【沪科版,带反思小结】2018学年七年级上册数学:教案+学案 全集

合集下载

2018-2018学年度(上)七年级沪科版数学教学工作总结

2018-2018学年度(上)七年级沪科版数学教学工作总结


四季度
标题数字等都可以通过点击和重新输入进行 更改,顶部“开始”面板中可以对字体、字 号、颜色、行距等进行修改。建议正文10号 字,1.3倍字间距。

2018年团队建设情况
← 拔河比赛
标题数字等都可以通过点击和重新 输入进行更改,顶部“开始”面板 中可以对字体、字号、颜色、行距 等进行修改。建议正文10号字, 1.3倍字间距。
05
第五项工作 跟进中
标题数字等都可以通过 点击和重新输入进行更 改,顶部“开始”面板 中可以对字体、字号、 颜色、行距等进行修改。
各季度概况
一季度
标题数字等都可以通过点击和重新输入进行 更改,顶部“开始”面板中可以对字体、字 号、颜色、行距等进行修改。建议正文10号 字,1.3倍字间距。
160 167 175 192
2019
2018-2018学年度(上)七年级沪科版数学教学工作总结
工作总结与计划
汇报人:××× 编号: 124933
01 年度工作概述
目录
02 工作完成情况
03 成功项目展示 04 工作不足之处 05 明年工作计划
年度工作概述
● 2018年工作概述 ● 2018年工作明细
● 2018年重点工作回顾
02
第二项工作 已完成
标题数字等都可以通过 点击和重新输入进行更 改,顶部“开始”面板 中可以对字体、字号、 颜色、行距等进行修改。
03
第三项工作 已完成
标题数字等都可以通过 点击和重新输入进行更 改,顶部“开始”面板 中可以对字体、字号、 颜色、行距等进行修改。
04
第四项工作 进行中
标题数字等都可以通过 点击和重新输入进行更 改,顶部“开始”面板 中可以对字体、字号、 颜色、行距等进行修改。

沪科版七年级数学教案

沪科版七年级数学教案

沪科版七年级数学教案【篇一:0沪科版7年级数学上册教案汇编】第1章有理数1.1 正数和负数教学目标【知识与技能】1.会判断一个数是正数还是负数.2.会用正负数表示生活中常用的具有相反意义的量.【过程与方法】1.了解负数产生的背景是从实际需要产生的.2.培养学生的数学应用意识,渗透对立统一的辩证思想.【情感、态度与价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重难点【重点】了解正数与负数是由实际需要产生的并会用正负数表示生活中常用的具有相反意义的量.【难点】明白学习负数的必要性,能结合生活情境举出具有相反意义的量的典型例子.教学过程一、新课引入1.师:同学们,你们看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读.(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温:25℃,10℃,零下10℃,零下30℃.为书写方便,将测量气温写成25℃,10℃,-10℃,-30℃.2.师:同学们,我们已经学了哪些数,它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,?;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生和逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10℃和零下5℃.例3:收入500元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(都具有相反意义,向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:(1)能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负;零上10℃就用10℃表示,零下5℃则用-5℃来表示.(2)怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.三、例题讲解【例1】 (1)与去年相比,某乡今年的水稻种植面积扩大了10hm(公顷),小麦的种植面积减少了5hm,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市12315中心2011年国庆期间受理消费申诉件数:日用百货类比上年同期增长了10%,家用电子电器类比上年下降了20%,写出这两类消费商品申诉件数的增长率.22【答案】 (1)与去年相比,该乡今年的水稻种植面积增加了10hm,小麦种植面积增加了-5hm,油菜种植2面积增加了0hm.(2)与上年同期相比,消费商品申诉件数:日用百货类增长了10%,家用电子电器类增长了-20%.【例2】 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】 (1)这个月小明体重增加2kg,小华体重增加-1kg,小强体重增加0kg.(2)六个国家这一年商品进出口总额的增长率是:美国 -6.4%, 德国 1.3%,法国 -2.4%, 英国 -3.5%,意大利 0.2%, 中国 7.5%.四、巩固练习1.-10表示支出10元,那么+50表示 ;如果零上5度记作5℃,那么零下2度记作 ;如果上升10m记作10m,那么-3m表示 ;太平洋中的马里亚纳海沟低于海平面达11 034米,可记作海拔米(即低于海平面11 034米).比海平面高50m的地方,它的高度记作海拔 ;比海平面低30m的地方,它的高度记作海拔 .【答案】 1.收入50元,-2℃,下降3m,-11034,+50m,-30m;2.0.05mm,-0.05mm.五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负. 221.2 数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)? 教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25℃用正数表示;0℃用数表示;零下10℃用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?(5)原点向右0.5个单位长度的a点表示什么数?原点向左1个单位长度的b点表示什么数?2.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点o,叫做原点,用这点表示数0(相当于温度计上的0℃);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0℃以上为正,0℃以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,??,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,??.3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】说出下图所示的数轴上a、b、c、d各点表示的数.【答案】点c在原点表示0,点a在原点左边与原点距离2个单位长度,故表示-2.同理,点b表示-3.5.点d在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上: (1)2,-1,0,-3,+3.5;(2)-5,0,+5,15,20;(3)-1 500,-500,0,500,1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个已知数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的能力,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示下列各数的点:6与-6,-3与3,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-3与3,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律. 学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0. 说明:“互为相反数”的含义是相反数是成对出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数.三、例题讲解教师出示例题.【例1】判断下列说法是否正确:(1)-5是5的相反数.( )(2)5是-5的相反数.( )(3)5与-5互为相反数.( )(4)-5是相反数.( )【答案】(1)√ (2)√ (3)√ (4)3【例2】 (1)分别写出5、-7、-3、+11.2的相反数;(2)指出-2.4是什么数的相反数.【答案】 (1)5的相反数是-5.-7的相反数是7.-3的相反数是3.+11.2的相反数是-11.2.我们通常在一个数的前面添上“-”号,表示这个数的相反数.例如-(-4)=4,-(+5.5)=-5.5;同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12.(2)-2.4是2.4的相反数.【例3】化简下列各数:(1)-(+10);(2)+(-0.15);(3)+(+3); (4)-(-20).【答案】 (1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=+3=3;(4)-(-20)=20.四、巩固练习课本p10练习的第1~3题.【篇二:沪教版七年级数学上册教案】教学计划(20## 学年度第一学期)制定日期:20##-教学进度表(20## 学年度第一学期)一、教材内容:本册内容是精选学生终生学习必备的基础知识和基本技能,基于这些,本学期学生学习的基础内容时整式、分式、图形的运动等。

沪科版七年级上册数学教案(精编版)

沪科版七年级上册数学教案(精编版)

沪科版七年级上册数学教案所谓教案的艺术性就是构思巧妙,能让学生在课堂上不仅能学到知识,而且得到艺术的欣赏和快乐的体验。

下面是给大家整理的沪科版七年级上册数学教案,仅供参考希望能够帮助到大家。

沪科版七年级上册数学教案1一、素质教育目标(一)知识教学点1.掌握的三要素,能正确画出.2.能将已知数在上表示出来,能说出上已知点所表示的数.(二)能力训练点1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.对学生渗透数形结合的思想方法.(三)德育渗透点使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.(四)美育渗透点通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.二、学法引导1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.三、重点、难点、疑点及解决办法1.重点:正确掌握画法和用上的点表示有理数.2.难点:有理数和上的点的对应关系。

四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计师生同步画,学生概括三要素,师出示投影,生动手动脑练习七、教学步骤(一)创设情境,引入新课师:大家知识温度计的用途是什么?生:温度计可以测量温度(出示投影1)三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.师:三个温度计所表示的温度是多少?生:2℃,-5℃,0℃.我们能否用类似温度计的图形表示有理数呢?这种表示数的图形就是今天我们要学的内容—(板书课题).【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.(二)探索新知,讲授新课1.的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:第一步:画直线定原点原点表示0(相当于温度计上的0℃).第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.让学生观察画好的直线,思考以下问题:(出示投影1)(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义.学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.教师根据学生回答给予肯定或否定,纠正后板书.2.的定义:规定了原点、正方向和单位长度的直线叫做.向学生提出问题:上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是的依据.学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.3.尝试反馈,巩固练习请大家回答下列问题:(出示投影2)(1)有人说一条直线是一条,对不对?为什么?(2)下列所画对不对?如果不对,指出错在哪里?学生活动:学生思考,不准讨论,想好后举手回答.让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.【教法说明】此组练习的目的是巩固的概念.答案:(2)①缺原点,②缺正方向,③不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是,同时⑦为学习平面直角坐标系打基础.4.有理数与上点的关系通过刚才的学习我们知道所有的有理数都可以用上的点来表示.例1画一条,并画出表示下列各数的点:1,5,0,-2.5,.学生练习:同学们在练习本上画一条,然后在上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.【教法说明】让学生动手自己画,有助于培养学生实际操作能力.例1是把给定的有理数用上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对概念的理解.(出示投影4)例2指出上A、B、C、D、E各点分别表示什么数?先让学生思考一会,然后学生举手回答解:A表示-3;B表示;C表示3;D表示;E表.【教法说明】例2是让学生说出上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.5.尝试反馈,巩固练习(出示投影5)①说出下面上A、B、C、D、O、M各点表示什么数?②将-3,,1.5,-6,,2.25,,-5,1各数用上的点表示出来.【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.(三)归纳小结师:①是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合进行的.②掌握三要素,正确地画出,提醒同学们,所有的有理数都可用上的各点来表示,但是反过来不成立,即上的各点,并不是都表示有理数.以后再研究.八、随堂练习1.判断题(1)直线就是()(2)是直线()(3)任何一个有理数都可以用上的点来表示()(4)上到原点距离等于3的点所表示的数是+3()(5)上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.()2.画一条数轮,并画出表示下列各数的点,-5,0,+3.2,-1.4九、布置作业(-)必做题:课本第56页1、2.(二)选做题:课本第56页及第57页B组l.(三)思考题:①在数轮上距原点3个单位长度的点表示的数是_____________②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.十、板书设计随堂练习答案1.×√√×√2.略作业答案(一)必做题1.(1)依次是(2)依次是2.依次是(二)选做题:3.略B组1.(1)-6,(2)-1,(3)3;(4)0(三)思考题:①②左,6,右,6探究活动(1)在上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;(2)写出比-4大但不大于2的所有整数.分析:画时,的三要素:原点、正方向、单位长度缺一不可.(1)在上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了;(2)在上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.解:(1)上,距离原点3个单位的点是+3和-3,距离原点4.5个单位的点是+4.5和-4.5.由图看出:-4.5<-3<3<4.5(2)在上画出大于-4但不大于2的数的范围.由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.点评:利用,数形结合,是解这一类问题的好方法.沪科版七年级上册数学教案2教学目标1.了解的概念和的画法,掌握的三要素;2.会用上的点表示有理数,会利用比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

沪科版数学七年级上册第3章 小结与复习教案与反思

沪科版数学七年级上册第3章 小结与复习教案与反思

第3章一次方程与方程组前事不忘,后事之师。

《战国策·赵策》原创不容易,【关注】,不迷路!教学目标知识与技能1、根据具体问题中的数量关系,经历形成方程模型,解方程和运用方程解决实际问题的全过程,体会方程是刻画实现世界的一个有效的数学模型。

2、牢靠地掌握最简单一元一次方程与二元一次方程组的解法。

3、能够以一次方程为工具解决一些简单的实际问题,包括列方程,求解方程和解释结果的实际意义与合理性。

过程与方法(1)在复习过程中,培养学生的分类归纳与概括能力。

(2)让学生根据已有的只是经验,自主决策完成整式加减全章的概括,从而培养学生数学思维方法及归纳能力。

(3)通过分组合作学习活动,学会在活动中与人合作,并能与他人交流思维的过程与结果。

3、情感、态度与价值观通过全章的抽象概括的独立思考与合作学习的过程,培养学生归纳、总结的良好学习习惯。

教学重点1、根据具体问题中的数量关系,以一次方程为工具解决一些简单的实际问题。

2、掌握解一元一次方程和二元一次方程组的基本解法。

教学难点根据具体问题中的数量关系,正确有效地列出一次方程解决实际问题。

教学过程一、温故知新同学们组小结本章内容,并把你们的小结展示出来,看看哪个小组做得最好,最有特色。

二、复习小结1、阅读教材中的小结评价,给关键性词语打上横线,看看你们刚才的小结有什么遗漏。

2、复习等式的基本性质等式的基本性质是解方程或者方程组的根据。

由等式的基本性质引入移项解方程。

3、复习解方程、方程组的步骤。

解一元一次方程的基本步骤(1)去分母;(2)去括号(3)移项(4)合并同类项(5)系数化为1解二元一次方程组的基本思想是“消元”—代入消元或者加减消元,消去其中一个未知数,化二元方程为一元方程。

在一般情况下,若方程组中存在一个未知数的系数为±1时,则采用代入消元法;否则选择加减消元法。

对于连等号的方程则优化为方程组后再用解方程组的方法解答。

4、复习列一元一次方程或者二元一次方程组解应用题。

上海科学技术出版社七年级数学上册全套教案

上海科学技术出版社七年级数学上册全套教案

正数和负数【课时安排】2课时【第一课时】【教学目标】一、知识与技能:(一)借助生活中的实例理解有理数的意义,体会和认识引入负数的必要性。

整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念。

(二)能区分两种不同意义的量,会用符号表示正数和负数。

二、过程和方法:体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

三、情感态度与价值观:通过正数与负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。

【教学重难点】难点:正数、负数的意义以及对基准的理解。

重点:两种相反意义的量与对基准的理解。

【教学过程】一、设置情境,引入课题师:今天我们已经是七年级的学生了,我是你们的数学老师。

下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重78.5千克,今年27岁,我们班级有46个同学,其中男同学有27个,约占全班总人数的58.7%。

(一)问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。

(二)问题2:在生活中,仅有整数和分数够用了吗?有没有比0更小的数呢?(学生在脑中产生疑问。

)请同学们看大屏幕(教师展示投影)1.在冬日的某一天,国家气象中心天气预报当天温度如图所示,你能读出北京、上海、哈尔滨三座城市的最低温度各是多少吗?2.在中国地形图上,可以看到我国有一座世界最高峰——珠穆朗玛峰,地图上标着8844,在西部有一吐鲁番盆地,地图上标着-155,这两个数表示的高度是相对于海平面来说的,你能说说8844,-155各表示什么吗?学生思考,讨论并尝试回答。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。

沪科版七年级上册初一数学全册教案(教学设计)

沪科版七年级上册初一数学全册教案(教学设计)
【教学难点】
正数和负数的意义与对基准的理解.
【教学过程】
一、师生活动
1.实例引入
师1:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重78.5千克,今年37岁.我们的班级是七(2)班,有46个同学,其中男同学有27个,约占全班总人数的58.7%…
【分析】 原点、正方向、单位长度,数轴的这三要素缺一不可.
【答案】 都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.
【例2】 说出下图所示的数轴上A,B,C,D各点表示的数.
【答案】 点C在原点表示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理,点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.
注:整数有正整数,零,负整数;分数有正分数和负分数
2.定义:整数和分数统称为有理数,即
三、例题讲解
例1、(课本例2)
(强调:审题;)
例题引申:
(1)本题中哪些数放入非正有理数集合,哪些数放入非负有理数集合?
总结:有理数还可以分为:正有理数,零,负有理数.即
(老师可以告诉学生,π是无理数,我们今后学习)
其中0既不是正数,也不是负数
注:(1)正数前面“+”(读作正号),通常可省略不写,有时为了强调,也写上,如+7,+1;
(2)负数前面“-”(读作负号),不能省略不写.
3.正、负数常见的表示:
(1)计量温度时,人们把冰点作为基准,定为0℃.0℃以上的温度用正数表示,0℃以下的温度用负数表示.
(2)海平面常作为基准,定为海拔0m,海平面以上用正数表示,海平面以下用负数表示.

沪科版数学七年级上册第2章 小结与复习教案与反思

第2章 整式加减知人者智,自知者明。

《老子》棋辰学校 陈慧兰一、复习引入与巩固(1)单项式、多项式的定义:由数与字母的乘积组成的代数式叫做单项式.例如, h r 231、r π2、abc 、-m 都是单项式.特别地,单独一个数或一个字母也是单项式.单项式中的数字因数叫做这个单项式的系数.例如,h r 231的系数是31,r π2的系数是π2,abc 的系数是1,-m 的系数是-1.一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,abc 的次数是3, yz x 245的次数是4.注意:圆周率π是常数;当一个单项式的系数是1或-1时,“1”通常省略不写,如2ab ,-abc ; 单项式的系数是带分数时,通常写成假分数.如y x 2411写成y x 245. (2)多项式的定义几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项式5232+-x x 有三项,它们是23x ,-2x ,5.其中5是常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式5232+-x x 是一个二次三项式.注意多项式的次数不是所有项的次数之和;多项式的每一项都包括它前面的符号.重新排列多项式时,每一项一定要连同它的符号一起移动;含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列.(3)同类项的定义所含字母相同,并且相同字母的指数也分别相等的项叫做同类项;所有的常数项都是同类项.合并同类项的方法:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.例:k 取何值时y x k 3与y x 2-是同类项? 要使y x k 3与y x 2-是同类项,这两项中x 的次数必须相等,即 k =2. 所以当k =2时,y x k 3y 与y x 2-是同类项.如果一个多项式中含有同类项,那么我们常常要把同类项合并起来,使结果得以简化.把多项式中的同类项合并成一项,叫合并同类项.例:5253432222+++--xy y x xy y x 228)53()24()53()53()24()53(532453222222222222+-=+-++-++=+-++-++=+-+-+=xy y x xy y x xy xy y x y x xy xy y x y x概括:不难发现,合并同类项实际上就是根据加法交换律、结合律以及乘法分配律,把各同类项的系数加以合并.因而合并同类项的法则可以概括为:例: 求多项式13243222--+--+x x x x x x 的值,其中x =-3.(4)去括号的法则括号前面是“+”号,把括号和它前面的“”号去掉,括号里各项都不变符号; 括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号. 例:()(x +y -z )+(x -y +z )-(x -y -z );(2)()()222223223x y y x ---.补充:通过观察与分析,可以得到添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号.:(1)错误!未找到引用源。

(沪科版)2018学年七年级上册数学精品学案2.2.2_去括号、添括号

2.去括号、添括号
【学习目标】
1.理解并熟记去括号添括号法则(重点)
2.会远用去括号、添括号法则进行整式运算(难点)
【自主预习梳理知识】
1.根据分配律计算: +(-2-3+8)=+1×(-2-3+8)= -2-3+8
-(-2-3+8)=-1×(-2-3+8)=
因此得出规律:去括号法则:
(1)括号前面是“+”号,把括号连同它前面的“+”号去掉,括号内各项(2)括号前面是“-”号,把括号连同它前面的“-”号去掉,括号内各项反之有添括号法则:
(1)所添括号前面是“+”号,括号到括号里的各项都
(2)所添括号前面是“-”,括到括号里的各项都要
【展示交流合作探究】
展示自学成果
1.去括号:(1)x+y(-y+3)= (2)x-(-y-3)=
2.在下列各题等号的右边括号内填上适当的项:
(1)a-b-c+d=a-b+( )=a-b-( )
(2)x+y-z=-( )=x+( )
一、合作探究
化简下列各式
(1)(2ab-πr2)+(ab-πr2) (1)(-6a+2b)+(5a-b)
(2)2(3a-2b)-3(2a-3b) (3)2(1-x)-3(2x-4)
二、生成问题(我的困惑)。

沪科版七年级数学上册全册教案.docx

沪科版2017-2018学年七年级数学上册全册教案目录1.1 正数和负数1.2 数轴、相反数和绝对值1.3 有理数的大小1.4.1有理数的加法1.4.2有理数的减法1.4.3加、减混合运算1.5.1有理数的乘法1.5.2有理数的除法1.5.3乘、除混合运算1.6.1有理数的乘方1.6.2科学计数法1.7 近似数2.1.1用字母表示数2.1.3单项式与多项式2.1.4代数式的值2.2.1合并同类项2.2.2去括号、添括号及整式加减3.1.1一元一次方程及其解法(1)3.1.2一元一次方程及其解法(2)3.2.1一元一次方程的应用(1)3.2.2一元一次方程的应用(2)3.3.1二元一次方程组3.3.2消元解方程组(1)3.3.3消元解方程(2)3.4.1二元一次方程组的应用(1)3.4.2二元一次方程组的应用(2)3.5 三元一次方程组及其解法3.6 综合与实践4.1 几何图形4.2 线段、射线、直线4.3 线段的长短比较4.4 角4.5 角的比较与补(余)角4.6 用尺规作线段与角5.1 数据的收集5.2 数据的整理5.3 用统计图描述数据5.4 从图表中的数据获取信息5.5 综合与实践1.1 正数和负数【教学目标】1.借助生活中的实例理解有理数的意义,体会和认识引入负数的必要性.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念.2.能区分两种不同意义的量,会用符号表示正数和负数.【重点难点】重点:两种相反意义的量与对基准的理解. 难点:正数、负数的意义以及对基准的理解.对有理数的分类的理解.1.1 正数和负数有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数负整数分数⎩⎨⎧正分数负分数【教学反思】本节课紧密联系实际生活,使学生体会到数学的应用价值,在授课过程中充分体现了学生自主学习、小组合作交流的教学理念.在知识结构上与以前的知识相连接,体现了数学的1.2数轴、相反数和绝对值第1课时数轴【教学目标】了解数轴的概念,会画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.【重点难点】重点:理解数形结合的数学方法,掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数和数轴上的点的对应关系.教学过程一、创设情境,导入新课1.古代部落酋长上任时先在绳上打个绳结表示财物往来.从0开始,如捕获一只羊就在红绳结右边顺次打一个结,每向其他部落借一只羊,就在红绳结左边顺次打一个结,你能解读图中A,B,C处绳结的含义吗?2.让学生阅读教科书上机器人走步取物实验.以小组为单位进行讨论.二、师生互动,探究新知【教学小结】【板书设计】第1课时数轴1.数轴2.任意一个有理数,都可以用数轴上的一个点来表示.【教学反思】从历史与现实生活实例引入新课,提高了学生的学习兴趣.在授课过程中教师注重了对学生自学能力的培养,让学生主动探究.在顺利完成本节课的内容之后,让学生预习下一节课的内容,培养学生良好的学习习惯.第2课时相反数【教学目标】1.了解相反数的意义.2.借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系.3.给出一个数,能说出它的相反数.【重点难点】重点:相反数的概念.难点:相反数的识别及理解.【教学过程设计】【教学小结】【板书设计】第2课时相反数1.只有符号不同的两个数互为相反数.2.0的相反数是0.3.两个互为相反数的数在数轴上所表示的点在原点的两旁,与原点的距离相等.【教学反思】借助数轴让学生直观地观察,得出了相反数的特点,充分发挥小组的合作优势,体现了学为主体、教为主导的教学理念.第3课时绝对值【教学目标】1.理解绝对值的意义,会求一个数的绝对值.2.理解绝对值与相反数的联系.3.通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想.【重点难点】重点:绝对值的意义.难点:绝对值的意义的学习.【教学过程设计】教学过程一、创设情境,导入新课师:如下图所示.小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同)________,他们行走的距离(即路程远近)________.生:口答.二、师生互动,探究新知【教学小结】【板书设计】 第3课时 绝对值1.定义:在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.2.|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)【教学反思】通过数轴设置情境并引导学生观察数轴得出绝对值的意义,在此基础上得出如何求一个数的绝对值,让学生初步感知数形结合思想.通过不同形式的练习题让学生掌握并巩固知识.1.3 有理数的大小【教学目标】1.得出比较有理数的大小的方法并能熟练地应用解决具体问题.2.经历探索比较有理数的大小的方法的过程,培养学生的探索能力.【重点难点】重点:比较有理数的大小的方法.难点:探索比较有理数的大小的方法的过程,熟练地应用解决具体问题.【教学小结】【板书设计】1.3有理数的大小1.数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.2.正数大于0,0大于负数,正数大于负数.3.两个负数比较大小,绝对值大的反而小.【教学反思】从学生已经学习的数轴入手,引导学生探究出了比较有理数大小的方法.在授课过程中充分发挥了小组合作的作用,增强了学生的合作意识.1.4有理数的加减第1课时有理数的加法【教学目标】1.通过实例,了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能运用有理数的加法解决实际问题.【重点难点】重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.【教学过程设计】生:小组讨论之后分别列出算式:(1)(+2)+(+3)=+5.(2)(-2)+(-3)=-5.(3)(+2)+(-3)=-1.(4)(+3)+(-2)=+1.师:引导学生归纳两个有理数相加的几种情况.师:用课件出示以下5个问题:(1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了________米,这个问题用算式表示就是________.如图所示.(2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走了多少米?很明显,两次共向西走了________米,这个问题用算式表示就是______________.如图所示.(3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了________米,写成算式就是____________.这个问题用数轴表示如下图所示.【教学小结】【板书设计】第1课时有理数的加法有理数的加法法则:1.同号两数相加,取与加数相同的符号,并把绝对值相加.2.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.3.一个数与0相加,仍得这个数.【教学反思】通过足球比赛这个实际例子引入新课,提高了学生的学习兴趣.利用数轴,充分发挥小组的合作优势,引导得出有理数的加法法则.教师设计的一系列问题由浅入深,非常恰当,充分体现了教师的主导作用.1.4有理数的加减第2课时有理数的减法【教学目标】1.掌握有理数的减法法则.2.能运用有理数的减法法则进行运算.3.通过对有理数减法法则的探究,体验数学的转化思想.4.通过对有理数减法法则的探讨,培养学生的创新思维.【重点难点】重点:有理数的减法法则.难点:对有理数的减法法则的探究.【教学过程设计】【教学小结】【板书设计】第2课时有理数的减法有理数减法法则:减去一个数,等于加上这个数的相反数.【教学反思】本节课从生活实例引入新课,提高了学生的学习兴趣.利用减法是加法的逆运算探究得出减法法则,体现了数学的转化思想.在教学中充分发挥学生的积极主动性,体现了学生为主体的教学思想.1.4有理数的加减第3课时加、减混合运算【教学目标】1.理解加减法统一成加法运算的意义.2.会将有理数的加、减混合运算转化为有理数的加法运算.3.通过对有理数的加、减混合运算的学习,体验数学中的转化思想.【重点难点】重点:1.有理数的加、减混合运算.2.将加减法统一成加法的省略括号的形式并读出来.难点:1.有理数的加、减混合运算.2.将加减法统一成加法的省略括号的形式并读出来.【教学过程设计】【教学小结】【板书设计】第3课时加、减混合运算1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c)【教学反思】本节课是在学生学习了有理数的加法法则和减法法则的基础上进行的,所以本节课的关键是如何引导学生进行转化,这样有理数的加、减混合运算就转化成了有理数的加法运算.然后让学生认识到引入负数后加法的两个运算律仍然适用是本节课的重点,对计算器的使用,因为品种很多,程序和方法不尽相同,所以留作课下作业进行探究.1.5有理数的乘除第1课时有理数的乘法【教学目标】1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算.2.通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力.【重点难点】重点:有理数的乘法法则.难点:有理数乘法中的符号法则以小组为单位,先独立思考再小组交流.二、师生互动,探究新知问题2:如图,一只蜗牛沿数轴爬行.它现在位置恰在数轴上的点0.(1)如果蜗牛一直以每分2cm的速度向右爬行,3分钟后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分钟后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分钟前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分钟前它在什么位置?以小组为单位交流、讨论.思考:一个数同0相乘,如何解释?问题3:正数乘正数积为________数.负数乘正数积为________数.正数乘负数积为________数.【教学小结】【板书设计】1.5有理数的乘除第2课时有理数的除法【教学目标】1.了解有理数除法的定义.2.经历有理数除法法则的探究过程,会进行有理数的除法运算.3.通过有理数除法法则的导出及运用,让学生体会转化思想.4.培养学生运用数学思想指导数学思维活动的能力.【重点难点】重点:正确运用法则进行有理数的除法运算.难点:怎样根据不同的情况来选取适当的方法求商.【教学小结】【板书设计】第2课时有理数的除法有理数的除法法则:1.两数相除,同号得正,异号得负,并把绝对值相除.2.0除以一个不为0的数仍得0.0不能做除数.3.除以一个不为0的数,等于乘以这个数的倒数.1.5有理数的乘除第3课时乘、除混合运算【教学目标】1.掌握有理数加、减、乘、除运算的法则、运算顺序,能够熟练运算.2.能运用法则解决实际问题.【重点难点】重点:如何按有理数的运算顺序,正确而合理地进行计算.难点:如何按有理数的运算顺序,正确而合理地进行计算.【板书设计】第3课时 乘、除混合运算1.有理数乘、除的混合运算,从左到右依次计算,也可统一化为乘法运算.2.含加、减、乘、除的算式,如没有括号,应先做乘除运算,后做加减运算;如有括号,应先做括号里的运算.3.乘法运算律⎩⎪⎨⎪⎧ab =ba (ab )c =a (bc )a (b +c )=ab +ac1.6有理数的乘方第1课时有理数的乘方【教学目标】1.正确理解有理数的乘方、幂、指数、底数等概念;会进行有理数的乘方运算.2.能确定有理数加、减、乘、除、乘方混合运算的顺序.3.会进行有理数的混合运算.【重点难点】重点:正确理解乘方的意义,掌握有理数乘方的符号规律.难点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.【教学过程设计】一、复习旧知,导入新课师:到今天为止我们已经学了哪些运算?生:有理数的加、减、乘、除运算.师:你能说出有理数的乘法法则吗?生:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与0相乘得0.师:你能说出多个不为0的有理数相乘的符号法则吗?生:几个不为0的有理数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.师:今天我们将继续探究有理数的乘方运算.二、师生互动,探究新知师:用多媒体出示乘方的定义:一般地,几个相同的因数a相乘,记作a n,即这种求n个相同因数的积的运算叫做乘方.乘方的结果叫做幂.在乘方运算a n中,a叫做底数,n叫做a的幂的指数.a n 既表示n个a相乘,又表示n个a相乘的结果.因此a n可读作a的n次方,或a的n次幂,如图所示.师:用多媒体出示:例如,在幂52中,底数是________,指数是________,52读作________(或5的平方)或5的2次幂.23读作【板书设计】第1课时有理数的乘方12.3.乘方法则:非0有理数的乘方,将其绝对值乘方,而结果的符号是:正数的任何次乘方都取______;负数的奇次乘方取________,负数的偶次乘方取________.0的正数次方是0.【教学反思】本节课从已经学过的知识入手,探究有理数的乘方运算,体现了知识之间的前后联系,在教学中先让学生试做,教师再根据实际情况进行校正,体现了先学后教,以学定教的教学思想.第2课时科学计数法【教学目标】1.借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.2.知道科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.【重点难点】重点:正确使用科学记数法表示大于10的数.难点:10的幂指数的特征.【教学过程设计】【板书设计】第2课时科学记数法一般地,一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n 等于原数的整数位数减1.1.6有理数的乘方第2课时科学计数法【教学目标】1.借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.2.知道科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.【重点难点】重点:正确使用科学记数法表示大于10的数.难点:10的幂指数的特征.【教学小结】【板书设计】第2课时科学记数法一般地,一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n等于原数的整数位数减1.1.7近似数【教学目标】1.理解近似数的意义.2.给一个近似数,能说出它精确到哪一位.3.了解近似数是在实践中产生的.【重点难点】重点:理解近似数的精确度.难点:正确把握一个近似数的精确度.【教学小结】【板书设计】1.7近似数1.近似数2.误差3.精确度2.1代数式第1课时用字母表示数【教学目标】1.经历探索规律并用字母表示规律的过程.2.能用字母表示以前学过的运算律和计算公式.3.体会字母表示数的意义,形成初步的符号感.【重点难点】重点:理解字母表示数的意义.难点:探索规律的过程及用字母表示规律的方法.你能继续唱下去吗?二、师生互动,探究新知师:出示问题1.问题12008年9月25日,我国成功发射了“神舟七号”载人飞船.它在椭圆形轨道上环绕地球飞过45周,历时约68h,试求:(1)该飞船绕地球飞行一周约需________min(精确到1min);(2)该飞船绕地球飞行n周约需________min.生:小组讨论回答.师:出示问题2.问题2能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数.设k表示任意一个整数,用含有k的代数式表示:(1)任意一个偶数;(2)任意一个奇数.生:小组讨论回答.师:出示问题3.问题3如图,月历中用长方形框任意框出的3个数错误!之间的关系是________(请用一个等式表示这个关系).生:小组讨论回答.师:从以上三个问题中你有什么发现?生:讨论得出:用字母表示数,可以把一些数量关系更简明地表【教学小结】【板书设计】第1课时用字母表示数1.明确地表明数量关系.2.给计算带来方便.【教学反思】本节课在教学内容上尽可能地以实际生活为问题情境呈现出来,使学生有亲切感,激发学生的学习兴趣,让学生感受到数学来源于生活,并为现实生活而服务,认识到学习数学的实用价值.在整节课中,充分地让学生进行合作学习,共同交流与探索,发现问题、解决问题,使他们在操作过程中建立起“用字母表示数、数量关系等”的数学模型,形成初步的符号感.2.1代数式第3课时单项式与多项式【教学目标】1.理解单项式及单项式系数、次数的概念,并会找出单项式系数、次数.2.掌握多项式的概念,进而理解整式的概念.3.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.【重点难点】重点:1.掌握单项式及单项式系数、次数的概念,并会找出单项式系数、次数.2.多项式的概念及多项式的项数、次数的概念.难点:识别单项式的系数与次数及多项式的次数.【教学小结】【板书设计】第3课时 单项式与多项式整式⎩⎪⎨⎪⎧单项式⎩⎪⎨⎪⎧定义:数与字母的积系数:单项式中的数字因数次数:所有字母的指数之和多项式⎩⎪⎨⎪⎧定义:几个单项式之和次数:次数最高的项的次数2.1代数式第4课时代数式的值【教学目标】1.会求代数式的值.2.通过求代数式的值,体会代数式实际上是由计算关系反映的一种数量间的关系.【重点难点】重点:1.会求代数式的值.2.理解字母表示数的意义,增强符号感.难点:求代数式的值.【教学小结】【板书设计】第4课时代数式的值定义:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果.步骤:(1)指出字母的值(2)抄写代数式(3)替换字母(4)计算结果2.2整式加减第1课时合并同类项【教学目标】1.理解多项式中同类项的概念,会识别同类项.2.掌握合并同类项法则.3.利用合并同类项法则来化简整式.【重点难点】重点:同类项的概念、合并同类项的法则及应用.难点:正确判断同类项;准确合并同类项.二、师生互动,探究新知师:出示下面两个问题(情景一):问题1:我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里.为何不把老虎与熊猫关在同一个笼子里呢?问题2:(1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.(2)生活中处处有分类的问题,在数学中也有分类的问题吗?生:小组合作交流.师:出示下面的问题让学生议一议:10a和20a;2b2和6b2;-9xy和5xy;5ab和-13ab有什么共同点?生:小组合作交流.师:引导学生归纳同类项的定义.师:用多媒体出示情景二:4+2=64a+2a=(4+2)a4-=34x-x=3x师:通过情景二请同学们思考:如果一个多项式中含有同类项,【教学小结】【板书设计】第1课时合并同类项1.同类项:所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并在一起.3.法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变.2.2整式加减第2课时去括号、添括号及整式加减【教学目标】1.初步掌握去括号、添括号的法则.2.会运用去括号、添括号法则,并根据要求去括号、添括号.3.能利用去括号法则将整式化简.【重点难点】重点:去括号法则;准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.【教学小结】【板书设计】第2课时去括号、添括号及整式加减1.去括号法则2.添括号法则3.按某个字母降(升)幂排列3.1一元一次方程及其解法第1课时一元一次方程及其解法(1)【教学目标】1.理解移项法则,知道移项的依据.2.会熟练运用移项法则解方程.【重点难点】重点:会用移项法则解方程.难点:对移项法则的理解与应用.【教学小结】【板书设计】第1课时一元一次方程及其解法(1)定义:只含有一个未知数,未知数的次数都是1,且等式两边都是整式的方程.移项时注意改变符号.3.1一元一次方程及其解法第2课时一元一次方程及其解法(2)【教学目标】1.使学生掌握去括号的方法步骤.2.会把实际问题建成数学模型,会用去分母的方法解一元一次方程.【重点难点】重点:1.去括号解方程.2.会用去分母的方法解一元一次方程.难点:灵活地解含括号与含分母的方程.【教学小结】【板书设计】第2课时一元一次方程及其解法(2)解一元一次方程的一般步骤:①去分母②去括号③移项④合并同类项⑤系数化为13.2一元一次方程的应用第1课时一元一次方程的应用(1)【教学目标】1.通过分析实际问题,探索等积变形问题和行程问题中所体现的数量关系,正确的列出一元一次方程.2.进一步理解一元一次方程在实际生活中的应用.【重点难点】重点:能正确地找出数量之间的等量关系.难点:找出题目中的等量关系并列出一元一次方程.【教学过程设计】。

2018年秋七年级数学上册 第1章 有理数小结与复习教案 (新版)沪科版

第1章有理数一.教学目标:1.理解有理数、数轴、相反数、绝对值、倒数, 科学计数法, 近似数的概念,掌握它们的意义及在生活中的作用;2.掌握有理数的运算法则和运算律,并会运用;3.注意培养学生的运算能力及对有理数的认识.二.教学重点:对有理数的五个概念:有理数、数轴、相反数、绝对值、倒数的理解与运用,有理数的混合运算,用科学计数法表示较大的数.理解近似数的精确度.三.教学难点:对绝对值概念的理解与应用,准确地掌握有理数的运算顺序和运算中的符号问题,用科学记数法表示的近似数的精确度.四.教学程序设计:一知识梳理:1.正数与负数:(给出4个问题,让学生了解负数产生的必要性和负数在生产、生活中的应用。

)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的"服务出口额比上一年增长了-7.3%"是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过2个问题让学生掌握有理数的两种分类方法,理解有理数的意义。

)(1)请说出下列各数哪些是整数、分数、正整数、负分数、非负数?3.5 , -3.5, 0, | -2|, -2, - , - , 0.5;(2)请将上面的各数按一定的标准分成两类,并说明你是根据什么来分类的?若要分成三类,又该怎样分?分类的标准又是什么?3.相反数、倒数、绝对值:说出8个数的相反数、倒数、绝对值。

4.数轴:(1)请你画一条数轴;并说一说画数轴时要注意什么?(2)在你所画的数轴上表示出上面的8个数。

5.有理数大小的比较:(1)请你将上面的8个数用">"连接起来,并说明你是怎样解决这个问题的?(2)说一说比较两个有理数的大小有哪些方法?6.有理数的乘方:(1)an (其中n 是正整数)表示什么意思?其中a 、n 的名称分别是什么?(2)当a 、n 满足什么条件时,an 的值大于0?7.科学记数法、近似数:(通过2个问题引导学生回顾)(1)将数13445000000000用科学记数法表示(精确到百亿位)(2)请你说出1.6与1.60这两个近似数有什么不同?8.计算(五分钟练习):(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;(24)3.4×104÷(-5).9.说一说我们学过的有理数的运算律:加法交换律:a b b a +=+;加法结合律:)()(c b a c b a ++=++;乘法交换律:a b b a ⨯=⨯;乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯;乘法分配律:c a b a c b a ⨯+⨯=+⨯)(二 课堂练习:1.下列说法是否正确,请把不正确的说法改正过来:(1)若一个数的绝对值等于5,则这个数是5 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 正数和负数第1课时 正数和负数1.了解正数和负数的产生过程以及数学与实际生活的联系;2.理解正数和负数的意义,会判断一个数是正数还是负数;(重点)3.能用正数、负数表示生活中具有相反意义的量.(难点)一、情境导入今年年初,一股北方的冷空气大规模地向南侵袭我国,造成大范围急剧降温,部分地区降温幅度超过10℃,南方有的地区的温度达到-1℃,北方有的地区甚至达-25℃,给人们生活带来了极大的不便.这里出现了一种新数——负数,负数有什么特点?你知道它们表示的实际意义吗? 二、合作探究探究点一:正数和负数的概念下列各数哪些是正数?哪些是负数? -1,2.5,+43,0,-3.14,120,-1.732,-27中,正数是______________;负数是______________.解析:区分正数和负数要严格按照正、负数的概念,注意0既不是正数也不是负数.负数有-1,-3.14,-1.732,-27;正数有2.5,+43,120;0既不是正数也不是负数.故答案为2.5,+43,120;-1,-3.14,-1.732,-27.方法总结:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数.探究点二:用正数和负数表示具有相反意义的量【类型一】 学会用正、负数表示具有相反意义的量如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( )A .0mB .0.5mC .-0.8mD .-0.5m解析:由水位升高0.8m 时水位变化记作+0.8m ,根据相反意义的量的含义,则水位下降0.5m 时水位变化就记作-0.5m ,故选D.方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+”的多少,少多少记为“-”的多少.【类型二】 用正、负数表示误差范围某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL ,511mL ,489mL ,473mL ,527mL ,问抽查产品的容量是否合格?解析:+30mL 表示比标准容量多30mL ,-30mL 表示比标准容量少30mL ,则合格范围是指容量在470~530(mL)之间.解:“500±30(mL)”是指500mL 为标准容量,470~530(mL)为合格范围,因此503mL ,511mL ,489mL ,473mL ,527mL 在合格范围内,抽查产品的容量是合格的.方法总结:解决此类问题的关键是理解“500±30(mL)”的含义,即500是标准,“+”表示比标准多,“-”表示比标准少.三、板书设计正数和负数⎩⎪⎨⎪⎧正、负数的定义具有相反意义的量本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分;让学生经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.第1章 有理数1.1 正数和负数第1课时 正数和负数教学目标1.借助生活实例使学生了解正数与负数是从实际需要中产生的,体会和认识引入负数的必要性和有理数应用的广泛性.2.使学生理解正数与负数的概念,会判断一个数是正数还是负数.3.初步学会用正、负数表示具有相反意义的量.4.在负数的形成过程中,培养学生的观察、猜想、归纳与概括的能力.教学重点:正、负数的概念,理解用正、负数表示两种相反意义的量.教学难点:正、负数的意义和对基准的理解.教学程序设计:一.温故知新上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:我们的班级是14班,有54个同学,其中男同学有29个,占全班总人数的…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?二.设置情境引入新知1. 引入负数问题1:请同学们看书第2页(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流.学生交流后,教师归纳:以前学过的数已经不够用了,图(1)中上海的气温6℃~9℃,北京的气温是-3℃~7℃各表示什么意思?图2中,珠穆朗玛峰高8844米,吐鲁番盆地高-155米又是什么意思?有时候需要一种前面带有“-”的新数.问题2:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?这些问题都必须要求学生理解.学生带着这些问题看书自学,然后师生交流.这阶段主要是让学生学会正数和负数的表示. 2.正数和负数的含义(1)像7,31,0.5,17﹪等这样的数叫正数(为了强调正数,前面也可加上“+”号) (2)像-7,-31,-0.5,-17﹪等这样的数叫负数,负数前面的“-”不能省略.(3)0既不是正数,也不是负数.0是正数、负数的的界限,是表示“基准”的数. 例1:下列各数,哪些是正数,哪些是负数? -2,3.5,+76,0,-1.75,150,-32,1.5解析:根据正数、负数的概念进行判断,特别注意0的分类. 3.用正数和负数表示相反意义的量如果马鞍山的某一天的最高气温5℃,最低气温5℃,如何表示这两个具有相反意义的量呢?得分与失分是两个具有相反意义的量,你还能举一些具有相反意义量的例子吗? 强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.我们把一种意义的量规定为正的,把与它意义相反的量规定为负的.例2:(1)规定向东为正,向东走20m记为 ,向西走15米记为 ,原地不动记为 ;-16m表示向 走16m,+13m表示 向 走13m;(2)如果-20元表示亏本20元,那么+35元表示 . 例3:用正数和负数表示下列具有相反意义的量 (1)温度上升8℃和下降5℃; (2)运出800箱和运进500箱; (3)增加20﹪和减少16﹪.解:(1)规定温度上升8℃,记作+8℃,则温度下降5℃,记作-5℃ ; 例4:(1)与去年相比,某乡今年的水稻种植面积扩大了10公顷,小麦的种植面积减少了5公顷,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市"12345"中心2005年国庆期间受理消费投诉件事的增长率:日用百货类比上年同期增加了10﹪,家用电器类比上年同期减少了20﹪.写出这两类消费商品投诉件事的增长率. 三.举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.问题3:请同学们举出用正数和负数表示相反意义的量的例子. 四.课堂反馈:课本第5页练习. 五.总结反思 拓展升华1.引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.2.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定. 3.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别. 六.作业:课本第5、6页第1、2、3、4、5题 补充:一、填空:1.吐鲁番盆地海拔高度为-155米的意义是:___________________________ 2.前进了3米记作+3米,那么后退5米记作:________________________ 3.气球上升10米,记作+10米,那么-3米表示_________________________, 不升不降记作:________________________4.某班男生平均身高165cm ,若高于平均身高记为正,低于平均身高记为负,甲、乙的身高分别记为-3cm ,+4cm ,则甲比乙矮___________cm 。

5.下列各数+6,―0.25,―2,97,210,513-,0,3.14中,正数有___________, 负整数有_____________,分数有________________。

6.给―2005赋予实际意义:___________________________________7.“一只手表一昼夜的时间误差不超过±5秒”这句话的含义是:____________。

8.体育课上,对七年级男生进行引体向上的测试,以能做6次为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩分别为:2,―1,0,3,―2,―3,1,0,则这8名男生的达标率是:______________。

二、选择题9.某天温度上升了―4℃的意义是( )A、上升了4℃B、没有变化C、下降了4℃D、下降了―4℃10.下列说法中错误的是( )A、一个正数的前面加上负号就是负数B、不是正数的数一定是负数C、0既不是正数,也不是负数D、正负数可以用来表示具有相反意义的量11.巴黎与北京的时差为―7(正数表示同一时刻比北京时间早的小时数),如果北京时间是5月3日10∶00,那么巴黎时间是( )A、5月3日3∶00B、5月3日17∶00C、5月2日13∶00D、5月4日10∶0012.一潜水艇所在的高度是―100米,一条鲸鱼在它上方20米处,鲸鱼所在的高度是( )A、-120米B、80米C、-80米D、20米第2课时有理数的分类1.理解有理数的概念,掌握有理数的分类方法;(重点)2.会把所给的有理数填入相应的集合;(难点)3.经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想.一、情境导入某天毛毛看报纸,见到下面一段内容:冬季的一天,某地的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而同一天北京的气温-3℃~7℃.这里出现了哪些数?我们到目前为止学过了哪些数?你能试着将它们进行分类吗?今天我们要把大家学过的数进行分类命名.二、合作探究探究点一:有理数的概念【类型一】 有理数的有关概念下列各数:-45,1,8.6,-7,0,56,-423,+101,-0.05,-9中,( )A .只有1,-7,+101,-9是整数B .其中有三个数是正整数C .非负数有1,8.6,+101,0D .只有-45,-445,-0.05是负分数解析:根据有理数的有关概念,整数包括1,-7,0,+101,-9,故选项A 错误;正整数只有两个,即1和+101,故选项B 错误;非负数包括有1,8.6,+101,0,56,故选项C 错误;负分数包括-45,-423,-0.05,故选项D 正确.故选D.方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是分数.【类型二】 对数“0”的理解下列对“0”的说法正确的个数是( )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A .3B .4C .5D .0解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.方法总结:“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.探究点二:有理数的分类把下列各数填入相应的括号内:-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1.正数:{ }; 负数:{ }; 整数:{ }; 分数:{}.解析:要将各数填入相应的括号里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.解:正数:{8,334,3101,2,3.14,37,0.618};负数:{-10,-712,-10%,-67,-1};整数:{-10,8,2,0,-67,-1};分数:{-712,334,-10%,3101,3.14,37,0.618}.方法总结:在填数时要逐个考察给出的每一个数,看它是什么数,是否属于某一类数;逐个填写相应括号,从给出的数中找出属于这个类型的数,避免出现漏数的现象. 探究点三:和正、负有关的规律探究问题观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第105个数、第2016个数吗?(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;(2)一列数:-1,12,-3,14,-5,16,____,____,____,….解析:(1)对第n 个数,当n 为奇数时,此数为n ;当n 为偶数时,此数为-n ;(2)对第n 个数,当n 为奇数是,此数为-n ;当n 为偶数时,此数为1n.解:(1)7,-8,9;第10个数为-10,第105个数是105,第2016个数是-2016; (2)-7,18,-9;第10个数为110,第105个数是-105,第2016个数是12016.方法总结:解答探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数字排列的特征.三、板书设计1.有理数的概念 2.有理数的分类①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数本节课是有理数分类的教学,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程.避免教师直接分类带来学习的枯燥性.要有意识地突出“分类讨论”数学思想的渗透,明确分类标准不同,分类的结果也不相同,且分类结果应是无遗漏、无重复的.1.1 正数和负数第2课时有理数的分类教学目标:1.使学生理解有理数的意义,能对有理数进行正确的分类;2.在学习有理数分类的过程中,培养学生树立分类讨论的数学思想.教学重点:有理数的概念和对有理数进行正确的分类.教学难点:对有理数进行正确的分类及分类的标准.教学程序设计:一.温故知新问题1:请你举出一对具有相反意义的量,并用正、负数表示它们.数0表示的意义是什么?二.创设情景导入新课问题2:小学所学的整数,可以怎样称呼?(0和正整数)引入正、负数后,还可以怎样称呼?(整数包括正整数、0、负整数)小学小学所学的分数,可以怎样称呼?(正分数)引入正、负数后,还可以怎样称呼?(分数包括正分数和负分数)交流:小学还学过小数,那么小数可属于有理数?结论:小学中的小数如果是有限小数或无限循环小数,那么它属于有理数,因为有限小数或无限循环小数都可以化为分数形式.如果是无限不循环小数,那么它不属于有理数,因为无限不循环小数不能化为分数形式.探索:为什么不是分数?如果说所有的分数都是小数,对吗?所有的小数都是分数,对吗?结论: (1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;(2)分数一定是小数,小数不一定是分数.⎪⎩⎪⎨⎧负整数正整数归纳:整数0 ⎩⎨⎧负负数正分数分数规定:整数和分数统称为有理数. 有理数的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 或⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负数正分数正整数正数有理数0 三. 应用迁移 巩固提高例 所有正数组成正数集合,所有负数组成负数集合,把下列各数分别填入表示相应数集中:-7,3.01,300﹪,-0.142587,0.1,0,39,-133355,32,21,-15﹪(1)正整数集合:﹛ …﹜ (2)分数集合:﹛ …﹜ (3)正有理数集合:﹛ …﹜ (4)负有理数集合:﹛ …﹜ 解析:(1)根据有理数的分类,如果一个数能化简,则化简后进行归类,如300﹪,39; (2)如果小数能化成分数,则小数作为分数进行归类. 变式题1把下列各数分别填入表示相应数集的圈子中:0,-85, 51, 112, -8.7, 0.3, 411, -3, -722, π.变式题2 所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:1, 0.0708, -700, -π, -3.88, 0, 3π-, 3.14159265, 237-,••32.0.正整数集合:{ …} 负整数集合:{ …} 整数集合:{ …}正分数集合:{ …} 负分数集合:{ …}四. 总结反思 拓展升华教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学方法?应注意什么问题?(本节课学习了有理数的分类,学习了分类讨论的数学思想.强调注意:数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.0是整数,但不是正数,也不是负数.数的集合注意加上省略号. 五.作业 课本第6页第6、7题 补充:1.把下列各数填在相应的集合中:―3,51,3.6,213-,0,+235,―0.75,+3,―2005,103,76正数集合:{ },负数集合:{ } 整数集合:{ },分数集合:{ } 负整数集合:{ },非负数集合:{ } 2.请将下列数值填入相应的圈内:212,5,0,1.5,+2,―3。

相关文档
最新文档