不等式的基本性质(1)
不等式的基本性质(1)

差等公式的应用
三、例题分析:
例5:已知 2 a 3, 4 b 3,求 a b, a b, a , ab, b2 的取值范围。
ba
解:(1) 2 a 3, 4 b 3
-2 a+b 0
(加法法则-同向可加性)
(2) 4 b 3
3 -b 4(乘法单调性)
2a3
5 a b 7(加法法则)
A.Ø
B.R
C.(ba,+∞)
D.(-∞,-ba)
2.设 a=lg e,b=lg2e,c=lg e,则( )
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a
解析:∵0<lg e<1,∴lg e>12lg e>lg2e. ∴a>c>b.
答案:B
3.已知a+b>0,b<0,则a,b,-a,-b的大小关 系为( )
( 2 ab) (a b 2 ab)
ba
立方和 变形
a3 b3 ab
(a b)
(a b)(a b)2 ab
0
(
a
2
)
1 2
(
b
2
)
1 2
a
b
b
a
小结:
作差比较大小(变形是关键)
常用手段:配方法,因式分
变形
解法
常见形式:变形为常数;
一个常数与几
个平方和;
几个因式的积
注:平方差,完全平方,立方和、
A.a>b>-b>-a B.a>-b>-a>b
C.a>-b>b>-a D.a>b>-a>-b
不等式的基本性质(一)

不等式的基本性质(一)一、教学目的:1.了解不等式的实际应用及不等式的重要地位和作用;2.掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小.二、教学重点:比较两实数大小.三、教学难点:差值比较法:作差→变形→判断差值的符号四、教学过程:1、 复习:不等式的基本性质 1 :不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
不等式的基本性质 2 : 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变不等式的基本性质 3 :不等式的两边都乘以(或除以)同一个负数,不等号的方向 改变3、作差法:b a b a ba b a b a b a <⇔<-=⇔=->⇔>-0004、例题分析:cb c a b a ±>±>,则即:若()0,>>⋅>⋅>c c b c a c b c a b a ,则即:若()0,<<⋅<⋅>c cb c a c b c a b a ,则即:若例2 对任意实数 x ,比较(x +1)(x +2) 与 (x -3)(x +6) 的大小 .练习1、练习2、例3:()()()()22221111a a a a a a +-+++-+比较与的大小练习3:111,1b 1a b a <<--若比较与的大小例4: 的大小与比较且如果22,0++>>a b a b b a a 的大小(与试比较(若)g )(,12)(,13)22x x f x x x g x x x f -+=--=()()()()()()()()(){()的解析式。
求设x h x h x x x g x x x g x f x f x g x f x g ,,.,22,12,13x f ≥<=-+=--=练习4:例5:练习5:似曾相识:的大小与比较122-+++b a ab b a ()的大小与比较52222-++b a b a 的大小与比较且改为:把例)0(,,04>++>>m m a m b a b b a a ()()()上的单调性。
不等式的性质(1)(2)

2.1不等式的基本性质1(导学案)组卷人:苏卫国审卷人:刘金涛姓名:学号:一、学习目标:1、学会用两个实数差的符号来规定两个实数大小2、掌握不等式的基本性质,并能加以证明;二、复习旧知:1、a>b是a-b>0的条件;a=b是 a-b=0的条件;a<b是a-b<0的条件。
以上是证明不等式性质的基础。
2、在初中我们学习了以下等式的性质:a=b,b=c⇒a=c;a=b,c=d⇒a+c=b+d;a=b⇒ac=bc。
三、新课导学:1.通过类比等式的性质,得到关于以下不等式的三个结论;请你判断它们是否正确,正确的加以证明;错误的举反例。
结论1 如果a>b,b>c,那么a>c。
结论2 如果a>b,c>d,那么a+c>b+d。
结论3 如果a>b,那么ac>bc。
同学们;结论3是否正确如果不正确,你能改变条件,让它成为正确命题吗?试试看:通过以上结论的推敲请同学们根据课本自己归纳不等式的基本性质性质1性质2性质3性质4你能给它们分别起一个名字吗?试试看。
利用以上性质证明下面结论:性质(5)如果a >b >0,c >d >0,那么ac >bd 。
性质(6)如果a >b >0,那么0ba 11<<。
四、课堂探究例1.判断下列命题的真假。
(1)若a >b ,那么ac >2bc 2。
(2)若ac >2bc 2,那么a >b 。
(3)若a >b ,c >d ,那么a-c >b-d 。
(4)若cda b <,那么ad bc <。
例2.提问:判断以下两个命题的真假:如果是真命题,请加以证明;如果是假命题,请举出反例。
(1)如果a >b ,c >d ,那么ac >bd 。
变式:a >b 0>,c >d 0>,那么ac >bd 。
不等式的基本性质与解法总结

不等式的基本性质与解法总结不等式是数学中常见的一种数值关系表达形式,它描述了两个数或者数值表达式之间大小关系的不同情况。
在解决实际问题中,我们经常会遇到需要研究不等式的性质并解决不等式的问题。
本文将总结不等式的基本性质和解法,帮助读者更好地理解和运用不等式。
一、不等式的基本性质1. 加法性质:如果a<b,那么对于任意的实数c,a+c<b+c仍然成立;如果a>b,那么对于任意的实数c,a+c>b+c仍然成立。
2. 减法性质:如果a<b,那么对于任意的实数c,a-c<b-c仍然成立;如果a>b,那么对于任意的实数c,a-c>b-c仍然成立。
3. 乘法性质:如果a<b且c>0,那么ac<bc仍然成立;如果a<b且c<0,那么ac>bc仍然成立。
4. 除法性质:如果a<b且c>0,那么a/c<b/c仍然成立;如果a<b且c<0,那么a/c>b/c仍然成立。
5. 等式的性质:如果a=b且b=c,那么a=c仍然成立。
可以在不等式的两边加上或者减去相等的数值,不等式的关系仍然保持不变。
二、不等式的分类与解法不等式可以分为一元不等式和二元不等式两类。
一元不等式指只有一个变量的不等式,而二元不等式指含有两个变量的不等式。
下面将分别介绍一元不等式和二元不等式的解法。
1. 一元不等式的解法(1)图像法:将一元不等式转化为二元不等式,绘制出二元不等式的图像,通过观察图像得到一元不等式的解集。
(2)数线法:将一元不等式表示在数轴上,根据不等式的性质,确定不等式的解集。
(3)代数法:通过变形和运算等方式将不等式转化为更简单的形式,进而得到不等式的解集。
2. 二元不等式的解法(1)图像法:将二元不等式表示为平面上的区域,通过观察图像确定变量的取值范围,得到不等式的解集。
(2)代数法:利用一元不等式的解法,将一个变量表示成另一个变量的函数,通过求解一元不等式得到二元不等式的解集。
不等式的基本性质(1)

教学设计一、教学目标1.知识与技能目标:(1)掌握不等式的基本性质.(2)经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同.2.过程与方法目标:(1)能说出一个不等式为什么可以从一种情势变形为另一种情势,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯.(2)进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力.3.情感态度与价值观目标目标:(1)尊重学生的个体差异,关注学生的学习情感和自信心的建立. (2)关注学生对问题的实质性认识与理解.二、教学重点与难点重点:探索不等式的基本性质,并能灵活地掌握和应用.难点:能根据不等式的基本性质进行化简.三、教学准备教具:多媒体、苹果、书本.学具:教材、笔、练习本.四、教学方法直观演示法、讲授法、自学指点法、小组合作探究法.五、学法指点引导学生学习、运用、视察、思考、抽象、归纳、分析、对照等方法. 六、教学过程本节课设计了五个教学环节:(一)情景引入,提出问题;(二)新知探究;(三)巩固练习;(四)例题讲授及运用巩固;(五)课堂小结;(六)当堂检测;(一)情景引入,提出问题老师手中呈现两本一模一样的书,假如其中一本书的质量为m㎏,另一本书的质量为n㎏,我们如何来表示这两本书的质量关系呢?现在,老师手中有两个苹果(一大一小),如果一个苹果的质量为c㎏,另一个的质量为d㎏,请问:你可以用一个怎样的式子来表示这两个苹果的质量关系呢?设计意图:由两本书的质量相同,引导学生得出m=n,通过直接视察得出两个苹果的质量关系为c>d,从而得出一个等式与一个不等式。
通过回顾等式的基本性质,引导学生类比等式的基本性质来探索不等式的基本性质。
(二)新知探究Ⅰ.对于4<6,那么(1)4+2 ____ 6+2 (2)4-2 ____ 6-2 (3)4+0____ 6+0 (4)4-0____6-0 类比“等式基本性质1”,尝试总不等式的性质.新知归纳:不等式的性质1:不等式的两边________,不等号的方向 ____ 。
不等式的基本性质

=-5<0
∴(2x-5)(x+1)<2x2-3x
亲爱的同学们,下节课见!
第二章 不等式
2.1 不等式的基本性质
1.作差比较法:比较两个实数的大小,可以通过考察它们的差来实现.
对于两个任意的实数a和b,有:a-b>0⇔a>b;
a-b=0⇔a=b;
a-b<0⇔a<b.
2.不等式的性质.
(1)性质1(加法法则):如果a>b,那么a+c>b+c.
(2)性质2(乘法法则):如果a>b,c>0,那么ac>bc;
(
√ )
2.如果a>b,且c>d,那么a+c>b+d.
(
√ )
3.如果a>b,且c>d,那么ac>bd.
(
× )
三、选择题
1.已知a>b,且ac>bc,那么(
A. c>0
B. c=0
A ).
C. c<0
2.若m>3,则下列不等式中必定成立的是(
A. m>0
B. m-3<0
3.如果a>b,那么(
A. ac<bc
(4)设a>b,则-2a< -2b,
(5)设x<y,则1-2x>1-2y,
1 1
(6)设x>y>0,则 < .
2.根据条件,写出x的取值范围:
(1)x+4>7, x>3
(2)2x-1<3,x<2
(3)3-2x>5, x<-1
(4)2-x<x-4, x>3
二、判断题
1.如果a<b,且b<c,那么a<c.
(
三、解答题
比较大小.
1.x2+1与(x+1)2,其中x>0.
解:∵(x2+1)-(x+1)2
=x2+1-(x2+2x+1)
不等式及其基本性质(1)

如果a>b,那么b<a
不等式同向传递性:
如果a>b,blt; y,下列哪些不等式成立?
(1) x – 3 < y – 3
(3) - 3 x +2 < - 3 y + 2
(2)- 5 x < - 5 y
(4)- 3 x + 2 > - 3y + 2
用式子表示下列关系:
(1) 2x 与3的和不大于-6;
(2)
2x+3≤6
x
的5倍与1的差小于
x的3倍;
a-b<0
5x-1<3x
(3)a与b的差是负数。
不等式的定义
用不等号(>、≥、<、≤或≠)连接,表 示不等关系的式子叫做不等式
注:不大于,即小于或等于,用“≤”表示; 不小于,即大于或等于,用“≥”表示。
64 > 0
知识拓展:
正 (1) ∵ 2a < 3a , ∴a是____数
a a 正 (2) ∵ , ∴a是____数 2 3
(3) ∵ ax < a 且 x > 1 , 负 ∴a是____数
本课小结:
今天学的是不等式的五个基本性质:
不等式的基本性质1:
如果a >b,那么a±c>b±c.就是说,不等式两边都 加上 (或减去)同一个数(或式子),不等号方向不变。
(1)m-7<n-7
(2)3m<3n (3)-5m>-5n m n (4) 9 9 (5) m+5≥n+5
(
( ( ( (
)
) ) ) )
针对练习
2、填空
(1)如果x-5>4,那么两边都 可得到x>9
不等式的基本性质1

• 不等式的同向相加性 (逆向相减性)
PPT心得分享 心得分享 上海市崇明中学
a >b,b > c ⇒a > c
a >b,c > 0⇒ac >bc a >b,c < 0⇒ac <bc
a >b,c > d ⇒a +c >b+d a >b,c > d ⇒a −d >b−c
© 2007 GEC Corporation
• 不等式的加法性质 a >b ⇒a+c >b+c • 不等式的乘法性质
不等式的同向相加性(逆向相减性)
6
类比
a >b ⇒a+c >b+d c > d a >b ⇒a−d >b−c c > d
同向相加性
等式中
回顾
特殊值验证
取特殊值
a = b ⇒ a+c =b+d c = d
5 > 3 ⇒ 5+ 4 > 3+ 2 4 > 2 5 > 3 ⇒ 5− 2 > 3− 4 4 > 2
© 2007 GEC Corporation
PPT心得分享 心得分享 上海市崇明中学
不等式的基本性质 图解的世界
例题与练习1 例题与练习
7
判断下列命题是否正确,并说明理由
(1 a >b > 0⇒a2 > ab ) (2)a >b ⇒a c2 >b c2 (3 c2 >b c2 ⇒a >b )a a b (4)a > b ⇒ 2 > 2 1 1 c c (5) < ⇒a > b a b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章一元一次不等式与一元一次不等式组
2.不等式的基本性质
一、学生知识状况分析
本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。
学生已经掌握等式的基本性质,同时经历了解一元一次方程、二元一次方程组的研究过程及方法,为进一步学习不等式的基本性质奠定了基础。
学习时可以类比七年级上册学习的等式的基本性质。
二、教学任务分析
不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。
本节课教学目标:
(1)知识与技能目标:
①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。
(2)过程与方法目标:
①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。
③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
(3)情感与态度目标:
①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。
②尊重学生的个体差异,关注学生对问题的实质性认识与理解。
三、教学过程分析
本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。
第一环节:情景引入,提出问题
活动内容:利用班上同学站在不同的位置上比高矮。
请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。
问题1:怎样比才公平?
活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。
活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。
第二环节:活动探究,验证明确结论
活动内容:参照教材与多媒体课件提出问题:
(1)还记得等式的基本性质吗?请用字母表示它。
不等式有类似的性质吗?先猜一猜。
(2)用等号或不等号完成下面的填空。
如果2 < 3;那么
2 × 5
3 × 5;
2 ×
3 ×;
2 × (-1)
3 × (- 1);
2 × (- 5)
3 × (- 5);
2 × (-)
3 × (-).
(3)验证你的结论,用字母表示你所发现的结论。
(4)与同伴交流你的结论,并展示。
生1:等式的基本性质1用字母可以表示为:c b c a b a ±=±∴=, , 类似地得到,如果在不等式的两边都加上或都减去同一个整式,结果不等号方向不变。
字母表示为:∵a >b ,∴a ±c >b ±c ;或∵a >b ,∴a ±c <b ±c 。
生2:对于等式的基本性质2,用字母可以表示为: c b c a c b c a b a ÷=÷⨯=⨯∴=,, ,其中0≠c 。
经过前面的探索,可类似地得到:
如果不等式两边同时乘以(或除以)同一个正数,不等号方向不变;如果不等式两边同时乘以(或除以)同一个负数,不等号的方向要发生改变。
字母表示如下:
c b c a c b c a c b a ÷>÷⨯>⨯∴>>,,0,
c b c a c b c a c b a ÷<÷⨯<⨯∴><,,0,
c b c a c b c a c b a ÷<÷⨯<⨯∴<>,,0,
c b c a c b c a c b a ÷>÷⨯>⨯∴<<,,0,
活动目的:通过等式的基本性质对比不等式的基本性质,由特殊的数值到字母代表数,从中归纳出一般性结论。
进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
活动实际效果:以问题的形式引导学生从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。
因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。
这时,学生对于由自己推导出性质应该感到非常兴奋。
第三环节:例题讲解及运用巩固
活动内容:
1、在上一节课中,我们猜想,无论绳长l 取何值,圆的面积总大于正方形的面积,即16
42
2l l >π。
你相信这个结论吗?你能利用不等式的基本性质解释这一结论吗?
2、将下列不等式化成“a x >”或“a x <”的形式:
(1)15->-x (2)32>-x
练习设计:
1、将下列不等式化成“a x >”或“a x <”的形式:
(1)21>-x (2)65<-x (3)32
1≤x 2、已知y x >,下列不等式一定成立吗?
(1)66-<-y x (2)y x 33<
(3)y x 22-<- (4)1212+>+y x 3、小明做这样一题:已知2x>3x,求x 的范围。
结果小明两边同时除以x ,得到2>3。
你知道他错在哪?
活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。
随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。
活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。
第四环节:课堂小结
活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。
活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。
教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。
活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。
第五环节:布置作业
习题2.2
四、教学反思
本节课通过复习等式的基本性质,类比得出不等式的基本性质雏形。
教学中问题的设置通过与等式的基本性质相对比,引导学生自己先猜想不等式基本性质、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。
在接下来的讲解例题与练习的过程中,每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。
在整个教学过程中,学生始终处于主导地位,不等式的基本性质主要由学生自己推导得出。