第一章第2-3节 几种常用的函数与反函数
微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。
3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。
\large δ:是邻域半径。
2.极限的性质是什么?●唯一性极限存在必唯一。
从左从右逼近相同值。
●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。
●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。
●极限运算性质1、满足四则运算。
2、满足复合函数嵌套极限。
3、极限存在则左右极限相等。
●极限存在性质迫(夹)敛(逼)定理。
●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。
高数 第一章

⑤奇,偶函数的运算性质 i) 有限个奇函数或偶函的和仍为奇(偶)(差不 一定)
ii) “同性”相乘为偶,“异性”相乘为奇 iii) 任意一个对称区间的函数可表达 为一个奇函数和一个偶函数之和:
xaa
ln xyln xln y(x>0, y>0), O
x ln ln xln y(x>0, y>0)。 -1 y
5 .三角函数 ysin x与ycos x的定义域均为(, ),均以 2p为周期。ysin x为奇函数,ycos x为偶函数。 它们都是有界函数。
1
y=cosx y y=sinx
1
-2
-1
0
1
2
x
4 .对数函数y=logax 对数函数是指数函数y=ax的反函数, 定义域为 (0,),图形通过(1, 0)点。当 a>1 时, 函数单调增 加;当 0<a<1时, 函数单调减少。
常用公式: x ln eln x(x>0), ln x(x>0),
2 1
1 2 3 y y=log2x y=log10x 4 x y=log0.1x y=log0.5x
第一章
第一节函数
本节重点:
1、函数定义域与表达式求法
2、函数特性(4个)判别
3、区间与邻域的概念
一、 预备知识
1.绝对值:
①运算性质: ②绝对值不等式 :
2、区间与邻域
① 区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
开 (a, b) x | a x b 有限区间 闭 a, b x | a x b 区间 半开半闭 a, b x a x b 半无限 a, , (, b) 无限区间 全无限 (-, +)
专升本高等数学课件 第一章

称为由①, ②确定的复合函数, u 称为中间变量.
[说明] 通常 f 称为外层函数,g 称为内层函数.
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
2.复合函数可以由两个以上的函数经过复 合构成.
例如 y cot x , y u, u cot v, v x .
例如,
2x 1,
f
(
x)
x2
1,
x0 x0
y x2 1
y 2x 1
• 隐函数:函数 y 与自变量 x 的对应法则用一个方程 F(x, y) 0
表示的函数,如x2 y2 1 0 .
二、函数的性质
1.函数的单调性
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点 x1及 x2 , 当x1 x2时, (1) 若恒有 f ( x1 ) f ( x2 ),
o
例如,x2 y2 a2.
(x, y)
x
x
D
定义: 点集C {( x, y) y f ( x), x D} 称为
函数y f ( x)的图形.
3、函数的表示法
解析法:用解析表达式表示函数关系
表格法:用列表的方法来表示函数关系
图示法:用平面直角坐标系上的曲线来 表示函数关系
几个特殊的函数举例
反余弦函数 y arccos x
y arccos x
反正切函数 y arctan x
y arctan x
反余切函数 y arccot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
1.3反函数、复合函数、初等函数

2e
当0 < x ≤1 时, y = ln x ∈( −∞, 0] , 则 x = ey , y ∈( − ∞, 0] 当 1< x ≤ 2 时, y = 2ex−1∈( 2, 2e] , y 则 x =1+ ln 2 , y ∈( 2, 2e] 反函数 y =
2
1 −1 o 1 2x
定义域为 ( −∞ , 1]∪( 2, 2e]
解
(1) 当 ϕ ( x ) < 1时, 或 x < 0, ϕ ( x ) = x + 2 < 1
或 x ≥ 0, ϕ ( x ) = x 2 − 1 < 1
x < −1,
0 ≤ x ≤ 2;
解 (1) 当 ϕ ( x ) < 1时, 或 x < 0, ϕ ( x ) = x + 2 < 1 或 x ≥ 0, ϕ ( x ) = x 2 − 1 < 1
由 消去 f (1), 得 x
a f ( 1 ) +b f (x) = cx x
为奇函数 .
x2 , −1≤ x < 0 2. 求 y = ln x , 0 < x ≤1 的反函数及其定义域. x−1 2e , 1< x ≤ 2 y
解: 当 −1≤ x < 0 时, y = x ∈(0, 1] , 则 x = − y , y ∈(0, 1]
u = y + y +1, (∵u > 0)
2
即 ex = y + y2 +1, 故得
x = ln( y + y2 +1),
所以,双曲正弦的反函数为
y = ln( x + x2 +1).
高数第一章初等函数

2)反余弦函数 余弦函数
反余弦函数
y cos x
y
1
0
2
x [0, ]
y arccos x x [1,1]
y
y [1,1]
y [0, ]
x
1
1
0
x 1
余弦函数 y cos x 在 [0, ] 上的反函数,称为
反余弦函数,记为 y arccos x x [1,1] y [0, ]
10
例2 判断函数 f ( x) ln ( x 2 1 x) 的奇偶性. 解
f x f x
ln [ x 2 1 x] [ x 2 1 x]
ln1 0
则此函数为奇函数
11
(4)三角函数 1)正弦函数的性质
y sin x
x ,
解:
x e ln x , x 0
ln x 1 0 e 1 f ln x ln x ln x e e 1
ye
y
x
1 f x x e
0 e 1
x
e 1
x
0,1
x
1 x 0 f x x e 0 x
22
反余弦函数的性质
y arccos x
x [1,1]
y
y [0, ]
(1)在[ -1, 1 ]是有界函数;
0 arccos x
(2)是非奇非偶函数;
1
0
x 1
(3)在 [1, 1] 上是单调减函数。
23
3)反正切函数 正切函数 y tan x 在 (
第一节函数

则称 f 为定义在D上的函数f : D R, x y, x D
其中称D为函数的定义域,记作D(f),D中的每一个 根据映射 f 对应于一个y ,记作y =f(x),称为函数 f 在 x的函数值,全体函数值的集合称为函数的值域
单调增加 (或单调减少).
如果对于区间I上任意两点 x1, x2,当 x1 x2均 有 f ( x1 ) f ( x2 ) (或 f ( x1 ) f ( x2 )), 则称函数y=f(x) 在区间I上严格单调增加(或严格单调减少).
单调函数图形特征: 严格单调增加的函数的图形是沿x 轴正向上升的; 严格单调减少的函数的图形是沿x 轴正向下降的;
x r cos t
y
r
s
in
t
, (0 t )
三、函数的特性 1.函数的有界性 定义 设函数y=f (x)的定义域为D, 数集 X D , 如果存在正数M, 使得对于任意的 x X , 都有不等式 | f ( x ) | M 成立, 则称 f (x)在X上有界, 如果这样的M不 存在, 就称函数 f (x)在X上无界. 注: 如果M为 f (x)的一个界, 易知比 M大的任何一 个正数都是 f (x)的界. 如果f(x)在X上无界, 那么对于任 意给定的正数M, X中总有相应的点 x, 使 | f ( x ) | M
第一章 函 数
第一节 函数的概念 第二节 反函数与复合函数 第三节 初等函数 第四节 函数模型
第一节 函数的概念 一、函数的概念 二、具有特性的几类函数
第一节 函数的概念
一、函数的概念 常量:如果一个量在某过程中保持不变, 总取同
一值, 则称这种量为常量. 常量通常用a, b, c, 表示.
考研数学一、二、三大纲详解(教材分析)

高等数学考研指定教材:同济大学数学系主编《高等数学》(上下册)(第六版)第一章函数与极限(7天)(考小题)学习内容复习知识点与对应习题大纲要求第一节:映射与函数(一般章节)函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.(集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看)习题1-1:4,5,6,7,8,9,13,15,16(重点)1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.第二节:数列的极限(一般章节)数列定义,数列极限的性质(唯一性、有界性、保号性)(本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看)习题1-2:1第三节:函数的极限(一般章节)函数极限的基本性质(不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等)P33(例4,例5)(例7不用做,定理2,3的证明不用看,定理4不用看)习题1-3:1,2,3,45.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.第四节:无穷大与无穷小(重要)无穷小与无穷大的定义,它们之间的关系,以及与极限的关系(无穷小重要,无穷大了解)(例2不用看,定理2不用证明)习题1-4:1,6第五节:极限的运算法则(掌握)极限的运算法则(6个定理以及一些推论)(注意运算法则的前提条件是否各自极限存在)(定理1,2的证明理解,推论1,2,3,定理6的证明不用看)P46(例3,例4),P47(例6)习题1-5:1,2,3,4,5(重点)第六节:极限存在准则(理解)两个重要极限(重要)两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限(准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看)P51(例1)习题1-6:1,2,4第七节:无穷小阶的概念(同阶无穷小、等价无穷小、高无穷小的比较(重要)阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法(定理1,2的证明理解)P57(例1)P58(例5)习题1-7:全做9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.第八节:函数的连续性与间断点(重要,基本必考小题)函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。
高中数学各章节知识点汇总

高中数学各章节知识点汇总高中数学各章节知识点汇总名目第一章集合与命题 (1)一、集合 (1)二、四种命题的形式 (2)三、充分条件与必要条件 (2)第二章别等式 (1)第三章函数的基本性质 (2)第四章幂函数、指数函数和对数函数(上) (3)一、幂函数 (3)二、指数函数 (3)三、对数 (3)四、反函数 (4)五、对数函数 (4)六、指数方程和对数方程 (4)第五章三角比 (5)一、任意角的三角比 (5)二、三角恒等式 (5)三、解歪三角形 (7)第六章三角函数的图像与性质 (8)一、周期性 (8)第七章数列与数学归纳法 (9)一、数列 (9)二、数学归纳法 (10)第八章平面向量的坐标表示 (12)第九章矩阵和行列式初步 (14)一、矩阵 (14)二、行列式 (14)第十章算法初步 (16)第十一章坐标平面上的直线 (17)第十二章圆锥曲线 (19)第十三章复数 (21)第一章集合与命题一、集合1.1 集合及其表示办法集合的概念1、把可以确切指定的一些对象组成的整体叫做集合简称集2、集合中的各个对象叫做那个集合的元素3、假如a是集合A的元素,就记做a∈A,读作“a属于A”4、假如a别是集合A的元素,就记做a ? A,读作“a别属于A”5、数的集合简称数集:全体自然数组成的集合,即自然数集,记作N别包括零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R我们把正整数集、负整数集、正有理数、负有理数、正实数集、负实数集表示为Z+、Z-、Q+、Q-、R+、R-6、把含有有限个数的集合叫做有限集、含有无限个数的集合叫做无限极7、空集是指别用含有任何元素的集合,记作?集合的表示办法1、在大括号内先写出那个集合的元素的普通形式,再画一条竖线,在竖线之后写上集合中元素所共同具有的特性,这种集合的表示办法叫做描述法1.2 集合之间的关系子集1、关于两个集合A和B,假如集合A中任何一具元素都属于集合B,这么集合A叫做集合B 的子集,记做A?B或B?A,读作“A包含于B”或“B包含A”2、空集包含于任何一具集合,空集是任何集合的子集3、用平面区域来表示集合之间关系的办法叫做集合的图示法,所用图叫做文氏图相等的集合1、关于两个集合A和B,假如A?B,且B?A,这么叫做集合A与集合B相等,记作“A=B”,读作“集合A等于集合B”,假如两个集合所含元素彻底相同,这么这两个集合相等1.3 集合的运算交集1、由交集A和交集B的所有公共元素的集合叫做A与B的交集,记作A∩B,读作A交B并集1、由所有属于集合A或者属于集合B的元素组成的集合叫做集合A、B 的并集,记作A∪B,读作A并B补集1、在研究集合与集合之间的关系时,这些集合往往是某个给定集合的子集,那个确定的集合叫做全集2、U是全集,A是U的子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
,
2
)上的反函数
称为反正切函数,记作 y=arctanx。
2、反正切函数的图像
3、性质
①y=arctanx 的定义域 D= R,值域 M=( , ) ; 2 2
②y=arctanx 在 R 上是单调增函数; ③y=arctanx 是奇函数,即 arctan(-x)=-arctanx, x R,其图像 关于原点对称。 ;
0, 上的反函
数称为反余弦函数,记作 y=arccosx。
2、反余弦函数的图像
3、性质
①y=arccosx 的定义域 D=[-1,1],值域 M=
0, ;
②y=arccosx 在区间[-1,1]上是单调减函数,最大值为 ,最小值 为 0; ③y=arccosx 既不是奇函数也不是偶函数; ④y=arccosx 是有界的,即 arccos x ; ⑤arccos(-x)= -arccosx。
④y=arctanx 是有界的,即 arctan x ; 2
五、反三角函数 (三)反余切函数
1、定义:函数 y=cotx,x (0, )上的反函数称为 反余切函数,记作 y=arccotx。
2、反余切函数的图像
3、性质
①y=arccotx 的定义域 D= R,值域 M=(0, ) ; ②y=arccotx 在 R 上是单调减函数; ③y=arccotx 既不是奇函数也不是偶函数; ④y=arccotx 是无界的。
,arccot 3 =
, ,
,arccot(- 3 )=
练习答案 arctan0= 0 ,arctan
3 = 3 6
,arctan 3 =
3
2、余弦函数的图像
y cos x
3、性质
(1)y=cosx 的定义域为 R,值域为[-1,1]; (2)y=cosx 在 R 内有界,即 cosx 1 ; (3)y=cosx 是偶函数,即 cos(-x)=cosx,其图像关于 y 轴对称; (4)y=cosx 是周期函数,最小正周期 T=2 , 即 cos(x+2k )=cosx,k Z; (5)当 k Z 时,y=cosx 在区间[ 2k , 2k ]上是单调递减的, 在区间[ 2k , 2 2k ]上是单调递增的; 当 x= 2k , k Z 时,y 取得最大值,y max = 1, 当 x= 2k , k Z 时,y 取得最小值,y min =- 1,
1 解: y 2 x 3 解出x得 x ( y 3). 2
函数y=2x–3的反函数为
1 y ( x 3) 2
y
y 2x 3
y x
1 y ( x 3) 2
0
x
练习: 求函数 y 1 x , x R且x 1 的反函数, 并求反函数的定义域。
1 2
y=x 的定义域为 x x 0
1 2
(2)当 >0 时,y=x 在(0, )是单调增加的。 当 <0 时,y=x 在(0, )是单调减少的。 (3)幂函数的奇偶性是由 的值确定的,是无界的, 没有周期性。
二、指数函数
1 、 定义: 函数y a x (a 0, a 1)叫做指数函数
1 x
解:由 y 1 x 得, x
1 x
y 1 y 1
把 x、y 对调, 得函数 y 反函数的定义域为 x x R且x 1
1 x x 1 , x R且x 1 的反函数为: y 1 x x 1
一、幂函数
1 、 定义: 称函数y x (常数 0, R)为幂函数
2、图像:
y a x (0 a 1)
y ax
(a 1)
3、性质:
(1)指数函数的定义域是( , ) , 值域为(0, ) (2)指数函数的图像都经过点(0,1) (3)当 >1 时, y a 在( , )是单调增加的。
x
当 0< <1 时, y a 在( , )是单调减少的。
(三)正切函数
1、定义: y tan x 2、正切函数的图像
y tan x
3、性质
(1)y=tanx 的定义域为 x x R且x (2)y=tanx 是无界的; (3)y=tanx 是奇函数,即 tan(-x)=-tanx,其图像关于原点对称; (4)y=tanx 是周期函数,最小正周期 T= , 即 tan(x+k )=tanx,k Z; (5)当 k Z 时,y=tanx 在区间( 增的。
2
2
2 k ,
2
2k ]上是单调递
3 2k ]上是单调递减的; 2
当 x=
2
2k , k Z 时,y 取得最大值,y max = 1,
当 x=- 2k , k Z 时,y 取得最小值,y min =- 1,
2
(二)余弦函数
1、定义: y cos x
第 2 -3节 几种常用的函数及其图像
反函数
反函数
1、定义:设函数 y=f(x)是定义域为 D,值域为 M,若对 于任意 y∈M ,如果有唯一确定的满足 y=f(x)的 x∈D 与 之对应,则得到一个定义在 M 上以 y 为自变量的函数, 我们称它为函数 y =f (x)的反函数,记作 x=f 1 (y)。 习惯上,常用 x 来表示自变量,y 表示因变量,所以我 们可以将反函数改写成 y=f 1 (x)。
2、反函数的图像
y
原函数y f ( x)
Q ( b, a ) P (a , b)
反函数y f 1 ( x)
o
x
ห้องสมุดไป่ตู้
3、几点说明: ①原函数 y=f(x)与反函数 y=f 1 (x)是相互的; ②只有单值对应才有反函数; ③原函数 y=f(x)的定义域是反函数 y=f 1 (x)的值域, 原函数 y=f(x)的值域是反函数 y=f 1 (x)的定义域; 求原函数的值域可以通过求其反函数的定义域得到 ④原函数 y=f(x)与反函数 y=f 1 (x)的图像关于直线 y=x 对称; ⑤原函数 y=f(x)与反函数 y=f 1 (x)具有相同的单调性;
y x
(1,1)
2、图像:
y
y x2
1
y
x
o
1 y x
1
x
3、性质:
(1)幂函数 y=x 图像都过点(1,1) ,不论 取何值, y=x 在(0, )内总有定义,其定义域是由 的值确定的。 如,y=x 2 的定义域为 R, y=x 1 的定义域为 x x 0, y=x 的定义域为 x x 0,
arcsin (
2 )= 2 4
2 3 练习:arcsin0= ,arcsin = ,arcsin = ,arcsin1= 2 2 3 1 ( ) arcsin = ,arcsin(- )= ,arcsin(-1)= 2 2
五、反三角函数 (二)反余弦函数
1、定义:函数 y=cosx,x
2、反正弦函数图像
3、性质
①y=arcsinx 的定义域 D=[-1,1],值域 M= , ; 2 2
②y=arcsinx 在区间[-1,1]上是单调增函数,最大值为 ,最小值 2 为 - ; 2
③y=arcsinx 是奇函数,即 arcsin(-x)=-arcsinx, x [-1,1],其图 像关于原点对称。
x
(4)指数函数不是奇函数也不是偶函数,是无界的, 没有周期性。
三、对数函数
1、定义:称函数 y loga x (a>0 且 a 1)为对数函数。
2、图像:
y log a x
(1,0)
(a 1)
y log a x(0 a 1)
3、性质:
(1)对数函数的定义域是(0, ) , 值域为( , ) (2)对数函数的图像都经过点(1,0) (3)当 >1 时, y loga x 在(0, )是单调增加的, 当 0< <1 时, y loga x 在(0, )是单调减少的; (4)对数函数不是奇函数也不是偶函数,是无界的, 没有周期性。
☆除了上述正弦、余弦、正切、余切 4 个函数外,三角函数还包括 正割函数和余割函数,
1 正割函数 y=secx= cos x
1 余割函数 y=cscx= sin x
五、反三角函数 (一)反正弦函数
1、定义:函数 y=sinx,x , 上的反函数称为反正弦函数, 2 2 记作 y=arcsinx,其定义域 D=[-1,1],值域 M= , 。 2 2
④y=arcsinx 是有界的,即 arcsin x ; 2
⑤sin(arcsinx)=x。
1 例题:求①arcsin , 2
②arcsin (
1 sin = 2 ,且 2 , 2 6 6
2 ) 2 1 arcsin 2 = 6
2 sin( )= ,且 , 2 4 4 2 2
1 例题:求①arccos , 2
1 cos = 2 ,且 3 3
②arccos (
0,
2 ) 2 1 arccos 2 = 3
3 cos = 4
2 3 ,且 0, 2 4
2 3 )= 2 4
arccos (
2 另 cos = ,且 4 2 4
四、三角函数 (一)正弦函数