两个简谐振动的合成

合集下载

谐振动分析(三)两个同方向同频率简谐运动的合成

谐振动分析(三)两个同方向同频率简谐运动的合成

o
o
A1
A2
A
T
t
A A1 A2
x (A A )cos(t )
1
2
2 1 2k π
3
物理学
第五版
谐运动分析(三)
(2)相位差 (2k 1) π(k 0,1, )
2
1
x
x
A1
2 o
o
Tt
A
A2
A A1 A2
x (A2 A1)cos(t )
2
1
(2k
1)π
4
物理学
第五版
小结
(1)相位差
2
1
2k
π
A A1 A2
谐运动分析(三)
(k 0,1, ) 加强
(2)相位差
2
1
(2k 1) π
(k 0,1, )
A A A
1
2
减弱
(3)一般情况
A1 A2 A A1 A2
5
物理学
第五版
谐运动分析(三)
二 两个相互垂直的同频率的简谐
运动的合成 x A1 cos(t 1)
x 阻尼振动位移时间曲线
A
Ae t
Aet cost
O
T A
t
( 0)
21
物理学
第五版
三种阻尼的比较
谐运动分析(三)
(a)欠阻尼
2 0
2
(b)过阻尼
2 0
2
(c)临界阻尼
2 0
2
x
b
oc
t
a
22
物理学
第五版
谐运动分析(三)
例 有一单摆在空气(室温为 20C)中来 回摆动. 摆线长l 1.0 m,摆锤是半径r 5.0103 m 的铅球.求(1)摆动周期;(2)振幅减小 10%所需的时间;(3)能量减小10%所需 的时间;(4)从以上所得结果说明空气的 粘性对单摆周期、振幅和能量的影响.

大学物理实验6 简谐振动的合成

大学物理实验6  简谐振动的合成

云南大学软件学院 实验报告课程: 大学物理实验 学期: 任课教师: 班级: = 学号: == 序号: = 姓名: = 成绩:实验6 简谐振动的合成内容一 同方向同频率简谐振动的合成两个简谐振动的方程为使用matlab 编写程序,求x1,x2,合振动的波形,讨论相位差对合成振动的影响。

相位差至少讨论4中情况(1.为0°;2.为180°;3.小于180°;4.大于180°),要求所有波形画在同一个figure 中。

()()⎩⎨⎧+=+=222111cos cos ϕωϕωt A x t A x内容二 相互垂直方向同频率简谐振动的合成两个简谐振动的方程为使用matlab 编写程序,求x,y,合振动的波形,讨论相位差对合成振动的影响。

相位差至少讨论4中情况(1.为0°;2.为180°;3.小于180°;4.大于180°),要求所有波形画在同一个figure 中。

()()⎩⎨⎧+=+=y y x x t A y t A x ϕωϕωcos cos内容三相互垂直方向不同频率简谐振动的合成(李萨如图形) 使用matlab编写程序,画李萨如图形,要求:1.至少4种频率比2.至少8种相位差3.所有图形画在同一个figure中,添加标注。

如:cleart = 0:0.01:4;Ax = 1;Ay = 3;w1 = 1; w2 = 1./2;w3 = 2./3;w4 = 3./4;w5 = 2./5;m0 = 0;m1 = 0;m2 = pi./4;m3 = pi./2;m4 = 3.*pi./4;m5 = pi;m6 = 5.*pi./4; m7 =3.*pi./2;m8 = 7.*pi./4; x0 = Ax.*cos(2.*pi*t+m0);y11 = Ay.*cos(2.*w1.*pi*t+m1);y12 = Ay.*cos(2.*w1.*pi*t+m2);y13 = Ay.*cos(2.*w1.*pi*t+m3);y14 = Ay.*cos(2.*w1.*pi*t+m4);y15 = Ay.*cos(2.*w1.*pi*t+m5);y16 = Ay.*cos(2.*w1.*pi*t+m6);y17 = Ay.*cos(2.*w1.*pi*t+m7);y18 = Ay.*cos(2.*w1.*pi*t+m8);y21 = Ay.*cos(2.*w2.*pi*t+m1);y22 = Ay.*cos(2.*w2.*pi*t+m2);y23 = Ay.*cos(2.*w2.*pi*t+m3);y24 = Ay.*cos(2.*w2.*pi*t+m4);y25 = Ay.*cos(2.*w2.*pi*t+m5);y26 = Ay.*cos(2.*w2.*pi*t+m6);y27 = Ay.*cos(2.*w2.*pi*t+m7);y28 = Ay.*cos(2.*w2.*pi*t+m8);y31 = Ay.*cos(2.*w3.*pi*t+m1);y32 = Ay.*cos(2.*w3.*pi*t+m2);y33 = Ay.*cos(2.*w3.*pi*t+m3);y34 = Ay.*cos(2.*w3.*pi*t+m4);y35 = Ay.*cos(2.*w3.*pi*t+m5);y36 = Ay.*cos(2.*w3.*pi*t+m6);y37 = Ay.*cos(2.*w3.*pi*t+m7);y38 = Ay.*cos(2.*w3.*pi*t+m8);y41 = Ay.*cos(2.*w4.*pi*t+m1);y42 = Ay.*cos(2.*w4.*pi*t+m2);y43 = Ay.*cos(2.*w4.*pi*t+m3);y44 = Ay.*cos(2.*w4.*pi*t+m4);y45 = Ay.*cos(2.*w4.*pi*t+m5);y46 = Ay.*cos(2.*w4.*pi*t+m6);y47 = Ay.*cos(2.*w4.*pi*t+m7);y48 = Ay.*cos(2.*w4.*pi*t+m8);y51 = Ay.*cos(2.*w5.*pi*t+m1);y52 = Ay.*cos(2.*w5.*pi*t+m2);y53 = Ay.*cos(2.*w5.*pi*t+m3);y54 = Ay.*cos(2.*w5.*pi*t+m4);y55 = Ay.*cos(2.*w5.*pi*t+m5);y56 = Ay.*cos(2.*w5.*pi*t+m6);y57 = Ay.*cos(2.*w5.*pi*t+m7);y58 = Ay.*cos(2.*w5.*pi*t+m8);subplot(5,8,1);plot(x0,y11);Axis([-4 4 -4 4]);text(-16,0,'ω =1');text(-2,7,'0');text(-16,7,'相位差');subplot(5,8,2);plot(x0,y12);Axis([-4 4 -4 4]);text(-2,7,'π/4'); subplot(5,8,3);plot(x0,y13);Axis([-4 4 -4 4]);text(-2,7,'π/2'); subplot(5,8,4);plot(x0,y14);Axis([-4 4 -4 4]);text(-2,7,'3π/4'); subplot(5,8,5);plot(x0,y15);Axis([-4 4 -4 4]);text(-2,7,'π');subplot(5,8,6);plot(x0,y16);Axis([-4 4 -4 4]);text(-2,7,'5π/4'); subplot(5,8,7);plot(x0,y17);Axis([-4 4 -4 4]);text(-2,7,'3π/2'); subplot(5,8,8);plot(x0,y18);Axis([-4 4 -4 4]);text(-2,7,'7π/4'); subplot(5,8,9);plot(x0,y21);Axis([-4 4 -4 4]);text(-16,0,'ω = 1/2'); subplot(5,8,10);plot(x0,y22);Axis([-4 4 -4 4]);subplot(5,8,11);plot(x0,y23);Axis([-4 4 -4 4]);subplot(5,8,12);plot(x0,y24);Axis([-4 4 -4 4]);subplot(5,8,13);plot(x0,y25);Axis([-4 4 -4 4]);subplot(5,8,14);plot(x0,y26);Axis([-4 4 -4 4]);subplot(5,8,15);plot(x0,y27);Axis([-4 4 -4 4]);subplot(5,8,16);plot(x0,y28);Axis([-4 4 -4 4]);subplot(5,8,17);plot(x0,y31);Axis([-4 4 -4 4]);text(-16,0,'ω = 2/3'); subplot(5,8,18);plot(x0,y32);Axis([-4 4 -4 4]);subplot(5,8,19);plot(x0,y33);Axis([-4 4 -4 4]);subplot(5,8,20);plot(x0,y34);Axis([-4 4 -4 4]);subplot(5,8,21);plot(x0,y35);Axis([-4 4 -4 4]);subplot(5,8,22);plot(x0,y36);Axis([-4 4 -4 4]);subplot(5,8,23);plot(x0,y37);Axis([-4 4 -4 4]);subplot(5,8,24);plot(x0,y38);Axis([-4 4 -4 4]);subplot(5,8,25);plot(x0,y41);Axis([-4 4 -4 4]);text(-16,0,'ω = 3/4'); subplot(5,8,26);plot(x0,y42);Axis([-4 4 -4 4]);subplot(5,8,27);plot(x0,y43);Axis([-4 4 -4 4]);subplot(5,8,28);plot(x0,y44);Axis([-4 4 -4 4]);subplot(5,8,29);plot(x0,y45);Axis([-4 4 -4 4]);subplot(5,8,30);plot(x0,y46);Axis([-4 4 -4 4]);subplot(5,8,31);plot(x0,y47);Axis([-4 4 -4 4]);subplot(5,8,32);plot(x0,y48);Axis([-4 4 -4 4]);subplot(5,8,33);plot(x0,y51);Axis([-4 4 -4 4]);text(-16,0,'ω = 2/5'); subplot(5,8,34);plot(x0,y52);Axis([-4 4 -4 4]);subplot(5,8,35);plot(x0,y53);Axis([-4 4 -4 4]);subplot(5,8,36);plot(x0,y54);Axis([-4 4 -4 4]);subplot(5,8,37);plot(x0,y55);Axis([-4 4 -4 4]);subplot(5,8,38);plot(x0,y56);Axis([-4 4 -4 4]);subplot(5,8,39);plot(x0,y57);Axis([-4 4 -4 4]);subplot(5,8,40);plot(x0,y58);Axis([-4 4 -4 4]);。

10.2 两个简谐振动的合成

10.2  两个简谐振动的合成

2
2
频率都较大且频率差很小的两个同方向简谐
振动,在合成时会产生合振幅时强、时弱的现 象,这称为拍。
拍频 :单位时间内振动加强或减弱的次数
振幅 2Acos (2 1)t 的频率
2 由于是绝对值,所以




2

2
1

2


2

1
拍频等于两个分振动的频率之差
10.2.3 互相垂直的同频率简谐振动的合成
质点按分振动的周 期作左旋正椭圆运动
A1=A2:左旋圆运动
(5)当 2 1 取其他值时,合振动的轨迹一
般为斜椭圆。 与上述合成过程相反,一个圆运动或椭圆运
动可以分解成两个互相垂直的同频率简谐振动 这在分析光的偏振时要经常用到
*10.2.4 互相垂直的不同频率简谐振动的合成
合振动的轨迹一般是不稳定的。但当两个分 振动的频率比恰好等于简单的整数比时,合振 动的轨迹是稳定的封闭曲线,称为李萨如图。
李萨如图
判定两种频率是否成整数比,据此可由已知 频率确定未知频率。
x1 A1 cos( t 1)
x2 A2 cos( t 2 )
合振动仍是一个角 频率为ω的简谐振动:
x x1 x2 Acos( t )
A A12 A22 2A1 A2 cos(2 1) tan A1 sin 1 A2 sin 2
A1 cos1 A2 cos2
(3)2

1


2
,y 比 x 超前

2

x2 y2 1 A12 A22
质点的运动轨迹是以
坐标轴为主轴的正椭圆 (或圆) 不是简谐振动!

谐振动分析(三)两个同方向同频率简谐运动的合成

谐振动分析(三)两个同方向同频率简谐运动的合成
x A cos( p t )
A
f (02 p2 )2 4 2p2
t
dA 0 d p
x A0 e
cos(t ) A cos( p t )
28
物理学
第五版
谐运动分析(三)
共振频率
r | 2 |
2 0 2
A
共振频率 小阻尼 阻尼 0
3
物理学
第五版
谐运动分析(三)
(2)相位差 2 1 (2k 1) π (k 0 , 1, )
x
A1
x
2
o
o
T
t
x ( A2 A1 ) cos( t ) A A1 A2 2 1 (2k 1)π
4

A
A2
物理学
第五版
物理学
第五版
谐运动分析(三)
两个同方向同频率简谐运动的合成
设一质点同时参与 两独立的同方向、同频 率的简谐振动:
A2
2
O
x1 A1 cos( t 1 )
x2 A2 cos( t 2 )
x2
1
x1
A1
x
两振动的位相差 2 1 =常数
1
物理学
第五版

5
解 (2) 有阻尼时 A' Ae t ln( 1 ) 0 . 9 t t 174 s 3 min 0.9 A Ae 1
1
E 0.9E, t ? ( 3)
E ' A ' ( 3) ( ) 2 e 2t E A 1 ) ln( 2t 0.9 87 s 1.5 min 0.9 e t2 2

机械振动 习题解答

机械振动 习题解答

©物理系_2015_09《大学物理AII 》作业 No.01 机械振动班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、 判断题:(用“T ”表示正确和“F ”表示错误)1/3/5 2 4[ F ] 1.只有受弹性力作用的物体才能做简谐振动。

解:如单摆在作小角度摆动的时候也是简谐振动,其回复力为重力的分力。

[ F ] 2.简谐振动系统的角频率由振动系统的初始条件决定。

解:P5. 根据简谐振子角频率公式mk=ω,可知角频率是一个完全由振动系统本身性质决定的常量,与初始条件无关。

我们也将角频率称为固有角频率。

[ F ] 3.单摆的运动就是简谐振动。

解:P14-15 单摆小角度的摆动才可看做是简谐振动。

[ T ] 4.孤立简谐振动系统的动能与势能反相变化。

解:P9 孤立的谐振系统 机械能守恒,动能势能反相变化。

[ F ] 5.两个简谐振动的合成振动一定是简谐振动。

解: 同向不同频率的简谐振动的合成结果就不一定是简谐振动。

总结:1、3、5小题均为简谐振动的定义性判断.简谐运动是最基本也是最简单的一种机械振动。

当某物体进行简谐运动时,物体所受的力跟位移成正比,并且力总是指向平衡位置。

二、选择题:1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相位为[ C ] (A) θ; (B) π23; (C) 0; (D) π21。

解:对于小角度摆动的单摆,可以视为简谐振动,其运动方程为:()()0cos ϕωθθ+=t t m ,根据题意,t = 0时,摆角处于正最大处,θθ=m,即:01cos cos 0000=⇒=⇒==ϕϕθϕθθ。

类似公式: ()()0cos ϕω+=t A t x2.一个简谐振动系统,如果振子质量和振幅都加倍,振动周期将是原来的 [D] (A) 4倍(B) 8倍(C) 2倍(D)2倍解: P5 公式(12.1.8) m T k m T m k T ∝⇒=⇒⎪⎭⎪⎬⎫==/2/2πωωπ,所以选D 。

简谐振动的合成

简谐振动的合成

x1 (t ) = a cosωt x2 (t ) = a cos(ωt + δ ) x3 (t ) = a cos(ωt + 2δ )
C

R
A
aN
⋮ x N ( t ) = a cos[ ω t + ( N − 1)δ ]
O
δ
a3
a1 P
在∆COM中:A = 2 R sin( N δ / 2 ) 中 上两式相除得: 上两式相除得: 在∆OCP中: a = 2R sin(δ / 2) 中
2
A2 y= x 为直线方程 A1
利用旋转矢量合成
∆ϕ = 0
2 1
y
8 7 6
4 4
y
1 2
3
3 7 6
4Байду номын сангаас
8
x
5
5 3
2 1
播 放 动 画
16
5 6 7
x
8
2. |ϕ 2
− ϕ1 | π =
2 2
反相位
y
x y 2xy =0 + + A1 A2 A1 A2
3
利用旋转矢量法求合振动也可得到相同的结果。 •利用旋转矢量法求合振动也可得到相同的结果。 取质点振动的平衡位置O为 取质点振动的平衡位置 为 坐标原点,振动方向沿OX轴。A 坐标原点,振动方向沿 轴 2 点作两个长度分别为A 从O点作两个长度分别为 1、 点作两个长度分别为 ϕ2 ϕ A2的矢量 A1 , A2 ,它们在 它们在t=0时 时 与X轴的夹角分别为ϕ1、ϕ2。 轴的夹角分别为ϕ 轴的夹角分别为
x1 = 4 cos 3t ,
= A cos(3t + ϕ )

二、同方向不同频率两个简谐振动的合成剖析

二、同方向不同频率两个简谐振动的合成剖析


2 A cos 2 1
2
t
cos 1 2 t 2

移x
合振动 分振动1
振幅周期性变化
分振动2
2 21
oLeabharlann TT23T
2T
2
t
为一复杂振动
着重研究1
,

相近情况
2
——拍现象(Beat)
即 1- 2 << 1 or 2
x 2Acos 2 1 t cos 1 2 t
声音强弱的变化快 6秒中变化了6次,有6 拍
声音强弱的变化慢6秒中变化了3次,有3 拍
x 2Acos 2 1 t cos 1 2 t
2 2
x x x1 x2 x1 x2 o
| 振幅2变化缓慢1 |
2
一个强弱变化所需的时间
A A12 A22 2A1 A2 A1 A2
(2)两个振动反相
x
20 10 (2k 1) , k o,1,2,...
由A A12 A22 2A1 A2 cos(20 10 )
o
A A12 A22 2A1 A2 A1 A2
2010
x20
0
x10

AM
A1
x0
t o .P x
同方向同频率两个简谐振动的合成仍为简谐振动。
讨论两个特例
x
(1)两个振动同相
20 10 2k , k 0,1,2,...
由 A A12 A22 2A1 A2 cos(20 10 ) o
2 2
振幅随时间的变化非常缓慢
x

第二节 两个简谐振动的合成

第二节  两个简谐振动的合成

A12 A22 2A1A2 cos(02 01)
A A12 A22 2A1A2 cos
[注:cos( ) cos cos sin sin ]
A值的讨论,有三种情况:
(1) 2k
cos 1
A A1 A2
A值最大
(2) (2k 1) cos 1
A A1 A2 (3) 为其它值
波器显示屏上出现合成结果的图形,见右图。求x ?
解:
x y
m n
Y方向切点数 X方向切点数
x 3 x y 2 1000
x 1500 Hz
本节小结
同方向
1
2
简谐振动 A A12 A22 2A1A2 cos
同方向 1 2 拍 2 1
垂直方向
x m y n
李萨如图
x y
两个简谐振动的步调比较
同相:若两个简谐振动的频率相同、初相位相同,则两个简谐 振动的位移同时达到最大和最小。
x
1
2
t3
t1
t2
t4
t
0 ,同相
反相:若两个简谐振动的频率相同、初相位相差π,则一个振
动到达最大位移处时,另一个振动到达反向最大位移处。
1
x
t1
t2
t3
t4
t
2
,反相
超前与落后:若两个简谐振动的频率相同,初相位之差为
Y2 B2
1
X 0 t1 0 Y B
t2
2
X A Y 0
X 0 t3 Y B
t4
3 2
X A Y 0
t4 t3
t2
t1 Y超前π/2
右旋振动
t1 t2
t3
t4 Y落后π/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消去时间t,得
x2 A12
y2 A22
2xy A1 A2
cos(2
1)
sin 2 (2
1)
椭圆方程。质点的运动轨迹是椭圆。
(1)2 1 0 ,两分振动同相:
x A1 y A2 质点在Ⅰ、Ⅲ象限沿 过原点的直线运动。t时 刻质点离开原点的位移
s x2 y2
A12 A22 cos( t )
A1=A2:右旋圆运动
(4)2
1
2
,y 比 x 落后 2 :
x2 y2 1 A12 A22
质点按分振动的周 期作左旋正椭圆运动
A1=A2:左旋圆运动
(5)当 2 1 取其他值时,合振动的轨迹一
般为斜椭圆。 与上述合成过程相反,一个圆运动或椭圆运
动可以分解成两个互相垂直的同频率简谐振动 这在分析光的偏振时要经常用到
*10.2.4 互相垂直的不同频率简谐振动的合成
合振动的轨迹一般是不稳定的。但当两个分 振动的频率比恰好等于简单的整数比时,合振 动的轨迹是稳定的封闭曲线,称为李萨如图。
李萨如图
判定两种频率是否成整数比,据此可由已知 频率确定未知频率。
以上有不当之处,请大家给与批评指正, 谢谢大家!
15
A A12 A22 2A1A2 A1 A2 振动相消,合振幅极小。
A A12 A22 2A1A2 A1 A2 当A1=A2时,A=0,即两个等幅反相的振动互 相抵消。
(3)当 2 1 取其他值时: |A1 A2|< A < A1+ A2
10.2.2 同方向、不同频率简谐振动的合成
拍频 :单位时间内振动加强或减弱的次数
振幅 2Acos (2 1)t 的频率
2 由于是绝对值,所以
2
1
2
2
2
1
拍频等于两个分振动的频率之差
10.2.3 互相垂直的同频率简谐振动的合成
质点同时参与沿x、y轴方向的两个同频率的 简谐振动
x A1 cos( t 1), y A2 cos( t 2 )
合振动是频率与分振动相同的简谐振动
(2)2 1 ,两分振动反相:
x A1 y A2
质点在Ⅱ、Ⅳ象限 沿过原点的直线作简谐 振动,频率与分振动相 同。
(3)2
1
2
,y 比 x 超前
2

x2 A12
y2 A22
1
质点的运动轨迹是以
坐标轴为主轴的正椭圆 (或圆) 不是简谐振动!
按顺时针方向作右旋正 椭圆运动,运动周期仍等 于分振动的周期。
10.2 两个简谐振动的合成
同方向、同频率简谐振动的合成
10.2.1 同方向、同频率简谐振动的合成 质点同时参与两个同方向、 同频率的简谐振动
x1 A1 cos( t 1)
x2 A2 cos( t 2 )
合振动仍是一个角 频率为ω的简谐振动:
x x1 x2 Acos( t )
A A12 A22 2A1 A2 cos(2 1) tan A1 sin 1 A2 sin 2
A1 cos1 A2 cos2
A A12 A22 2A1 A2 cos(2 1) (1)两分振动同相:2 1 2k , k 0,1,2,
cos(2 1) 1
A A12 A22 2A1 A2 A1 A2 振动相长,合振幅极大。
(2)两分振动反相:2 1 (2k 1) , k 0,1,2, cos(2 1) 1
x1 Acos1t, x2 Acos2t, 设 2 1
x
x1
x2
2 A c os
(2
1)t
2
cos
(1
2
2
)t
合振动不是简谐振动。一种重要的特殊情况:
2、1 较大,2 1 ຫໍສະໝຸດ 1 2振幅:2Acos (2 1)t ,角频率:1 2
2
2
频率都较大且频率差很小的两个同方向简谐
振动,在合成时会产生合振幅时强、时弱的现 象,这称为拍。
相关文档
最新文档