专题卷16分类讨论思想(解析版)
中考数学专题《分类讨论思想在压轴题中的应用》原卷

专题20 分类讨论思想在压轴题中的应用分类讨论思想是一个非常重要的数学思想,在中考数学压轴题中考查频繁,例如在解决中考压轴题中的存在性问题时,要用到分类讨论思想:1.在解决等腰三角形存在性问题时,需要讨论腰和底的多种情况;2.在解决直角三角形存在性问题时,需要对直角的情况进行讨论;3.在解决平行四边形和矩形、菱形、正方形的存在性时,需要对邻边或对边的情况进行讨论;4.在解决相似三角形存在性问题时,需要对对应边和对应角进行分类讨论;5.压轴题中其他的问题,例如线段的数量和位置关系等,有时也需要进行分类讨论。
(2022·辽宁阜新·统考中考真题)如图,已知二次函数2y x bx c =-++的图像交x 轴于点()1,0A -,()5,0B ,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒(05t <<).当t 为何值时,BMN V 的面积最大?最大面积是多少?(3)已知P 是抛物线上一点,在直线BC 上是否存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 坐标;若不存在,请说明理由.(1)用待定系数法可求得二次函数的表达式为;(2)过点M 作ME x ⊥轴于点E ,设BMN V 面积为S ,由ON t =,BM =,可得5BN t =-,45ME BMsin t =︒==,即得()21115255()22228S BN ME t t t =⋅=-⋅=--+,由二次函数性质可得当52t =秒时,BMN V 的面积最大,求得其最大面积;(3)由()5,0B ,()0,5C 得直线BC 解析式为5y x =-+,设(),5Q m m -+,()2,45P n n n -++,分三种情况进行讨论求解.【答案】(1)245y x x =-++(2)当52t =时,BMN V 的面积最大,最大面积是258(3)存在,Q 的坐标为()7,12-或()7,2-或()1,4或()2,3【详解】(1)将点()1,0A -,()5,0B 代入2y x bx c =-++中,得010255b c b c =--+⎧⎨=-++⎩,解这个方程组得45b c =⎧⎨=⎩,∴二次函数的表达式为245y x x =-++;(2)过点M 作ME x ⊥轴于点E ,如图:设BMN V 面积为S ,根据题意得:ON t =,BM =.()5,0B ,5BN t ∴=-,在245y x x =-++中,令0x =得5y =,()0,5C ∴,5OC OB ∴==,45OBC ∠∴=︒.45ME BMsin t ∴=︒==,()22111515255()2222228S BN ME t t t t t ∴=⋅=-⋅=-+=--+,05t << ,∴当52t =时,BMN V 的面积最大,最大面积是258;(3)存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形,理由如下:由()5,0B ,()0,5C 得直线BC 解析式为5y x =-+,设(),5Q m m -+,()2,45P n n n -++,又()1,0A -,()0,5C ,①当PQ ,AC 是对角线,则PQ ,AC 的中点重合,21054505m n m n n +=-+⎧∴⎨-+-++=+⎩,解得0(m =与C 重合,舍去)或7m =-,()7,12Q ∴-;②当QA ,PC 为对角线,则QA ,PC 的中点重合,21050455m n m n n -=+⎧∴⎨-++=-+++⎩,解得0(m =舍去)或7m =,()7,2Q ∴-;③当QC ,PA 为对角线,则QC ,PA 的中点重合,20155450m n m n n +=-⎧∴⎨-++=-+++⎩,解得1m =或2m =,()1,4Q ∴或()2,3,综上所述,Q 的坐标为()7,12-或()7,2-或()1,4或()2,3.本题考查二次函数的综合应用,涉及待定系数法,三角形面积,平行四边形的性质及应用,解题的关键是用含字母的式子表示相关点的坐标和相关线段的长度.(2022·湖南湘潭·统考中考真题)已知抛物线2y x bx c =++.(1)如图①,若抛物线图象与x 轴交于点()3,0A ,与y 轴交点()0,3B -.连接AB .①求该抛物线所表示的二次函数表达式;②若点P 是抛物线上一动点(与点A 不重合),过点P 作PH x ⊥轴于点H ,与线段AB 交于点M .是否存在点P 使得点M 是线段PH 的三等分点?若存在,请求出点P 的坐标;若不存在,请说明理由.(2)如图②,直线43y x n =+与y 轴交于点C ,同时与抛物线2y x bx c =++交于点()3,0D -,以线段CD 为边作菱形CDFE ,使点F 落在x 轴的正半轴上,若该抛物线与线段CE 没有交点,求b 的取值范围.(1)①直接用待定系数法求解;②先求出直线AB 的解析式,设点M (m ,m -3)点P (m ,m 2-2m -3)若点M 是线段PH 的三等分点,则13HM HP =或23HM HP =,代入求解即可;(2)先用待定系数法求出n 的值,再利用勾股定理求出CD 的长为5,因为四边形CDFE 是菱形,由此得出点E 的坐标.再根据该抛物线与线段CE 没有交点,分两种情况(CE 在抛物线内和CE 在抛物线右侧)进行讨论,求出b 的取值范围.【答案】(1)①2=23y x x --,②存在,点P 坐标为(2,-3)或(12,-154),理由见解析(2)b <32-或b >133【详解】(1)①解:把()3,0A ,()0,3B -代入2y x bx c =++,得20333b c c ⎧=++⎨-=⎩,解得:23b c =-⎧⎨=-⎩,∴2=23y x x --②解:存在,理由如下,设直线AB 的解析式为y =kx +b ,把()3,0A , ()0,3B -代入,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩,∴直线AB 的解析式为y =x -3,设点M (m ,m -3)、点P (m ,m 2-2m -3)若点M 是线段PH 的三等分点,则13HM HP =或23HM HP =,即232331m m m -=--或232332m m m -=--,解得:m =2或m =12或m =3,经检验,m =3是原方程的增根,故舍去,∴m =2或m =12∴点P 坐标为(2,-3)或(12,-154)(2)解:把点D (-3,0)代入直线43y x n =+,解得n =4,∴直线443y x =+,当x =0时,y =4,即点C (0,4)∴CD =5,∵四边形CDFE 是菱形,∴CE =EF =DF =CD =5,∴点E (5,4)∵点()3,0D -在抛物线2y x bx c =++上,∴(-3)2-3b +c =0,∴c =3b -9,∴239y b x bx =++-,∵该抛物线与线段CE 没有交点,分情况讨论当CE 在抛物线内时52+5b +3b -9<4解得:b <32-当CE 在抛物线右侧时,3b -9>4解得:b >133综上所述,b <32-或b >133此题考查了二次函数和一次函数以及图形的综合,解题的关键是数形结合和分情况讨论.1.(2023·安徽宿州·统考一模)如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()8,4,OA OC ,分别落在x 轴和y 轴上,将OAB V 绕点O 逆时针旋转,使点B 落在y 轴上,得到ODE V ,OD 与CB 相交于点F ,反比例函数()0k y x x=>的图象经过点F ,交AB 于点G .(1)求k 的值.(2)连接FG ,则图中是否存在与FBG △相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由.(3)点M 在直线OD 上,N 是平面内一点,当四边形GFMN 是正方形时,请直接写出点N 的坐标.2.(2022·河南郑州·河南省实验中学校考模拟)在ABC V 中,AB AC =,E 为边AC 上一点,D 为直线BC 上一点,连AD 、BE ,交于点F .(1)如图1,若60BAC ∠=︒,D 点在线段BC 上,且AE CD =,过B 作BG AD ⊥,求证:12=FG BF ;(2)如图2,若BAC BFD ∠=∠,且3BF AF =,求BD BC 的值;(3)如图3,若60BAC ∠=︒.若3BD CD =,将线段AD 绕点A 逆时针旋转到AH ,并且使得HAC ADB ∠=∠,连接BH 交AC 于P ,直接写出AC PC= ______ .3.(2022·吉林长春·模拟)如图,在ABC V 中,5AB AC ==,6BC =.点P 从点B 出发,沿BC 以每秒2个单位长度的速度向终点C 运动,同时点Q 从点C 出发,沿折线CA AB -以每秒5个单位长度的速度运动,到达点A 时,点Q 停止1秒,然后继续运动.分别连接PQ 、BQ .设点P 的运动时间为t 秒.(1)求点A 与BC 之间的距离;(2)当3BP AQ =时,求t 的值;(3)当PQB V 为钝角三角形时,求t 的取值范围;(4)点P 关于直线AB 的对称点是点D ,连接DQ ,当线段DQ 与ABC V 的某条边平行时,直接写出t 的值.4.(2022·浙江金华·一模)如图,在平面直角坐标系xOy 中,菱形OABC 的顶点A 在x 轴的正半轴上,点C 的坐标为()3,4,点D 从原点O 出发沿O A B →→匀速运动,到达点B 时停止,点E 从点A 出发沿A B C →→随D 运动,且始终保持CDE COA ∠=∠.设运动时间为t .(1)当DE OB ∥时,求证:OCD BCE △≌△.(2)若点E 在BC 边上,当CDE △为等腰三角形时,求BE 的长.(3)若点D 的运动速度为每秒1个单位,是否存在这样的t ,使得以点C ,D ,E 为顶点的三角形与OCD V 相似?若存在,直接写出所有符合条件的t ;若不存在,请说明理由.5.(2022·重庆·模拟)如图,在平面直角坐标系中,抛物线2y x bx c ++=﹣交x 轴于点A 和C (1,0),交y 轴于点B (0,3),抛物线的对称轴交x 轴于点E ,交抛物线于点F .(1)求抛物线的解析式;(2)将线段OE 绕着点O 沿顺时针方向旋转得到线段OE ',旋转角为α(0°<α<90°),连接,AE BE '',求13BE AE '+'的最小值;(3)M 为平面直角坐标系中一点,在抛物线上是否存在一点N ,使得以A ,B ,M ,N 为顶点的四边形为矩形?若存在,请直接写出点N 的横坐标;若不存在,请说明理由.6.(2022·广东佛山·校考三模)已知抛物线223(0)y ax ax a a =--<交x 轴于点A ,(B A 在B 的左侧),交y 轴于点C .(1)求点A 的坐标;(2)若经过点A 的直线y kx k =+交抛物线于点D .①当0k >且1a =-时AD 交线段BC 于E ,交y 轴于点F ,求ΔΔEBD CEF S S -的最大值;②当0k <且k a =时,设P 为抛物线对称轴上一动点,点Q 是抛物线上的动点,那么以A ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标,若不能,请说明理由.7.(2022·广东江门·校考一模)如图,抛物线26y ax x =++的图象与直线y kx b =+有唯一交点()1,4A -.(1)求抛物线和直线的解析式;(2)若点拋物线与x 轴的交点分别为点M 、N ,抛物线的对称轴上是否存在一点P ,使PA PM +的值最小?如果有,请求出这个最小值,如果没有,请说明理由.(3)直线y kx b =+与x 轴交于点B ,点Q 是x 轴上一动点,请你写出使QAB V 是等腰三角形的所有点Q 的横坐标.8.(2022·广东佛山·校考三模)如图1,AD 、BD 分别是ABC ∆的内角BAC ∠、ABC ∠的平分线,过点A 作AE AD ⊥,交BD 的延长线于点E .(1)求证:12E C ∠=∠;(2)如图2,如果AE AB =,且:2:3BD DE =,求cos ABC ∠的值;(3)如果ABC ∠是锐角,且ABC ∆与ADE ∆相似,求ABC ∠的度数,并直接写出ADE ABC S S ∆∆的值.。
专题 分类讨论思想在勾股定理中的应用(四大题型)(原卷版)-2024-2025学年八年级数学上册同步

(苏科版)八年级上册数学《第3章 勾股定理》专题 分类讨论思想在勾股定理中的应用【例题1】直角三角形的两条边长为5和12,它的斜边长为( )A .13B .√119 C .13或√119 D .13或12题型一 直角边和斜边不明确时需分类讨论【变式1-1】(2021•滨州模拟)已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .5B .7+√7C .12D .12或7+√7【变式1-2】(2022秋•肃州区期末)已知直角三角形两边的长分别为3cm ,4cm ,则以第三边为边长的正方形的面积为 .【变式1-3】如图,长方形ABCD 中,AD =BC =6,AB =CD =10.点E 为射线DC 上的一个动点,△ADE 与△AD ′E 关于直线AE 对称,当△AD ′B 为直角三角形时,DE 的长为( )A .2或8B .83或18C .83或2D .2或18【变式1-4】(2022春•绥江县期中)如图,在△ABC 中,AC =5,D 为BC 边上一点,且CD =1,AD =√26,BD =4,点E 是AB 边上的动点,连接DE .(1)求AB 的长;(2)当△BDE 是直角三角形时,求AE 的长.【变式1-5】(2022秋•崇义县月考)在四边形ABCD 中,AB =4,AD =3,BC =12,CD =x ,AB ⊥AD .(1)求BD的长;(2)若△BCD是直角三角形,求x的值.【变式1-6】(2022秋•宛城区校级期末)已知:如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为ts.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.题型二锐角和钝角不明确时需分类讨论【例题2】(2022春•兰山区期中)已知△ABC中,AB=17,AC=10,BC边上的高AH=8,则BC的长是()A.21B.15C.6D.21或9【变式2-1】(2021秋•海门市期末)△ABC中,AB=20,AC=13,高AD=12,则△ABC的面积为()A.66B.126C.54或44D.126或66【变式2-2】在△ABC中,AB=17,AC=10,BC边上的高AD=8,求△ABC的周长.【变式2-3】等腰△ABC的腰长AB=AC=10,一腰上的高BD=6,则底边BC=.【变式2-4】△ABC中,AB=AC=5,S△ABC=7.5,则BC的长为.【变式2-5】等腰三角形一腰长为5,一边上的高为3,求底边长.【例题3】(2022秋•南岗区校级期末)在矩形ABCD中,点E在AD边上,△BCE是以BE为一腰的等腰三角形,若AB=4,BC=5,则线段DE的长为.【变式3-1】(2022秋•新昌县校级期中)如图,在等腰△ABC中,AB=CB.AD⊥BC.垂足为D.已知AD=3,CD=1.(1)求AC与AB的长.(2)点P是线段AB上的一动点,当AP为何值时,△ADP为等腰三角形.【变式3-2】(2022秋•禅城区校级月考)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.题型三腰和底不明确时需分类讨论(1)在图1中,当AB=AD=10m时,求△ABD的周长;(2)在图2中,当BA=BD=10m时,求△ABD的周长;(3)在图3中,当DA=DB时,求△ABD的周长.【变式3-3】(2022秋•大丰区期中)如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC:BC=3:4,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【变式3-4】已知:如图,△ABC的面积为84,BC=21,现将△ABC沿直线BC向右平移a(0<a<21)个单位到△DEF的位置.(1)求BC边上的高;(2)若AB=10,①求线段DF的长;②连接AE,当△ABE是等腰三角形时,求a的值.【变式3-5】(2022秋•永春县期末)如图△ABC中,∠ACB=90°,AC=12,BC=5.(1)求AB的长;(2)若动点P从点C开始以每秒1个单位的速度,按C→A→B的路径运动,设运动的时间为t秒,当t为何值时,△BCP为等腰三角形?【变式3-6】(2022春•铁西区期中)如图,△ABC中,∠ABC=90°,AC=20,BC=12.(1)直接写出AB的长度.(2)设点P在AB上,若∠P AC=∠PCA.求AP的长;(3)设点M在AC上,若△MBC为等腰三角形,直接写出AM的长.【变式3-7】如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t(t>0)秒.(1)AC=cm;(2)若点P恰好在AB的垂直平分线上,求此时t的值;(3)在运动过程中,当t为何值时,△ACP是以AC为腰的等腰三角形(直接写出结果)?【变式3-8】(2022春•福田区校级期中)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B 开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发4秒后,求PQ的长;(2)从出发几秒钟后,△PQB第一次能形成等腰三角形?(3)当点Q运动到CA上时,求能使△BCQ是等腰三角形时点Q的运动时间,请直接写出t的值.【变式3-9】(2022秋•南关区校级期末)如图,在△ABC中,∠ABC=90°,AC=13,BA=5,点P从点C出发,以每秒3个单位长度的速度沿折线C﹣A﹣B运动.设点P的运动时间为t(t>0).(1)BC=.(2)求斜边AC上的高线长.(3)①当P在AB上时,AP的长为,t的取值范围是.(用含t的代数式表示)②若点P在∠BCA的角平分线上,则t的值为.(4)在整个运动过程中,直接写出△P AB是以AB为一腰的等腰三角形时t的值.题型四分类讨论思想在勾股定理的综合应用【例题4】(2022春•海淀区校级期中)在Rt△ABC中,∠ACB=90°,AC=BC=1,点Q在直线BC上,且AQ=2,则线段BQ的长为.【变式4-1】(2022秋•南阳期末)如图,在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P 从点A出发,以1cm/s的速度沿折线A﹣C﹣B﹣A运动.设运动时间为t(t>0)s.当点P运动到恰好到点A和点B的距离相等的位置时,t的值为.【变式4-2】(2022春•思明区校级期中)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.【变式4-3】(2023春•乳山市期末)如图,在△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P 从点B出发沿射线BC以每秒1cm的速度运动,设运动的时间为t秒.(1)若△ABP是以BP为斜边的直角三角形,求t的值;(2)若△ABP是以BP为腰的等腰三角形,求t的值.【变式4-4】如图,△ABC中,∠C=90°,CA=8cm,CB=6cm,D为动点,沿着C→A→B→C的路径运动(再次到达C点则停止运动),点D的运动速度为2cm/秒,设点D运动时间为t秒.(1)当点D在AC上运动时,若DC=BC,则t=;(2)若点D与△ABC某一顶点的连线平分△ABC的周长,求t的值.【变式4-5】(2022秋•姑苏区校级月考)如图1,△ABC中,CD⊥AB于D,且BD;AD:CD=2:3:4.(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时,整个运动都停止,设点M运动的时间为t(秒),若△DMN的边与BC平行,求t的值.【变式4-6】如图,在Rt△ABC中,∠ABC=90°,AB=20,BC=15,AD为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,设点D运动的时间为t秒,速度为每秒2个单位长度.(1)当t为何值时,△CBD是直角三角形;(2)若△CBD是等腰三角形,求t的值.【变式4-7】(2022春•广州期中)在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求斜边AB 上的高;(2)①当点P 在BC 上时,PC = ;(用含t 的代数式表示)②若点P 在∠BAC 的角平分线上,求t 的值.【变式4-8】(2021秋•青岛期末)已知△ABC 中,∠B =90°,AB =8cm ,BC =6cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,在BC 边上的运动速度是每秒2cm ,在AC 边上的运动速度是每秒1.5cm ,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t 秒.(1)出发2秒后,求PQ 的长;(2)当点Q 在边BC 上运动时,t 为何值时,△ACQ 的面积是△ABC 面积的13; (3)当点Q 在边CA 上运动时,t 为何值时,PQ 将△ABC 周长分为23:25两部分.【变式4-9】如图,△ABC 中,BA =BC ,CO ⊥AB 于点O ,AO =4,BO =6.(1)求BC ,AC 的长;(2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连接OE.当点D在线段OB上时,若△AOE 是以AO为腰的等腰三角形,请求出所有符合条件的OD的长.。
初中分类讨论专题训练(含详解)

分类讨论专题训练1.已知,且,则的值等于()A. 或B. 或C. 或D. 或2.已知,,则的值等于()A. 或B. 或C.D.3.在同一直线上有、、、四点,已知,,且,求的长.4.如图,点在射线上,若,,点是线段的中点,则的长为________.5.在直线上有,,三个点,已知,点是的中点,且,求线段的长.6.如图,将一条长为的卷尺铺平后沿着图中箭头的方向折叠,使得卷尺自身的一部分重合,然后在重合部分沿与卷尺的边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度比为,则折痕对应的刻度可能的值有________.7. 阅读下面材料并解决有关问题:我们知道:.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式时,可令和,分别求得(称分别为与的零点值).在实数范围内,零点值和可将全体实数分成不重复且不遗漏的如下种情况:①;②;③.从而化简代数式可分以下种情况:①当时,原式;②当时,原式;③当时,原式.综上讨论,原式.通过以上阅读,请你解决以下问题:1. 化简代数式.2.求的最大值.8. 如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为(大于)秒.1.点表示的数为________.2.当点运动到达点处时运动时间为________秒.3.运动过程中点表示的数的表达式为________.(用字母的式子表示).4.求当等于多少秒时,之间的距离为个单位长度.9. 如图,已知平分,射线在的内部,.1. 求的度数.2.作射线,使射线是三等分线,则的度数为________.10. 甲、乙两人从、两地同时出发,沿同一条路线相向匀速行驶,已知出发后经小时两人相遇,相遇时乙比甲多行驶了千米,相遇后再经小时乙到达地.1.甲,乙两人的速度分别是多少?2.两人从、两地同时出发后,经过多少时间后两人相距千米?11. 如图,已知直线上有一点,点、同时从出发,在直线上分别向左、向右做匀速运动,且、的速度之比是:,设运动时间为.1.当时,,此时,点的运动速度是________,点运动的速度是________.2.若点为直线上一点,且,求的值.3.如图,在的条件下,若、同时按原速向左运动,再经过几秒,?参考答案1.【答案】B【解析】解:,时,,则;时,,则.故选B.【知识点】绝对值的定义、综合-分类讨论2.【答案】B【解析】解:,,,,,当,时,,,,;当,时,,,,;故选B.【知识点】代入参数、综合-分类讨论3.【答案】或或【解析】解:依题意,有以下种情况,情况如图,,,设,则,,,,,.情况如图,,,设,则,,,,,,.情况如图,即,,,,,,,,.情况如图,,即,,,,,,,,.综上所述或或.【知识点】数轴上点运动与距离问题、综合-分类讨论4.【答案】或【解析】解:当点在点的左边时,,所以,当点在点的右边时,,所以.故答案为或.【知识点】线段的计算、综合-分类讨论5.【答案】见解析【解析】解:如图.设,则.是的中点,;如图.设,则.是的中点,.综上,当在的延长线上时,.当在的延长线上时,.【知识点】线段的计算、综合-分类讨论6.【答案】【解析】解:三段长度由短到长的比为,三段长度分别为:.①当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;②当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;③当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;④当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;⑤当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;⑥当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;综上所述,折痕对应的刻度有种可能:.【知识点】线段的计算、综合-分类讨论7.(1)【答案】见解析【解析】当时,;当时,;当时,.【知识点】绝对值分类讨论化简【解析】当时,原式,当时,原式,当时,原式,则的最大值为.点睛:本题考查了绝对值的意义,一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,即.【知识点】一元一次不等式的概念、综合-分类讨论8.(1)【答案】【解析】解:.【知识点】绝对值化简8.(2)【答案】【解析】解:(秒).【知识点】绝对值化简、动点问题8.(3)【答案】【解析】解:点每秒钟运动个单位,即秒钟运动个单位,起点为,则表达式为.【知识点】动点问题8.(4)【答案】见解析【解析】解:当点在点的左边时,,则秒,当点在点的右边时,,则秒,综上所述,当等于或者秒时,、之间的距离为个单位长度.【知识点】动点问题、综合-分类讨论【解析】因为,平分,可得.又,故可得.【知识点】角平分线、角的计算9.(2)【答案】或【解析】解:分两种情况求解即可.①当时,.,.②当时,.,.【知识点】角的计算、综合-分类讨论10.(1)【答案】见解析【解析】解:设甲的速度为千米/时,则,解得,,,即甲的速度为千米/时,乙的速度为千米/时.【知识点】一元一次方程的应用-行程10.(2)【答案】见解析【解析】解:设经过小时后两人相距千米,则或,解得,或,即经过小时或小时后两人相距千米.【知识点】一元一次方程的应用-行程、综合-分类讨论11.(1)【答案】见解析【解析】解:设点的运动速度为,点运动的速度为,由题意,得,解得:,即点的运动速度是,点运动的速度是.故答案为:.【知识点】一元一次方程的其他应用、动点问题11.(2)【答案】见解析【解析】解:如图所示,当在线段之间时,,,,设,则,,,;如图所示,当在的延长线上时,,,,设,则,,,.答:或.【知识点】线段的计算、综合-分类讨论11.(3)【答案】见解析【解析】解:设,同时按原速向左运动,再经过秒,,由题意,得或,解得:或.答:再经过秒或秒,.【知识点】一元一次方程的其他应用、动点问题。
新人教高考复习专题--分类讨论思想共19页文档

三、灵活运用逻辑划分的思想方法
1.通过“补集”间接求解。 2.有条件时,尽量减少分类层次,寻求整体解决方法。
Ⅰ、再现性题组:
1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R}, 若AB,那么a的范围是_________。
A.0≤a≤1;B.a≤1;C.a<1;D.0<a<1。
当a=0时,f(x)=-2x+2 , f(1)=0,f(4)=-6,∴不合题意
由上而得,实数a的取值范围是a > 1 。 2
(x4a)(x6a)
1
例4.解不等式
2a1 >0 (a为常数,a≠- 2 )
【分析】含参不等式,参数a决定了2a+1的符号和两根
1
1
-4a、6a的大小,故对a>0、a=0、-
loa(1 gx)loga(1x2)>0;
当a>1时,| loga(1x)|-| loga(1x)|=……
由①、②可知,……
例2.已知集合A和集合B各含有12个元素,A∩B含有4个元素, 试求同时满足下面两个条件的集合C的个数:①CA∪B且 C中含有3个元素;②C∩A≠φ。
【分析】由已知并结合集合的概念,C中的元素分两类: ①属于A元素;②不属于A而属于B的元素。并由含A中 元素的个数1、2、3,而将取法分三种。
【另解】设z=x+yi,代入得 x2y2x2y22xya i;
x2 y2 2 x2 y2 a ∴ 2xy0
当y=0时,…
例6.在xoy平面上给定曲线y=2x,设点A(a,0),a∈R,曲线上 的点到点A的距离的最小值为f(a),求f(a)的函数表达式。 (本题难度0.40)
专题16 破解恒成立问题【原卷版】

专题16 破解恒成立问题【热点聚焦】从高考命题看,方程有解问题、无解问题以及不等式的恒成立问题,也是高考命题的热点.而此类问题的处理方法较为灵活,用导数解决不等式“恒成立”“存在性”问题的常用方法是分离参数,或构造新函数分类讨论,将不等式问题转化为函数的最值问题.也可以结合题目的条件、结论,采用数形结合法等.【重点知识回眸】(一)参变参数法1.参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2.一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围.3.参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:,等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)(二)构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.1.构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参2.参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论(三)数形结合法1.函数的不等关系与图象特征:()21log a x x -<111ax x e x-+>-(1)若,均有的图象始终在的下方(2)若,均有的图象始终在的上方2.在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3.作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化).作图要突出“信息点”.4.利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义(3)题目中所给的条件大都能翻译成图象上的特征【典型考题解析】热点一 参变分离法解决不等式恒成立问题【典例1】(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( )A .[]0,1B .[]0,2C .[]0,eD .[]1,e【典例2】(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【总结提升】利用分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式.(2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围.热点二 构造函数分类讨论法解决不等式恒成立问题【典例3】(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【典例4】(2022·重庆巴蜀中学高三阶段练习)已知函数()()ln 20f x a x x a =-≠.(1)讨论()f x 的单调性; x D ∀∈()()()f x g x f x <⇔()g x x D ∀∈()()()f x g x f x >⇔()g x(2)当0x >时,不等式()()22cos ea x x f x f x ⎡⎤-≥⎣⎦恒成立,求a 的取值范围. 【规律方法】对于f (x )≥g (x )型的不等式恒成立问题,若无法分离参数,一般采用作差法构造函数h (x )=f (x )-g (x )或h (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或h (x )max ≤0即可.热点三 利用数形结合法解决不等式恒成立问题【典例5】(2013·全国·高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-【典例6】(2015·全国·高考真题(理))设函数()(21)x f x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭【典例7】(2020·全国高二)若关于x 的不等式0x x e ax a ⋅-+<的解集为()m n ,(0n <),且()m n ,中只有一个整数,则实数a 的取值范围是( ).A .211[)e e ,B .221[)32e e ,C .212[)e e ,D .221[)3e e, 【精选精练】一、单选题1.(2022·湖北·黄冈中学模拟预测)对任意的(]12,1,3x x ∈,当12x x <时,1122ln 03x a x x x -->恒成立,则实数a 的取值范围是( )A .[)3,+∞B .()3,+∞C .[)9,+∞D .()9,+∞2.(2021·青海·西宁市海湖中学高三开学考试(文))若函数()2ln f x x x =-,满足() f x a x ≥-恒成立,则a 的最大值为( )A .3B .4C .3ln 2-D .3ln 2+3.(2023·全国·高三专题练习)已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是( )A .21e ,2⎡⎤--⎣⎦B .213,e ∞⎡⎫--+⎪⎢⎣⎭C .213,2e ⎡⎤---⎢⎥⎣⎦D .2211e ,3e ⎡⎤---⎢⎥⎣⎦4.(2021·青海·大通回族土族自治县教学研究室高三开学考试(文))已知函数1()e 2x f x =,直线y kx =与函数()f x 的图象有两个交点,则实数k 的取值范围为( )A .12⎛ ⎝B .)+∞C .(e,)+∞D .1e,2⎛⎫+∞ ⎪⎝⎭ 5.(2022·福建省福安市第一中学高三阶段练习)设函数()()()()1e e ,e 1x x f x x g x ax =--=--,其中R a ∈.若对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立,则a 的最大值为( )A .0B .1eC .1D .e二、多选题6.(2022·重庆南开中学高三阶段练习)已知定义在R 上函数()g x 满足:()()2g x g x =+,且()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,设函数()()f x x g x =+,则下列正确的是( ) A .()f x 的单调递增区间为()()2,21,Z k k k +∈B .()f x 在()2022,2024上的最大值为2025C .()f x 有且只有2个零点D .()f x x ≥恒成立.三、填空题7.(2022·湖北·黄冈中学模拟预测)函数2()2e x f x a bx =++,其中a ,b 为实数,且(0,1)a ∈.已知对任意24e b >,函数()f x 有两个不同零点,a 的取值范围为___________________. 8.(2023·江苏·南京市中华中学高三阶段练习)若关于x 的不等式()()e e ln m x mx m x x mx x x +≤+-恒成立,则实数m 的最小值为________9.(2022·全国·长垣市第一中学高三开学考试(理))已知不等式e ln x a a x x x +≥+对任意()1,x ∈+∞恒成立,则正实数a 的取值范围是___________.10.(2022·重庆南开中学高三阶段练习)已知函数124e ,1()(2)2,1x ax a x f x x a x a x -⎧+->=⎨+--≤⎩,若关于x的不等式()0≤f x 的解集为[)2,-+∞,则实数a 的取值范围是___________.四、解答题11.(2022·全国·高一课时练习)已知函数,()()e 1e x x f x a -=++.(1)若0是函数()2=-y f x 的零点,求a 的值;(2)若对任意,()0x ∈+∞,不等式()1f x a ≥+恒成立,求a 的取值范围.12.(2021·河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R . (1)讨论函数()f x 的单调性;(2)若函数()3f x 在()1,+∞上恒成立,求证:2e a <.(注:3e 20≈)13.(2022·云南省下关第一中学高三开学考试)已知函数()ln (1)f x x x a x a =-++.(1)求函数()f x 的极值;(2)若不等式(1)()(2)e x f x x a a -≤--+对任意[1,)x ∈+∞恒成立,求实数a 的取值范围.14.(2022·甘肃定西·高二开学考试(理))已知函数()ln f x x x =,()23g x x ax =-+-(1)求()f x 在()()e,e f 处的切线方程(2)若存在[]1,e x ∈时,使()()2f x g x ≥恒成立,求a 的取值范围.15.(2016·四川·高考真题(理))设函数f (x )=ax 2-a -ln x ,其中a ∈R.(I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得11()x f x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).16.(2020·河南开封市·高三一模(理))已知函数()()ln 0a f x ax x a =>. (1)当1a =时,求曲线()y f x =在x e =处的切线方程;(2)若()xf x xe ≤对于任意的1x >都成立,求a 的最大值. 17.(2022·广东·高三阶段练习)已知函数()ln(1)1,f x x =+-(1)求证:(1)3f x -≤;(2)设函数21()(1)()12=+-+g x x f x ax ,若()g x 在(0,)+∞上存在最大值,求实数a 的取值范围.18.(2022·浙江嘉兴·模拟预测)已知函数.(注:是自然对数的底数)(1)当时,求曲线在点处的切线方程;(2)若只有一个极值点,求实数a 的取值范围;(3)若存在,对与任意的,使得恒成立,求的最小值. 2()e e,x f x ax a =+-∈R e 2.71828=1a =()y f x =(1,(1))f ()f x b ∈R x ∈R ()f x b ≥-a b。
高考数学专题突破分类讨论思想

( 1)涉及的数学概念是分类讨论的;如绝对值 |a| 的定义分 a>0、 a= 0、 a<0 三种情
况。这种分类讨论题型可以称为概念型。
( 2)运用的数学定理、公式、或运算性质、法则是分类给出的;如等比数列的前
n
项和的公式,分 q=1 和 q≠ 1 两种情况。这种分类讨论题型可以称为性质型。
( 3)求解的数学问题的结论有多种情况或多种可能性;
图象、几何图形的直观性和对称特点有时可以简化甚至避开讨论。
二.命题趋势
分类讨论思想是一种重要的数学思想, 它在人的思维发展中有着重要的作用, 因此在近
几年的高考试题中,他都被列为一种重要的思维方法来考察。
分类讨论是每年高考必考的内容,预测 2008 年对本专题的考察为:将有一道中档或中
档偏上的试题, 其求解思路直接依赖于分类讨论, 特别关注以下方面: 涉及指数、 对数底的
综上所述, CA CB 为常数 1 .
点评:处理直线与圆锥曲线的位置关系时, 待定直线方程需要考虑斜率不存在这种情况,
分类讨论。 例 6.已知直角坐标平面上点
Q( 2,0)和圆 C:x2+y2=1,
动点 M到圆 C 的切线长与 |MQ|的比等于常数 λ (λ > 0)。
求动点 M的轨迹方程,说明它表示什么曲线。
, P,故这个方程为所求的轨迹方程。
当 λ =1 时,方程化为
,它表示一条直线, 该直线与 x 轴垂直且交 x 轴于点
;
当 λ≠1时,方程化为
,它表示圆,该圆圆心的坐标为
,半径为
。
点评: 本题在求出轨迹方程之后,在判定为何曲线时,因参数引起了分类讨论:一些问
题中的数学表达式中因含有会导致不同结论的参数,
历年初三数学中考思想方法-分类讨论思想方法指导及例题解析及答案

中考中的数学思想方法----分类讨论思想一、概述:当我们面对一大堆杂乱的人民币时,我们一般会先分10元,5元,2元,1元,5角,…… 等不同面值把人民币整理成一叠叠的,再分别数出各叠钱数,最后把各叠的钱数加起来得出这一堆人民币的总值。
这样做,比随意一张张地数的方法要快且准确的多,因为这种方法里渗透了分类讨论的思想。
在数学中,分类思想是根据数学本质属性的相同点和不同点,把数学的研究对象区分为不同种类的一种数学思想,正确应用分类思想,是完整解题的基础。
而在中考中,分类讨论思想也贯穿其中,几乎在全国各地的重考试卷中都会有这类试题,命题者经常利用分类讨论题来加大试卷的区分度,很多压轴题也都涉及分类讨论,由此可见分类思想的重要性,下面精选了几道有代表性的试题予以说明。
二、例题导解:1、直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于 .③ 解:①当6、8是直角三角形的两条直角边时,斜边长为10,此时这个三角形的外接圆半径等于21╳ 10 =5 ②当6是这个三角形的直角边,8是斜边时,此时这个三角形的外接圆半径等于21╳ 8=4 2、在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD BD DC 2=·,则∠BCA 的度数为____________。
解:①如图1,当△ABC 是锐角三角形时,∠BCA=90°-25°=65°①如图2,当△ABC 是钝角三角形时,∠BCA=90°+25°=115°图1 图23、如图1,已知Rt ABC △中,30CAB ∠=o,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P .(1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相.切.,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.(1)Q 在Rt ABC △中,305CAB BC ∠==o ,, 210AC BC ∴==.AE BC Q ∥,APE CPB ∴△∽△.::3:1PA PC AE BC ∴==.:3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.Q 在Rt ABE △中,AB =15AE =,tan AE ABE AB ∴∠===60ABE ∴∠=o . 又30PAB ∠=o Q ,9090ABE PAB APB ∴∠+∠=∴∠=o o ,, BE ∴与⊙A 相切.(3)因为5AD AB ==,,所以r的变化范围为5r <<.当⊙A 与⊙C 外切时,10R r +=,所以R的变化范围为105R -<<; 当⊙A 与⊙C 内切时,10R r -=,所以R的变化范围为1510R <<+4、直角坐标系中,已知点P (-2,-1),点T (t ,0)是x 轴上的一个动点.(1) 求点P 关于原点的对称点P '的坐标;C D 图1 图2(2) 当t 取何值时,△P 'TO 是等腰三角形?解:(1)点P 关于原点的对称点P '的坐标为(2,1).(2)5='P O .(a )动点T 在原点左侧. 当51='=O P O T 时,△TO P '是等腰三角形.∴点)0,5(1-T .(b )动点T 在原点右侧.①当P T O T '=22时,△TO P '是等腰三角形.得:)0,45(2T . ② 当O P O T '=3时,△TO P '是等腰三角形.得:点)0,5(3T .③ 当O P P T '='4时,△TO P '是等腰三角形.得:点)0,4(4T .综上所述,符合条件的t 的值为4,5,45,5-. 5、如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D . (1)求直线AB 的解析式;(2)若S 梯形OBCD =433,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P ,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.解:(1)直线AB 解析式为:y=33-x+3.(2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23. ∵ 在Rt △P MO 中,∠OPM =30°,∴ OM =21OP =43;PM =3OM =433.∴3P (43,433).。
2023年高考数学二轮复习讲练测专题16 函数与导数常见经典压轴小题全归类(原卷版)

专题16函数与导数常见经典压轴小题全归类【命题规律】1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.【核心考点目录】核心考点一:函数零点问题之分段分析法模型核心考点二:函数嵌套问题核心考点三:函数整数解问题核心考点四:唯一零点求值问题核心考点五:等高线问题核心考点六:分段函数零点问题核心考点七:函数对称问题核心考点八:零点嵌套问题核心考点九:函数零点问题之三变量问题核心考点十:倍值函数核心考点十一:函数不动点问题核心考点十二:函数的旋转问题核心考点十三:构造函数解不等式核心考点十四:导数中的距离问题核心考点十五:导数的同构思想核心考点十六:不等式恒成立之分离参数、分离函数、放缩法核心考点十七:三次函数问题核心考点十八:切线问题核心考点十九:任意存在性问题核心考点二十:双参数最值问题核心考点二十一:切线斜率与割线斜率核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离)核心考点二十三:两边夹问题和零点相同问题核心考点二十四:函数的伸缩变换问题【真题回归】1.(2022·全国·统考高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1-B .12-C .12D .12.(2022·全国·统考高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 3.(多选题)(2022·全国·统考高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2022·天津·统考高考真题)设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a =--+-.若()f x 至少有3个零点,则实数a 的取值范围为______.5.(2022·全国·统考高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.6.(2022·全国·统考高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.7.(2022·浙江·统考高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________.8.(2022·全国·统考高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 9.(2022·北京·统考高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.【方法技巧与总结】1、求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()f f a 的形式时,应从内到外依次求值;当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2、含有抽象函数的分段函数,在处理时首先要明确目标,即让自变量向有具体解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响).3、含分段函数的不等式在处理上通常有两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解;另一种是通过作出分段函数的图象,数形结合,利用图象的特点解不等式.4、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5、动态二次函数中静态的值:解决这类问题主要考虑二次函数的有关性质及式子变形,注意二次函数的系数、图象的开口、对称轴是否存在不变的性质,二次函数的图象是否过定点,从而简化解题.6、动态二次函数零点个数和分布问题:通常转化为相应二次函数的图象与x 轴交点的个数问题,结合二次函数的图象,通过对称轴,根的判别式,相应区间端点函数值等来考虑.7、求二次函数最值问题,应结合二次函数的图象求解,有三种常见类型: (1)对称轴变动,区间固定; (2)对称轴固定,区间变动; (3)对称轴变动,区间也变动.这时要讨论对称轴何时在区间之内,何时在区间之外.讨论的目的是确定对称轴和区间的关系,明确函数的单调情况,从而确定函数的最值.8、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点…具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.增区间:(), x -∞,0∆≤恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223b x x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d=+++的两个不相等的极值点,那么:① 若()()120f x f x ⋅>,则()f x 有且只有1个零点; ② 若()()120f x f x ⋅<,则()f x 有3个零点; ③ 若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.9、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.10、对于三次函数图象的切线问题,和一般函数的研究方法相同.导数的几何意义就是求图象在该店处切线的斜率,利用导数研究函数的切线问题,要区分“在”与“过”的不同,如果是过某一点,一定要设切点坐标,然后根据具体的条件得到方程,然后解出参数即可.11、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.12、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.13、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.14、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.15、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等. (2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 16、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.【核心考点】核心考点一:函数零点问题之分段分析法模型 【典型例题】例1.(2023·浙江奉化·高二期末)若函数322ln ()x ex mx xf x x -+-=至少存在一个零点,则m 的取值范围为( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎥⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭例2.(2023·天津·耀华中学高二期中)设函数()322ln f x x ex mx x =-+-,记()()f xg x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是 A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .210,e e ⎛⎤+ ⎥⎝⎦C .21e ,e ⎛⎫++∞ ⎪⎝⎭D .2211e ,e e e ⎛⎤--+ ⎥⎝⎦例3.(2023·湖南·长沙一中高三月考(文))设函数()22x xf x x x a e=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( ) A .1(0,1]e+B .1(0,]e e +C .1[,)e e ++∞D .1(,1]e-∞+核心考点二:函数嵌套问题 【典型例题】例4.(2023·全国·高三专题练习)已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3C .4或6D .3或4或6例5.(2023·全国·高三专题练习(文))已知函数()||12x f x e =-,()()11,021ln ,0x x g x x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()0g f x m -=有四个不同的解,则实数m 的取值集合为( ) A .ln 20,2⎛⎫ ⎪⎝⎭B .ln 2,12⎛⎫⎪⎝⎭C .ln 22⎧⎫⎨⎬⎩⎭D .()0,1例6.(2023·河南·高三月考(文))已知函数()ln x f x x=,若关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦有且仅有三个不同的实数解,则实数a 的取值范围是( ) A .()2e,1e --B .()1e,0-C .(),1e -∞-D .()1e,2e -核心考点三:函数整数解问题 【典型例题】例7.(2023·福建宁德·高三)当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的最大值为( ) A .2-B .1-C .0D .1例8.(2023·江苏·苏州大学附属中学高三月考)已知a Z ∈,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13B .21C .26D .30例9.(2023·江苏宿迁·高一月考)用符号[x ]表示不超过x 的最大整数(称为x 的整数部分),如[﹣1.2]=﹣2,[0.2]=0,[1]=1,设函数f (x )=(1﹣ln x )(ln x ﹣ax )有三个不同的零点x 1,x 2,x 3,若[x 1]+[x 2]+[x 3]=6,则实数a 的取值范围是( ) A .10,e ⎛⎫⎪⎝⎭B .ln 31,3e ⎛⎫⎪⎝⎭ C .ln 21,2e ⎡⎫⎪⎢⎣⎭ D .ln 2ln 3,23⎡⎫⎪⎢⎣⎭ 核心考点四:唯一零点求值问题 【典型例题】例10.(2023·安徽蚌埠·模拟预测(理))已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则a =( )A .0B .12-C .1D .2例11.(2023·辽宁沈阳·模拟预测)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12B .13C .2D .3例12.(2023·新疆·莎车县第一中学高三期中)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12B .1或12-C .1-或2D .2-或1核心考点五:等高线问题 【典型例题】例13.(2023·陕西·千阳县中学模拟预测(理))已知函数2()log 1f x x =-,若方程()f x a =(0)a >的4个不同实根从小到大依次为1x ,2x ,3x ,4x ,有以下三个结论:①142x x +=且232x x +=;②当1a =时,12111x x +=且34111x x +=;③21340x x x x +=.其中正确的结论个数为( ) A .0 B .1 C .2 D .3例14.(2023·江苏省天一中学高三月考)已知函数2()(2)x f x x x e =-,若方程()f x a =有3个不同的实根()123123x x x x x x <<,,,则22ax -的取值范围为( ) A .10e⎡⎫-⎪⎢⎣⎭,B.1e⎡-⎢⎣⎭C.()D.(例15.(2023·浙江·高一单元测试)已知函数(){}2max ,32f x x x =-,其中{},max ,,p p q p q q p q ≥⎧=⎨<⎩,若方程()()302f x ax a =+>有四个不同的实根1x 、2x 、3x 、()41234x x x x x <<<,则1423x x x x ++的取值范围是( )A .93,102⎫⎛-- ⎪⎝⎭B .193,102⎫⎛-- ⎪⎝⎭C .39,210⎫⎛- ⎪⎝⎭D .319,210⎫⎛- ⎪⎝⎭核心考点六:分段函数零点问题 【典型例题】例16.(2023·山东青岛·高三期末)已知函数2|ln(1),1()(2),1x x f x x x ⎧+-=⎨+≤-⎩,若方程()0f x m -=有4个不相同的解,则实数m 的取值范围为( ) A .(0,1]B .[0,1)C .(0,1)D .[0,1]例17.(2023·全国·高三专题练习)已知函数2log ,1()11,14x x f x x x >⎧⎪=⎨+≤⎪⎩,()()g x f x kx =-,若函数()g x 有两个零点,则k 的取值范围是( ) A .10,4⎛⎤⎥⎝⎦B .10,ln 2e ⎛⎫ ⎪⎝⎭C .10,e ⎡⎫⎪⎢⎣⎭D .11,42eln ⎡⎫⎪⎢⎣⎭例18.(2023·江苏·高三专题练习)已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,函数()()g x f x x m =++,若()g x 有两个零点,则m 的取值范围是( ). A .[1,)-+∞B .(,1]-∞-C .[0,)+∞D .[1,0)-核心考点七:函数对称问题 【典型例题】例19.(2023·安徽省滁州中学高三月考(文))已知函数()22ln ,03,02x x x x f x x x x ->⎧⎪=⎨--≤⎪⎩的图象上有且仅有四个不同的点关于直线1y =的对称点在10kx y +-=的图象上,则实数k 的取值范围是A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭例20.(2023·全国·高一课时练习)若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数()f x 的图象上;②P ,Q 关于原点对称,则称点对[],P Q 是函数()f x 的一个“友好点对”(注:点对[],P Q 与[],Q P 看作同一个“友好点对”).已知函数()22log ,04,0x x f x x x x >⎧=⎨--≤⎩,则此函数的“友好点对”有( )A .0个B .1个C .2个D .3个例21.(2023·福建·厦门一中高一竞赛)若函数y =f (x )图象上存在不同的两点A ,B 关于y 轴对称,则称点对[A ,B ]是函数y =f (x )的一对“黄金点对”(注:点对[A ,B ]与[B ,A ]可看作同一对“黄金点对”)已知函数2229,0()4,041232,4x x f x x x x x x x +<⎧⎪=-+≤≤⎨⎪-+>⎩,则此函数的“黄金点对”有( )A .0对B .1对C .2对D .3对核心考点八:零点嵌套问题 【典型例题】例22.(2023·湖北武汉·高三月考)已知函数2()()(1)()1x x f x xe a xe a =+-+-有三个不同的零点123,,x x x .其中123x x x <<,则3122123(1)(1)(1)x x x x e x e x e ---的值为( )A .1B .2(1)a -C .1-D .1a -例23.(2023·全国·模拟预测(理))已知函数2()e e x x x ax f x a ⎛⎫=+- ⎪⎝⎭有三个不同的零点123,,x x x (其中123x x x <<),则3122312111e e ex x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1B .1-C .aD .a -例24.(2023·浙江省杭州第二中学高三开学考试)已知函数()()()2ln ln f x ax x x x x =+--,有三个不同的零点,(其中123x x x <<),则2312123ln ln ln 111x x x x x x ⎛⎫⎛⎫⎛⎫---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1a - B .1a - C .-1 D .1核心考点九:函数零点问题之三变量问题 【典型例题】例25.(2023·全国·高三)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞,, C .3(0]2e,D .3[)2e+∞, 例26.(2023·山东枣庄·高二期末)对于任意的实数[1,e]x ∈,总存在三个不同的实数y ,使得ln 0ye xy x ay y--=成立,其中e 为自然对数的底数,则实数a 的取值范围是A .2(,)4e -∞-B .2(,0)4e -C .2[,)4e -+∞D .2(,)4e -+∞例27.(2023·四川省新津中学高三月考(理))若存在两个正实数,x y ,使得等式330yx x e ay -=成立,其中e 为自然对数的底数,则实数a 的取值范围为A .2[,)8e +∞B .3(0,]27eC .3[,)27e +∞D .2(0,]8e核心考点十:倍值函数 【典型例题】例28.(河南省郑州市第一中学2022-2023学年高三上学期期中考试数学(理)试题)对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时的值域为[](),0ka kb k >,则称()y f x =为k 倍值函数.若()2xf x e x =+是k倍值函数,则实数k 的取值范围是( ) A .()1,e ++∞B .()2,e ++∞C .1,e e ⎛⎫++∞ ⎪⎝⎭D .,e e 2⎛⎫++∞ ⎪⎝⎭例29.(2023·四川·内江市教育科学研究所高二期末(文))对于函数()y f x =,若存在区间,a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()xf x e =是k 倍值函数,则k 的取值范围为( )A .10,e ⎛⎫⎪⎝⎭B .()1,eC .(),e +∞D .1,e ⎛⎫+∞ ⎪⎝⎭例30.(2023·吉林·长春十一高高二期中(理))对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()ln f x x x =+是k 倍值函数,则k 的取值范围为( ) A .10,e ⎛⎫ ⎪⎝⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .11,1e ⎛⎫+ ⎪⎝⎭D .11,e ⎛⎫++∞ ⎪⎝⎭核心考点十一:函数不动点问题 【典型例题】例31.(2023·广东海珠·高三期末)设函数()f x a R e ∈,为自然对数的底数),若曲线y x x =上存在点00()x y ,使得00()f y y =,则a 的取值范围是( ) A .1e[1]e-, B .1e[e 1]e-+, C .[1e 1]+, D .[1,e]例32.(2023·山西省榆社中学高三月考(理))若存在一个实数t ,使得()F t t =成立,则称t 为函数()F x 的一个不动点.设函数()1(xg x e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的连续函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.若存在01|()(1)2x x f x f x x ⎧⎫∈+-+⎨⎬⎩⎭,且0x 为函数()g x 的一个不动点,则实数a 的取值范围为( )A .⎛⎫-∞ ⎪ ⎪⎝⎭ B .⎡⎫+∞⎪⎢⎪⎣⎭ C .⎛⎤⎥ ⎝⎦ D .⎛⎫+∞⎪ ⎪⎝⎭例33.(2023·四川自贡·高二期末(文))设函数()()1ln 2=+-∈f x x x a a R ,若存在[]1,b e ∈(e 为自然对数的底数),使得()()f f b b =,则实数a 的取值范围是( ) A .1,122⎡⎤--⎢⎥⎣⎦eB .e 1,ln 212⎡⎤--⎢⎥⎣⎦C .1,ln 212⎡⎤--⎢⎥⎣⎦D .1,02⎡⎤-⎢⎥⎣⎦核心考点十二:函数的旋转问题 【典型例题】例34.(2023·上海市建平中学高三期末)双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数f (x )的图象,关于此函数f (x )有如下四个命题,其中真命题的个数为( ) ①f (x )是奇函数;②f (x )的图象过点32⎫⎪⎪⎝⎭或32⎫-⎪⎪⎝⎭; ③f (x )的值域是33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;④函数y =f (x )-x 有两个零点. A .4个B .3个C .2个D .1个例35.(2023·山东青岛·高三开学考试)将函数2([3,3])y x =∈-的图象绕点(3,0)-逆时针旋转(0)ααθ≤≤,得到曲线C ,对于每一个旋转角α,曲线C 都是一个函数的图象,则θ最大时的正切值为( )A .32B .23C .1D 例36.(2023·浙江·高三期末)将函数π2sin 0,22x y x ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的图像绕着原点逆时针旋转角α得到曲线T ,当(]0,αθ∈时都能使T 成为某个函数的图像,则θ的最大值是( )A .π6B .π4C .3π4D .2π3核心考点十三:构造函数解不等式 【典型例题】例37.(2023·江西赣州·高三期中(文))已知函数()()f x x R ∈满足(1)1f =,且()f x 的导数1()2f x '>,则不等式||1(||)22x f x <+的解集为( ) A .(,1)-∞-B .(1,)+∞C .(1,1)-D .(,1][1,)-∞-+∞例38.(2023·全国·高二课时练习)设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<,()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0+∞,B .()2019+∞,C .()0-∞,D .()()02019-∞+∞,,例39.(2023·全国·高二课时练习)已知()f x 的定义域为0,,()'f x 为()f x 的导函数,且满足()()f x xf x '<-,则不等式()()()2111f x x f x +>--的解集是( )A .0,1B .2,C .1,2D .1,核心考点十四:导数中的距离问题 【典型例题】例40.(2023春•荔湾区期末)设函数22()()(22)f x x a lnx a =-+-,其中0x >,a R ∈,存在0x 使得04()5f x 成立,则实数a 的值是( ) A .15B .25C .12D .1例41.(2023•龙岩模拟)若对任意的正实数t ,函数33()()()3f x x t x lnt ax =-+--在R 上都是增函数,则实数a 的取值范围是( )A .1(,]2-∞B .(-∞C .(-∞D .(-∞,2]例42.(2023•淮北一模)若存在实数x 使得关于x 的不等式2221()22x e a x ax a -+-+成立,则实数a 的取值范围是( ) A .1{}2B .1{}4C .1[2,)+∞D .1[4,)+∞核心考点十五:导数的同构思想 【典型例题】例43.(2023·全国·高三专题练习)已知关于x 的不等式ln ln(1)0x e mx x m ---+≥在(0,)+∞恒成立,则m 的取值范围是( ) A .(]1,1-B .(]1,1e --C .(]1,1e -D .(]1,e例44.(2023·安徽·合肥一中高三月考(理))设实数0m >,若对任意的()1,x ∈+∞,不等式2ln 20mxxe m-≥恒成立,则实数m 的取值范围是( ) A .1,2e ⎡⎫+∞⎪⎢⎣⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .[)1,+∞D .[),e +∞例45.(2023·宁夏·石嘴山市第一中学高二月考(理))若对任意()0,x ∈+∞,不等式ln 0ax ae x ->恒成立,则实数a 的取值范围为( )A .1,e e ⎛⎫- ⎪⎝⎭B .1,e⎛⎫+∞ ⎪⎝⎭C .1e e ⎛⎫ ⎪⎝⎭,D .(),e +∞核心考点十六:不等式恒成立之分离参数、分离函数、放缩法 【典型例题】例46.(2023·浙江·高三月考)已知函数2()1x f x xe =-,不等式()ln f x mx x ≥+对任意(0,)x ∈+∞恒成立,则实数m 的取值范围是( ) A .(,2]-∞B .[0,2]C .(2,e 1⎤-∞-⎦D .20,1e ⎡⎤-⎣⎦例47.(2023·四川省资中县第二中学高二月考(理))关于x 的不等式()32ln 113x x a x xe x+++-≥对任意0x >恒成立,则a 的取值范围是( ). A .(],1-∞-B .(){},1e -∞⋃C .[],1e --D .(],0-∞例48.(2023·全国·高三专题练习)已知,a b ∈R ,若关于x 的不等式2ln 0x a x a b -+-≥恒成立,则ab 的最大值为_______.核心考点十七:三次函数问题 【典型例题】例49.(2023·全国·高三课时练习)设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .40212例50.(2023·安徽·东至县第二中学高三月考(理))人们在研究学习过程中,发现:三次整式函数()f x 都有对称中心,其对称中心为00(,())x f x (其中0''()0f x =).已知函数32()345f x x x x =-++.若()4,()10f m f n ==,则m n +=( ) A .1B .32C .2D .3例51.(2023·全国·高三月考(文))已知m ,n ,p ∈R ,若三次函数()32f x x mx nx p =+++有三个零点a ,b ,c ,且满足()()3112f f -=<,()()022f f =>,则111a b c ++的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .11,43⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭核心考点十八:切线问题 【典型例题】例52.(2023·云南红河·高三月考(理))下列关于三次函数32()(0)()f x ax bx cx d a x R =+++≠∈叙述正确的是( )①函数()f x 的图象一定是中心对称图形; ②函数()f x 可能只有一个极值点; ③当03bx a≠-时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点; ④当03bx a≠-时,则过点()()00,x f x 的切线可能有一条或者三条. A .①③B .②③C .①④D .②④例53.(2023·江西·南昌二中高三月考(文))若函数2()1f x x =+的图象与曲线C:()21(0)x g x a e a =⋅+>存在公共切线,则实数a 的取值范围为 A .220,e ⎛⎤ ⎥⎝⎦B .240,e ⎛⎤ ⎥⎝⎦C .21,e ⎡⎫+∞⎪⎢⎣⎭D .23,e ⎡⎫+∞⎪⎢⎣⎭例54.(2023·全国·高二单元测试)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a <B .e b a >C .0e b a <<D .0e a b <<核心考点十九:任意存在性问题 【典型例题】例55.(2023·河南·郑州外国语中学高三月考(理))若不等式()()()221212log 1log 3,,13x xa x x ++-≥-∈-∞恒成立,则实数a 的范围是( ) A .[0,)+∞B .[1,)+∞C .(,0]-∞D .(,1]-∞.例56.(2023·全国·高三专题练习)已知函数2()=++f x x px q 对,∀∈p q R ,总有0[1,5]∃∈x ,使()0f x m≥成立,则m 的范围是( ) A .5,2⎛⎤-∞ ⎥⎝⎦B .(,2]-∞C .(,3]-∞D .(,4]-∞例57.(2023·全国·高二课时练习)已知()()1ln f x x x =+,若k ∈Z ,且()()2k x f x -<对任意2x >恒成立,则k 的最大值为( ) A .3B .4C .5D .6核心考点二十:双参数最值问题 【典型例题】例58.(2023·浙江·宁波市北仑中学高三开学考试)已知,a b ∈R ,且0ab ≠,对任意0x >均有()()(ln )0x a b x a x b ----≥,则( ) A .0,0a b <<B .0,0a b <>C .0,0a b ><D .0,0a b >>例59.(2023·山西运城·高三期中(理))已知在函数()()0,0f x ax b a b =+>>,()()ln 2g x x =+,若对2x ∀>-,()()f x g x ≥恒成立,则实数ba的取值范围为( )A .[)0,+∞B .[)1,+∞C .[)2,+∞D .[),e +∞例60.(2023·黑龙江·鹤岗一中高三月考(理))当(1,)x ∈+∞时,不等式ln(1)230(x ax b a --+,b R ∈,0)a ≠恒成立,则ba 的最大值为( )A .1eB .2C .43D .2e核心考点二十一:切线斜率与割线斜率 【典型例题】例61.(2023·广东·佛山一中高三月考)已知函数2()ln (1)1h x a x a x =+-+(0)a < ,在函数()h x 图象上任取两点,A B ,若直线AB 的斜率的绝对值都不小于5,则实数a 的取值范围是( )A .(,0)-∞B .⎛-∞ ⎝⎦C .,⎛-∞ ⎝⎦D .⎫⎪⎪⎝⎭例62.(2023·山西大同·高一期中)已知函数(),()f x g x 是定义在R 上的函数,且()f x 是奇函数,()g x 是偶函数,()()f x g x +=2x ax +,记2()()()g x h x xf x x =+,若对于任意的1212x x <<<,都有()()12120h x h x x x -<-,则实数a 的取值范围为( ) A .1,02⎡⎫-⎪⎢⎣⎭B .(0,)+∞C .(,1]-∞-D .(0,2]例63.(2023·全国·高一课时练习)已知函数(),142,12x a x f x a x x ⎧≥⎪=⎨⎛⎫-+< ⎪⎪⎝⎭⎩,若对任意的1x ,2x ,且12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是( )A .()1,+∞B .[)1,8C .()4,8D .[)4,8核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离) 【典型例题】例64.设二次函数2()(2)32f x a x ax =-++在R 上有最大值,最大值为m (a ),当m (a )取最小值时,(a =) A .0B .1C .12D例65.(2023春•绍兴期末)已知函数2()||||f x x a x b =+++,[0x ∈,1],设()f x 的最大值为M ,若M 的最小值为1时,则a 的值可以是( ) AB .0 CD .1例66.(2023•济南模拟)已知函数2()||2x f x ax b x -=--+,若对任意的实数a ,b ,总存在0[1x ∈-,2],使得0()f x m 成立,则实数m 的取值范围是( ) A .1(,]4-∞B .(-∞,1]2C .(-∞,2]3D .(-∞,1]核心考点二十三:两边夹问题和零点相同问题 【典型例题】例67.(2023春•湖州期末)若存在正实数x ,y 使得不等式22414lnx x lny ln y -++-成立,则(xy += ) ABCD 例68.(2023•上饶二模)已知实数x ,y 满足2(436)326x y ln x y e x y +-+--+-,则x y +的值为( ) A .2B .1C .0D .1-例69.(2023•崇明区期末)若不等式(||)sin()06x a b x ππ--+对[1x ∈-,1]恒成立,则a b +的值等于() A .23B .56C .1D .2核心考点二十四:函数的伸缩变换问题 【典型例题】例70.(2023·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是( ) A .[]2,3 B .[]1,3 C .[]1,4D .[]2,4例71.(2023·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18≥-f x t t恒成立,则实数t 的取值范围是( ) A .(](],10,3-∞-B.((,0,3⎤-∞⎦C .[)[)1,03,-+∞D .))3,⎡⎡+∞⎣⎣例72.(2023届山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为( ) A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤【新题速递】一、单选题1.(2023·广西南宁·南宁二中校考一模)已知函数()2,01,011x x f x x x x ⎧≤⎪=-≤<⎨≥,若函数()()()22231g x m f x mf x =-+,存在5个零点,则m =( ) A .1B .12C .1或12D .1-2.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .53.(2023·江西景德镇·统考模拟预测)已知函数()11,041,0x xf x x x ⎧+<⎪⎪=⎨⎪->⎪⎩,若()()12f x f x =,则12x x -的最小值为( ) A .4B .92C .143D .54.(2023春·内蒙古赤峰·高三统考阶段练习)已知实数0a >,0b >,1a b +=,则下列说法中,正确的是( ). A .114a b+≤B .存在a ,b ,使得223a b +≥C .22log log 1a b ⋅≤D .存在a ,b ,使得直线10ax by 与圆224x y +=相切5.(2023·全国·高三专题练习)已知()0,2A ,()(),00B t t <,动点C 在曲线T :()2401y x x =≤≤上,若△ABC 面积的最小值为1,则t 不可能为( ) A .4-B .3-C .2-D .1-6.(2023·浙江温州·统考模拟预测)已知P 为直线=1y x --上一动点,过点P 作抛物线2:2C x y =的两条切线,切点记为A ,B ,则原点到直线AB 距离的最大值为( ) A .1BCD .27.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知0a >,0b >,直线2e y x b -=+与曲线ln y x a =-相切,则11a b+的最小值是( ) A .16B .12C .8D .48.(2023春·江苏苏州·高三苏州中学校考阶段练习)若关于x 的不等式(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立,则整数k 的最大值为( ) A .-2 B .-1 C .0 D .1二、多选题9.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()e xf x x =-,()lng x x x =-,则下列说法正确的是( )A .()e xg 在()0,∞+上是增函数B .1x ∀>,不等式()()2ln f ax f x ≥恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若()()()122f x g x t t ==>,且210x x >>,则21ln t x x -的最大值为1e10.(2023春·重庆·高三统考阶段练习)已知函数32()e 3xf x ax =-有三个不同的极值点1x ,2x ,3x ,且123x x x <<,则下列结论正确的是( )A .2e 8a >B .11x <-C .2x 为函数()f x 的极大值点D .()23e 3f x <11.(2023春·福建宁德·高三校考阶段练习)已知函数()3f x x ax b =++,其中a ,b 为实数,则下列条件能使函数()f x 仅有一个零点的是( ) A .3a =-,3b =-B .3a =-,2b =C .0a =,3b =-D .1a =,2b =12.(2023春·山东潍坊·高三统考期中)定义在R 上的函数()f x 的导函数为()f x ',对于任意实数x ,都有2()e ()x f x f x -=,且满足22()()21e x f x f x x -'+=+-,则( )A .函数()e ()x F x f x =为偶函数B .(0)0f =C .不等式e ()e e x xxf x +<的解集为(1,)+∞ D .若方程2()()0f x x a x--=有两个根12,x x ,则122x x a +> 13.(2023·浙江温州·统考模拟预测)若函数()y f x =的图象上存在两个不同的点P ,Q ,使得()f x 在这两点处的切线重合,则称函数()y f x =为“切线重合函数”,下列函数中是“切线重合函数”的是( ) A .sin cos y x x =+ B .(sin c s )o y x = C .sin y x x =+D .2sin y x x =+14.(2023春·江苏南京·高三统考阶段练习)已知双曲线C :224x y -=,曲线E :2y ax x b =++,记两条曲线过点()1,0的切线分别为1l ,2l ,且斜率均为正数,则( ) A .若=0a ,1b =,则C 与E 有一个交点 B .若=1a ,=0b ,则C 与E 有一个交点C .若0a b ,则1l 与E 夹角的正切值为7-D .若==1a b ,则1l 与2l 三、填空题15.(2023·河南郑州·高三阶段练习)正实数a ,b 满足1e 4a a +=+,()ln 3b b +=,则b a -的值为____________. 16.(2023·全国·高三校联考阶段练习)已知函数()234202312342023x x x x f x x =+-+-++,()234202312342023x x x x g x x =-+-+--,设()()()53F x f x g x =+⋅-,且函数()F x 的零点均在区间[](a b a b <,,a ,)b Z ∈内,则b a -的最小值为__________.17.(2023春·广东广州·高三统考阶段练习)方程e 0x ax a -+=有唯一的实数解,实数a 的取值范围为__________.18.(2023春·山东·高三山东省实验中学校考阶段练习)已知函数()()23e ,? 0e ,? 0x x xf x x a x ⎧->=⎨-≤⎩,若()()12f x f x =,且12x x -的最大值为4,则实数a 的值为_______.19.(2023·全国·高三专题练习)若存在0a >,0b >,满足(2e )ln (2e )ln a t b a b t b a a +-=-,其中e 为自然对数的底数,则实数t 的取值范围是___________.20.(2023·四川资阳·统考模拟预测)若2224ln x ax a x ->,则a 的取值范围是______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学复习核心考点专题卷专题十六分类讨论思想本卷共5个大题,16个小题,满分100分,考试时间45分钟.一、选择题(本大题共5个小题,每小题4分,共20分)1.若分式12xx-+的值为0,则()A.x=﹣2B.x=0C.x=1D.x=1或﹣2【答案】C【方法点拔】根据分式的值为0的条件,即分类讨论分式为0,分母不为0,列出关于x的不等式组,求出x的值即可.2.若2x+4(m-2)x+16是完全平方式,则m()A.等于6B.只能等于4C.只能等于0D.等于4或0【答案】D【方法点拔】讨论4(m-2)=±8两种情况,即可确定m的值.3.在“①15°的角,②65º的角,③75º的角,④135º的角,⑤145º的角”中,可以用一副三角尺画出来的角是()A.①③④B.①③⑤C.①②④D.②④⑤【答案】A.【方法点拔】根据对三角尺上特殊角分别进行加减运算能得到的度数,可知只有65º和145º两个无法得到,故选A.4.如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是( )A.15cm B.16cm C.17cm D.16cm或17cm【答案】D【方法点拔】由于等腰三角形未确定腰和底,故要进行分类讨论,当5为腰,6为底时,周长为16;当6为腰,5为底时,周长为17,由此选D ,但在类问题要注意三角形的三边关系,如果条件设两边长为2和4时,则结论就不是两个解了.5.A ,B ,C 是⊙O 上不同的三个点,∠AOB =100°,则∠ACB 的度数为( ) A . B .或 C . 或 D . 【答案】C【方法点拔】由于已知三个点之间的位置关系不确定,在先确定A ,B 两点后,点C 的位置要进行分类讨论:点C 在AB 优弧内,和AB 劣弧上两种情况,于是出现两个解,且这两个角的度数应是互补关系.二、填空题(本大题共5个小题,每小题4分,共20分)6.A ,B 是数轴上两点,点A 表示的数为3,若点B 与点A 距离为5,则点B 表示的数为 . 【答案】8或-27.小明等五名同学四月份参加某次数学测验(满分为120)的成绩如下:100、100、x 、x 、80.已知这组数据的中位数和平均数相等,那么整数x 的值为 . 【答案】110或608.如图,将一条长为9的线段,分成长度为整数的三条线段,首尾相接构成一个三角形,则这个三角形的三边长为 .【答案】3,3,3或2,3,4 或1,4,49.如图, 四边形ABCD 中,AB ⊥BC ,AD ∥BC ,AD =CD ,∠BCD =120°,BC =2,若P 是四边形边上一动点,且∠BPC =30°,则CP 长为 .50805050130130【答案】4或2或3210.一次函数2+=kx y 的图象过点A (2,4),且与x 轴相于点B ,若点P 是坐标轴...上一点,∠APB =90°,则点P 的坐标为 . 【答案】 (2,0)或(0,2+22)或(0,2-22)三、(本大题共2小题,每小题8分,共16分)11.在直角坐标系中,有A (1,-4),B (5,-1),C (x ,y )(x 、y 均为整数,且x >0,y <0)三点,若△ABC 是以AB 为腰的等腰三角形,试求x 和y . 【答案】解:x =1、y =-9;x =4、y =-8;x =5、y =-7;x =6、y =-4;x =8、y =-5;x =9、y =-4;x =5、y =-6;x =10、y =-1.12.如图,直线AB 过点A ,且与y 轴交于点B . (1)求直线AB 的解析式;(2)若P 是直线AB 上一点,且⊙P 的半径为1,请直接写出⊙P 与坐标轴相切时点P 的坐标.【答案】解:(1)由图可知:A (﹣3,﹣3),B (0,3)设直线AB的解析式为y=kx+b(k≠0)则,解得.∴直线AB的解析式为y=2x+3.(2)①设P1(1,a),代入y=2x+3得,a=2+3=5,则P1(1,5);②设P2(﹣1,b),代入y=2x+3得,b=﹣2+3=1,则P2(﹣1,1),与两个坐标轴相切;③设P3(﹣2,c),代入y=2x+3得c=﹣4+3=﹣1,则P3(﹣2,﹣1).综上,P1(1,5),P2(﹣1,1),P3(﹣2,﹣1).【方法点拔】这道题告诉我们,在抓住了分类讨论的特征后,还要学会掌握分类的标准(或说方法).而有了分类的标准,就要自始至终使用这一标准分类,同时在求满足条件的点的坐标时,画出相应的图形,使用图形分析求解也是十分必要的,还有一点值得强调的是,分类后还应注意题中约束条件,谨防出现不合要求的解或漏解现象.四、(本大题共2小题,每小题10分,共20分)13.如图,正方形ABCD中,AB=4,P是线段AC上一点,若△PCD为等腰三角形,求CP的长.【答案】解:当DP=PC时,∵∠ACD=45°,∴∠PDC=45°,∠DPC=90°.∴DP =21AC =22. 当CP =CD 时,CP =4.当点P 与点A 重合时,CP =24.综上,△PCD 为等腰三角形时,CP 的长为4,22,24.14.今年3月,两次植树劳动前八年级(2)班学生到商店去购买A 牌矿泉水,该商店对A 牌矿泉水的销售方法是:“购买不超过30瓶按零售价销售,每瓶1.5元;多于30瓶但不超过50瓶,按零售价的8折销售;购买多于50瓶,按零售价的6折销售.该班两次共购A 牌矿泉水70瓶(第一次多于第二次),共付出90.6元.(1)该班分两次购买矿泉水比一次性购买70瓶多花了多少钱; (2)该班第一次与第二次分别购买矿泉水多少瓶? 【答案】解:(1)90.6-70 0.9=27.6元;(2)设第一批购买了 x 瓶矿泉水,第二批购买了 y 瓶.①当第二次不足20瓶时(不合题意舍去),②当第二次在20瓶到30瓶之间③当第二次多与30瓶但少于35瓶, 1.2×70=84(不合题意舍去), ∴该班第一次与第二次分别购买矿泉水48、22瓶.五、(本大题共2小题,每小题12分,共24分) 15. 联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图1,若P A =PB ,则点P 为△ABC 的准外心.(1)应用:如图2,CD 为等边三角形ABC 的高,准外心P 在高CD 上,且PD =AB ,求∠APB 的度数.(2)探究:已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,试探究P A 的长.⨯{700.9 1.590.6x y x y +=+={2446x y =={701.21.59.6x y y +=+={4822x y ==【答案】解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=DB=AB,与已知PD=AB矛盾,∴PB≠PC,②若P A=PC,连接P A,同理可得P A≠PC,③若P A=PB,由PD=AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC===4,①若PB=PC,设P A=x,则x2+32=(4﹣x)2,∴x=,即P A=,②若P A=PC,则P A=2,③若P A=PB,由图知,在Rt△P AB中,不可能.故P A=2或.【方法点拔】由于“准外心”与“外心”不同,“准外心”只要到三角形的两个顶点距离相等,题中点P(准外心)在没有确定到三角形的哪两个顶点距离相等之前,必须分情况讨论,讨论时充分利用等边、直角三角形性质解决问题.16.如图,矩形OABC 在平面直角坐标系中,O 为坐标原点,点A (0,4),C (2,0).将矩形OABC 绕点O 按顺时针方向旋转135º,得到矩形EFGH (点E 与0重合). (1)若GH 交y 轴于点M ,则∠FOM = °,OM = ;(2)将矩形EFGH 沿y 轴向上平移t 个单位.若矩形EFGH 与矩形OABC 重叠部分的面积为S 个平方单位,试求当0<t ≤4时,S 与t 之间的函数关系式.【答案】解:(1)45º,(2)有三种情况:①当0<t ≤2时,如图1所示.显然重叠部分是三角形,面积S=S △ODE =t2; ② 当2<t ≤时,如图2所示,重叠部分是直角梯形.作EN ⊥CB 于N ,则EN =DN =2,CD =t −2,重叠部分面积S = S 梯形OEDC =(t +t −2)×2=2 t −2; ③当t ≤4时,如图3所示,重叠部分是五边形. 作EN ⊥CB 于N ,则EN =DN =2,CD =t −2,OM =OK = t −. 重叠部分面积S = S 五边形MEDCK =(t +t −2)×2− (t −2=t 2+(+2)t −6. 1212121212【方法点拔】(1)据题意,∠AOF =135°,又∠AOC =90º,故∠COF 、∠OMH 的度数可得,△FOM 的形状也可知, OM 的长即可求出;(2)矩形EFGH 沿y 轴向上平移的过程中,要紧扣三个特殊时刻,①OF 过点C ,②HG 过点O , ③点E 与点A 重合,这样矩形EFGH 与矩形OABC 重叠部分的图形可分三种情况讨论.图1 图2 图3。