负数;点P在圆O外→P对圆O的幂为正数;点P在圆O上→P对圆O的幂为0;三角形五心:内心:三角形三条内角平分线的交点外心:三角形三条边的垂直平分线中垂线的相交点重心:三角形三边中线的交点垂心:三角形的三条高线的交点旁心:三角形的旁切圆与三角形的一边和其他两边的延长线相切的圆的圆心九点圆心:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆的圆心15.根心定理三个两两不同心的圆,形成三条根轴,则必有下列三种情况之一:1 三根轴两两平行;2 三根轴完全重合;3 三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心;平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它们的根心;若三圆圆心共线,则三条根轴互相平行;根轴定义:A与B的根轴L1:到A与B的切线相等的点;B与C的根轴L2:到B与C的切线相等的点;证明设A、B、C三个圆,圆心不重合也不共线;考察L1与L2的交点P;因为P在L1上,所以:P到A的切线距离=P到B的切线距离;因为P在L2上,所以:P到B的切线距离=P到C的切线距离;所以:P到A的切线距离=P到B的切线距离=P到C的切线距离;也就是:P到A的切线距离=P到C的切线距离;所以:P在A与C的根轴上; 所以:三个根轴交于一点;16.鸡爪定理设△ABC的内心为I,∠A内的旁心为J,AI的延长线交三角形外接圆于K,则KI=KJ=KB=KC;证明:由内心和旁心的定义可知∠IBC=∠ABC/2,∠JBC=180°-∠ABC/2∴∠IBC+∠JBC=∠ABC/2+90°-∠ABC/2=90°=∠IBJ同理,∠ICJ=90°∵∠IBJ+∠ICJ=180°∴IBJC四点共圆,且IJ为圆的直径∵AK平分∠BAC∴KB=KC相等的圆周角所对的弦相等又∵∠IBK=∠IBC+∠KBC=∠ABC/2+∠KAC=∠ABI+∠BAK=∠KIB∴KB=KI由直角三角形斜边中线定理逆定理可知K是IJ的中点∴KB=KI=KJ=KC逆定理:设△ABC中∠BAC的平分线交△ABC的外接圆于K;在AK及延长线上截取KI=KB=KJ,其中I在△ABC的内部,J在△ABC的外部;则I是△ABC的内心,J是△ABC 的旁心;证明:利用同一法可轻松证明该定理的逆定理;取△ABC的内心I'和旁心J’,根据定理有KB=KC=KI'=KJ'又∵KB=KI=KJ∴I和I'重合,J和J’重合即I和J分别是内心和旁心17.费尔巴哈定理三角形的九点圆与其内切圆以及三个旁切圆相切设△ABC的内心为I,九点圆的圆心为V;三边中点分别为L,M,N,内切圆与三边的切点分别是P,Q,R,三边上的垂足分别为D,E,F;不妨设AB>AC;假设⊙I与⊙V相切于点T,那么LT与⊙I相交,设另一个交点为S;过点S作⊙I的切线,分别交AB和BC于V,U,连接AU;又作两圆的公切线TX,使其与边AB位于LT的同侧;由假设知∠XTL=∠LDT而TX和SV都是⊙I的切线,且与弦ST所夹的圆弧相同,于是∠XTL=∠VST因此∠LDT=∠VST则∠UDT+∠UST=180°这就是说,S,T,D,U共圆;而这等价于:LU×LD=LS×LT又LP²=LS×LT故有LP²=LU×LD另一方面,T是公共的切点,自然在⊙V上,因此 L,D,T,N共圆,进而有∠LTD=∠LND由已导出的S,T,D,U共圆,得∠LTD=∠STD=180°-∠SUD=∠VUB=∠AVU-∠B而∠LND=∠NLB-∠NDB=∠ACB-∠NBD=∠C-∠B这里用了LN∥AC,以及直角三角形斜边上中线等于斜边的一半所以,就得到∠AVU=∠C注意到AV,AC,CU,UV均与⊙I相切,于是有∠AIR=∠AIQ∠UIS=∠UIP∠RIS=∠QIS三式相加,即知∠AIU=180°也即是说,A,I,U三点共线;另外,AV=AC,这可由△AIV≌△AIC得到;这说明,公切点T可如下得到:连接AI,并延长交BC于点U,过点U作⊙I的切线,切点为S,交AB于V,最后连接LS,其延长线与⊙I的交点即是所谓的公切点T;连接CV,与AU交于点K,则K是VC的中点;前面已得到:LP²=LU×LD而2LP=BL+LP-CL-LP=BP-CP=BR-CQ=BR+AR-CQ+AQ=AB-AC=AB-AV=BV即 LP=BV然而LK是△CBV的中位线于是 LK=BV因之 LP=LK故LK²=LU×LD由于以上推导均可逆转,因此我们只需证明:LK²=LU×LD;往证之这等价于:LK与圆KUD相切于是只需证:∠LKU=∠KDU再注意到 LK∥ABLK是△CBV的中位线,即有∠LKU=∠BAU又AU是角平分线,于是∠LKU=∠CAU=∠CAK于是又只需证:∠CAK=∠KDU即证:∠CAK+∠CDK=180°这即是证:A,C,D,K四点共圆由于 AK⊥KC易得,AD⊥DC所以 A,C,D,K确实共圆;这就证明了⊙I与⊙V内切;旁切圆的情形是类似的;证毕另略证:OI2=R2-2RrIH2=2r2-2Rr'OH2=R2-4Rr'其中r‘是垂心H的垂足三角形的内切圆半径,R、r是三角形ABC外接圆和内切圆半径FI2=1/2OI2+IH2-1/4OH2=1/2R-r2FI=1/2R-r这就证明了九点圆与内切圆内切九点圆半径为外接圆半径一半;F是九点圆圆心,I为内心18.莫利定理将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形证明:设△ABC中,AQ,AR,BR,BP,CP,CQ为各角的三等分线,三边长为a,b,c,三内角为3α,3β,3γ,则α+β+γ=60°;在△ABC中,由正弦定理,得AF=csinβ/sinα+β;不失一般性,△ABC外接圆直径为1,则由正弦定理,知c=sin3γ,所以AF=sin3γsinβ/sin60°-γ= sinβsinγ3-4sin²γ/1/2√3cosγ-sinγ= 2sinβsinγ√3cosγ+sinγ= 4sinβsinγsin60°+γ.同理,AE=4sinβsinγsin60°+β∴AF:AE=4sinβsinγsin60°+γ:4sinβsinγsin60°+β=sin60°+γ:sin60°+β=sin∠AEF:sin∠AFE∴∠AEF=60°+γ,∠AFE=60°+β.同理得,∠CED=60°+α∠FED=180°-CED-AEF-α-γ=180°-60°-α-60°+α=60°∴△FED为正三角形19.拿破仑定理若以任意三角形的各边为底边向形外作底角为60°的等腰三角形,则它们的中心构成一个等边三角形;在△ABC的各边上向外各作等边△ABF,等边△ACD,等边△BCE;。
初等几何

目录1.初等几何研究 (2)2.线段相等的证法 (8)3.等角的证法 (12)4.和差倍分的证法 (17)5.平行线的证法 (22)6.梅内劳斯定理与塞瓦定理 (28)7.共点线的证法 (33)8.共线点的证法 (37)9.垂直线的证法 (42)10.面积方法 (47)11.几何变换(一)——平移 (53)12.几何变换(二)——旋转 (58)13.几何变换(三)——轴反射 (62)14.共圆点的证法 (67)初等几何研究第一节引言一、归纳的经验几何(公元前七世纪前)二、初步的推理几何(公元前七世纪至公元前四世纪)由经验和已有的几何知识出发,按照逻辑的要求,对某一项几何知识进行推理论证。
对实验几何进行总结工作,其伟大功绩归于古希腊的哲学家和数学家,受到哲学思想的影响,把实验几何加以抽象化、系统化。
最主要的就是把实验几何改造为演绎推理的科学。
古希腊:泰勒斯毕达格拉斯(勾股定理)柏拉图雅典学派提出的三个经典问题:化方为圆、三等分角和倍立方体直至公元前四世纪,未见按逻辑编排的系统的几何书籍出现三、系统的推理几何(公元前四世纪至公元后18世纪)《几何原本》的出现,由古希腊欧几里得按前人所提的几何知识,按照逻辑的要求的顺序,前因后果地进行编排,并先提出定义和公理,而后在这基础上,对各项知识都作推断论证。
《几何原本》的简介:公元前300年左右,希腊数学家欧几里得综合了人们对图形的认识成果,发表了13卷的巨著《几何原本》这是用公理化方法进行演绎推理的最早典范。
《原本》的发表,标志着初等几何的诞生。
《原本》中所介绍的几何学称欧氏几何,这是在整个数学发展史中最早、最完备、最成功的数学模型。
《原本》前10卷介绍平面几何,后3卷介绍立体几何,第一卷系统地提出二十三个定义、五条公理,成为《原本》的理论基础。
四、现代几何的产生与发展(公元后18世纪至今)俄国数学家罗巴切夫斯基罗氏几何德国数学家黎曼黎氏几何统称非欧几何罗氏几何:假设过直线外一点可引不止一条而是无数条直线平行该直线。
圆幂与根轴

例 4.若C 1 圆 :x2y22x6y1 00与C 圆 2:x2y22x2y60 交A 于 , B 两 点 , A为 B 求直 以径 弦.的 圆 的 方 程
例 4.若C 1 圆 :x2y22x6y1 00与C 圆 2:x2y22x2y60 交A 于 , B 两 点 , A为 B 求直 以径 弦.的 圆 的 方 程
定理3:若两圆相切,其根轴就是过两圆切点的公切线.
这由幂的定义,可立即推出: 定理4:若三个圆两两不同心,则其两两的根轴相交于一点,或互 相平行。若这三条根轴中有两条相交,则这一交点对于三个圆的幂
均相等,所以必在第三条根轴上。这一点,称为三圆的根心。
显然,当三个圆的圆心在一条直线上时,三条根轴互相平行。 当三个圆的圆心不共线时,根心存在。
圆幂与根轴, 几何综合问题选讲
根轴
与圆幂定理相关的另一个概念是根轴。
首先我们有幂的定义:从一点A作一圆周的任 一割线,从A起到和圆周相交为止的两线段 之积,称为点对于圆周的幂。
若A点在圆外,A点的幂等于从A点所引圆周 切线的平方,由相交弦定理及割线定理, 知道点A的幂为定值。
不难证明,幂有下列两个性质
(1):两圆周相交,交点处的切线成直角,则每一圆半径的平方 等于它的圆心对于另一圆周的幂,反之亦然。
(2):点A对于以O为圆心的圆周的幂,等于OA及其半径的平方差。
由此,我们有 定理1:对于两已知圆有等幂的点的轨迹, 是一条垂直于连心线的直线。
由此可以看出: 1.若 两 圆 同O1心 O2, 0,则 所 以 , 同 心 不圆 存的 在根 ;轴
例 2.过M 点 (x0, y0)引(圆 xa)2(yb)2r2(r0)的两条切线 A, B,求 A弦 所 B 在的直 . 线方程
高中数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础1、相似三角形的判定及性质相似三角形的判定:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.);(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.).直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似;(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.常见模型:相似三角形的性质:(1)相似三角形对应角相等(2)相似三角形对应边的比值相等,都等于相似比(3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比(4)相似三角形的周长比等于相似比(5)相似三角形的面积比等于相似比的平方2、内、外角平分线定理及其逆定理内角平分线定理及其逆定理:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。
如图所示,若AM平分∠BAC,则该命题有逆定理:如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线外角平分线定理:三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。
如图所示,AD平分△ABC的外角∠CAE,则其逆定理也成立:若D是△ABC的BC边延长线上的一点,且满足则AD是∠A的外角的平分线内外角平分线定理相结合:如图所示,AD平分∠BAC,AE平分∠BAC的外角∠CAE,则3、射影定理在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:BD2=AD·CDAB2=AC·ADBC2=CD·AC对于一般三角形:在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA4、旋转相似当一对相似三角形有公共定点且其边不重合时,则会产生另一对相似三角形,寻找方法:连接对应点,找对应点连线和一组对应边所成的三角形,可以得到一组角相等和一组对应边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE5、张角定理在△ABC中D为BC边上一点,则sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD6、圆内有关角度的定理圆周角定理及其推论:(1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等(3)直径所对的圆周角是直角,直角所对的弦是直径(4)圆内接四边形对角互补(5)圆内接四边形的外角等于其内对角弦切角定理:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根心定理
根心定理:三个两两不同心的圆,形成三条根轴,则必有下列三种情况之一:
(1)三根轴两两平行;
(2)三根轴完全重合;
(3)三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心。
该定理是平面几何上非常重要的定理。
一、点对圆的幂
平面上任意一点对圆的幂定义为以下函数:
考虑到圆的方程也可以写为圆心-半径的形式:
由此也可以把点对圆的幂定义为:
这里
是点到圆心的距离,是圆的半径。
点对圆的幂的几何意义是明显的:
若点在圆外,则幂为点到圆的切线长度的平方;
若点在圆上,则幂为0;
若点在圆内,则幂为负数,其绝对值等于过点且垂直于的弦长的一半的平方。
二、根轴
平面上两不同心的圆
显然,对两圆等幂的点集是直线:
该直线称为两圆的根轴。
根轴必垂直于两圆的连心线。
若两圆相交,则根轴就是连接二公共点的直线;
若两圆相切,则根轴就是过切点的公切线;
若两圆相离或内含,则根轴完全位于两圆之外,但仍垂直于两圆的连心线。
当圆1和圆2相离或内含时,用尺规作出这两圆的根轴需要依赖“根心定理”(见第三部分)。
具体的做法是:另作一个适当的圆3与前两圆都相交,圆3分别与前两圆形成根轴,这两条根轴的交点即是圆1、圆2和圆3的根心,它必定在圆1和圆2所形成的根轴上;同理,再找一个适当的圆4,找到圆1、圆2和圆4的根心。
连接所找到的两个根心,即得到圆1和圆2的根轴。
三、根心与根心定理(解析几何证法)
三个两两不同心的圆
任意两圆形成一条根轴,因而共有三条根轴:
这三条根轴的直线方程(以下简称为根轴方程)是线性相关的,即由其中两个根轴方程进行线性组合,可以得出第三个根轴方程。
因此:
(i)若平面上某一点是其中两个根轴方程的公共解(亦即两根轴的公共点),则必定也是第三条根轴上的点。
(ii)若某两个根轴方程无公共解(即平行),则三个根轴方程中的任意两个均无公共解(即三条根轴两两平行)。
具体而言,三个两两不同心的圆的根轴,仅仅包含下面三种情况:
(1)三根轴两两平行;
(2)三根轴完全重合;
(3)三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心。
上面所证明的即是“根心定理”。
以上用解析几何的方法证明了根心定理。
在平面上,二元方程对应一条曲线,而方程组的解对应着曲线的公共点。
利用这个思想,从根轴方程的线性相关性出发,容易得到平面几何上的根心定理。
这种证明方法十分简单。
四、根心定理的相关例题
以下例题选自2013年(第54届)国际数学奥林匹克竞赛(IMO)第二天第4题:
是锐角三角形,H是垂心。
W是BC上一点(在B和C之间)。
M 和N 分别是从B和C作出的高的垂足。
和的外接圆分别记为和。
X,Y分别是和上的点,且WX和WY分别是和的直径。
求证: X,Y,H 三点共线。
证明:如图,记和的另一个交点为U,则UW是和的根轴。
显然,由于XW和YW分别是两圆的直径,因此XU⊥UW,YU⊥UW,从而X,U,Y共线。
显然,B,C,M,N共圆,记该圆为。
注意到BN是和的根轴,而CM是和的根轴。
BN和CM交于A点,由根心定理,和的根轴UW必然通过A点,这也就是说A,U,W共线,从而AU⊥XY。
记的外接圆为。
显然,由于AN⊥NH,AM⊥MH,因此A,M,H,N四点共圆,即H也在上。
由Miquel定理,可以直接证明U也在上(从而U就是、和的公共点),从而A,N,U,H,M五点共圆,AH是该圆的直径,则必有AU⊥UH,再由A,U,W共线,知UH⊥UW,从而X,U,H,Y四点共线。
证毕。
注:Miquel定理的内容如下:在△ABC的BC,AC,AB边上分别取点W,M,N,对
△AMN,△BWN和△CWM分别作其外接圆,则这三个外接圆共点。
该定理的证明很简单,利用“圆内接四边形对角和为180度”及其逆定理。
现在已知U是和的公共点。
连接UM和UN,则四边形BNUW和四边形CMUW分别是和的内接四边形,∠UWB+∠UNB=∠UNB+∠UNA=180度,从而∠UWB=∠UNA。
同理∠UWB+∠UWC=∠UWC+∠UMC=180度,从而∠UWB=∠UMC。
又有
∠UMC+∠UMA=180度,因此∠UNA+∠UMA=180度,这正说明四边形ANUM是一个圆内接四边形,而该圆必是,U必在上。