第八章__虚拟解释变量回归.doc

合集下载

虚拟变量回归模型

虚拟变量回归模型

PART 07
虚拟变量回归模型的发展 趋势和未来展望
发展趋势
模型应用范围不断扩大
随着数据科学和统计学的发展,虚拟变量回归模型的应用范围不断扩大,不仅局限于传统的回归分析,还广泛应用于 分类、聚类、预测等领域。
模型复杂度不断提高
为了更好地处理复杂的数据结构和特征,虚拟变量回归模型的复杂度不断提高,出现了多种新型的模型,如集成学习 模型、深度学习模型等。
医学领域的应用
流行病学研究
在流行病学研究中,利用虚拟变量回归模型分析疾病发病率和死亡 率的影响因素,如年龄、性别、生活习惯等。
临床医学研究
在临床医学研究中,利用虚拟变量回归模型分析治疗效果的影响因 素,如治疗方案、患者特征、疾病严重程度等。
药物研究
在药物研究中,利用虚拟变量回归模型分析药物疗效的影响因素, 如药物剂量、给药方式、患者生理特征等。
模型解释性要求更高
随着人们对数据分析和模型结果的关注度提高,虚拟变量回归模型的解释性要求也更高,需要更加清晰、 直观地解释模型结果和变量之间的关系。
未来展望
模型可解释性研究
未来将更加注重虚拟变量回归模型的可解释性研究,以提高模型结果的透明度和可信度。
新型特征选择和降维技术
随着数据规模的扩大和特征维度的增加,未来将更加关注新型的特征选择和降维技术,以提取关 键特征并降低模型复杂度。
PART 01
引言
目的和背景
探索自变量与因变量之间的关系
虚拟变量回归模型主要用于探索自变量与因变量之间的数量关系,帮助我们理 解不同类别数据对结果的影响。
处理分类变量
当自变量是分类变量时,虚拟变量回归模型能够将这些分类变量转换为一系列 二进制(0和1)的虚拟变量,从而进行回归分析。

第八章-虚拟变量回归

第八章-虚拟变量回归

1 高中 D2 0 其它
1 博士 D5 0 其它
1 大 学 D3 0 其 它
1 小 学 D6 0 其 它
则总体回归模型:
w 0 1 X 2 D1 3 D2 4 D3 5 D4 6 D5 7 D6+u
17
二、用虚拟变量测量斜率变动
基本思想
引入虚拟变量测量斜率变动,是在所设立的模型中,将虚 拟解释变量与其它解释变量的乘积,作为新的解释变量出 现在模型中,以达到其调整设定模型斜率系数的目的。
可能的情形:
(1)截距不变;
(2)截距和斜率均发生变化;
分析手段:仍然是条件期望。
18
(1)截距不变
模型形式:
意义:若α1显著,表明城市居民的平均人均可支配收入比农村 高α1元。但这种差异可能是由其它因素引起的,并不一定是由 户籍差异引起。
12
(2) 一个两属性定性解释变量和一个定量 解释变量
模型形式 Yi = f(Di,X i )+ μi 例如:Yi = 0 1 Di + X i + μi 1 城市 其中: Y-人均可支配收入;X-工作时间; Di 0 农村
会受到一些定性因素的影响,如性别、国籍、民族、自 然灾害和政治体制等。
问题:我们如何把这些定性想:将这些定性因素进行量化
由于定性变量通常表示某种属性是否存在,如是否男性、 是否经济特区、是否有色人和等。因此若该属性存在, 我们就将变量赋值为1,否则赋值为0,从而将定性因素 定量化。 计量经济学中,将取值为0和1的人工变量称为虚拟变量 (DUMMY)或哑元变量。通常用字母D或DUM表示。
7
一个例子(虚拟变量陷阱)
研究工资收入与学历之间的关系:

虚拟变量回归

虚拟变量回归

数据收集
收集不同市场细分群体的基本信息和 产品需求数据,如年龄、性别、收入、 消费习惯等。
变量设置
将市场细分变量转换为虚拟变量,并 引入到回归模型中。
结果分析
分析虚拟变量的系数和显著性,解释 其对产品需求的影响,为市场定位提 供依据。
案例三:教育程度与收入水平的关系研究
目的
研究教育程度对收入水平的影响,以及 不同教育程度对收入水平的差异。
虚拟变量可能依赖于某些自变量,需 要谨慎处理以避免多重共线性问题。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
虚拟变量回归的模型构 建
线性回归模型
线性回归模型是最常用的回归分析方法之一,用 于探索自变量与因变量之间的线性关系。
在线性回归模型中,虚拟变量可以作为自变量引 入,以解释和预测因变量的变化。
变量设置
将教育程度转换为虚拟变量,并引入 到回归模型中。
数据收集
收集受访者的教育程度和收入水平数 据。
结果分析
分析虚拟变量的系数和显著性,解释 其对收入水平的影响,为职业规划和 教育投资提供参考。
案例四:健康状况与生活习惯的关系研究
目的
数据收集
研究生活习惯对健康状况的影响,以及不 同生活习惯对健康状况的差异。
虚拟变量回归的应用场景
1 2
社会科学研究
在社会科学研究中,经常需要研究分类变量对连 续变量的影响。例如,研究不同教育程度或不同 职业对收入的影响。
生物统计学
在生物统计学中,虚拟变量回归可用于研究基因 型、物种或地理区域等因素对连续变量的影响。
3
市场分析
在市场分析中,虚拟变量回归可用于研究不同产 品类别、品牌或市场细分对销售或其他连续变量 的影响。

计量经济学课后习题答案第八章_答案

计量经济学课后习题答案第八章_答案

第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。

加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。

如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。

这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。

4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。

试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金0 来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |= X i , D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4) 来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |= X i ,D 2i =D 3i =D 4i =1, D 1i =0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

第五章虚拟变量-第八章虚拟变量

第五章虚拟变量-第八章虚拟变量
D1 D2 D3 D4 1,
说明虚拟解释变量 D1,D2,D3,D4 存在完全的多重共线性 从而无法用普通最小二乘法进行估计。 反映季节因素的商品需求模型为:
Yt 0 1 X 1t 2 X 2t 3 D1t 4 D2t 5 D3t t
例3、由经济实际得知,出口消费品数量Y 主要取决于国民支出X,我国革新开放前 后出口消费品的数量发作清楚变化,以 1979年为转机期,树立出口消费品需求 模型,并反映这种变化。
Yt 0 1 X i i
式中,Y 是职工工资收入;X 是工龄 考虑职工收入受教育程度的影响而引入合适的虚拟 变量,对上述模型加以改进。
解:教育程度一般分为:高中以下,高中,大学及以上(包括大专) 这样教育程度有三个特征,故引入两个虚拟变量,并设教育程度的 改变,只影响截距的变动。
D1=
1, 0,
Yt 0 1 X t t
1979 年以后,Dt 为 1, 模型为
Yt
0
2X
* t
1 2 X t t
第5章习题
一、单项选择题 1、假设一个回归模型中不包括截距项,对一个
具有m个特征的质的要素需求引入的虚拟变量 的个数为: A、m B、m-1 C、m-2 D、m+1
2、设团体消费函数Yi=c0+c1Xi+ui中,消费支出Y不只 与支出X有关,而且与消费者的性别、年龄构成有关, 年龄构成可分为青年、中年和老年三个层次,假定边 沿消费倾向不变,那么思索上述要素的影响,该函数 引入虚拟变量的个数为:
的需求模型为: Yt 0 1 X 1t 2 X 2t t
式中,Y 是商品的需求量,X1 是价格,X2 时收入, 为了反映四个季节对商品需求量的影响,假定引入四个虚拟变量:

虚拟变量回归模型:计量经济学

虚拟变量回归模型:计量经济学
在实时经济分析和决策支持方面,虚拟变量回归模型可以结合实时数据流进行 动态更新和预测,为政策制定者和市场参与者提供及时、准确的经济分析和决 策支持。
对未来研究的展望
拓展模型应用领域
未来研究可以进一步拓展虚拟变 量回归模型的应用领域,如环境 经济学、劳动经济学、金融经济 学等,以更深入地揭示经济现象 背后的规律。
宏观经济学领域应用
经济增长研究
引入虚拟变量以刻画不同国家或地区的经济增 长模式,并分析各种因素对经济增长的贡献。
通货膨胀与货币政策研究
利用虚拟变量回归模型,探讨通货膨胀的成因、 传导机制及货币政策的效应。
国际贸易研究
通过构建虚拟变量,分析贸易自由化、关税壁垒等因素对国际贸易流量的影响。
金融学领域应用
线性问题,影响模型的稳定性和解释性。
预测能力有限
03
对于具有复杂关系的数据,虚拟变量回归模型可能无法提供准
确的预测。
与其他模型的比较
01
与线性回归模型的比较
虚拟变量回归模型是线性回归模型的一种扩展,通过引入 虚拟变量来处理分类变量。线性回归模型则主要关注连续 变量的影响。
02 03
与逻辑回归模型的比引言 • 虚拟变量回归模型基本原理 • 虚拟变量回归模型应用举例 • 虚拟变量回归模型优缺点分析 • 虚拟变量回归模型在实证研究中的应用 • 虚拟变量回归模型的发展趋势和前景
01 引言
计量经济学简介
1 2
计量经济学定义
计量经济学是应用数学、统计学和经济学方法, 对经济现象进行定量分析的学科。
完善模型理论和方法
在模型理论和方法方面,未来研 究可以进一步完善虚拟变量回归 模型的理论基础和方法体系,提 高模型的解释力和预测能力。

第八章虚拟解释变量回归

第八章虚拟解释变量回归

第八章虚拟解释变量回归第一节虚拟变量一、虚拟变量的差不多概念在前面的分析中,被说明变量要紧受到一些能够直截了当度量的变量阻碍,如收入、产出、商品需求量、价格、成本、资金、人数等。

但现实经济生活中,阻碍被说明变量变动的因素,除了这些能够直截了当获得实际观测数据的定量变量外,还包括一些本质上为定性因素(或称属性因素)的阻碍,例如性别、种族、肤色、职业、季节、文化程度、战争、自然灾难、政府经济政策的变动等因素。

在实际经济分析中,这些定性变量有时具有不可忽视的重要阻碍。

例如,研究某个企业的销售水平,产业部门(制造业、零售业)、所有制(私营、非私营)、地理位置(东、中、西部)、治理者素养的高低等是值得经常考虑的阻碍因素,这些因素有共同的特点,即差不多上表示某种属性的,不能直截了当用数据精确描述的因素。

因此,被说明变量的变动经常是定量因素和属性因素共同作用的结果。

在计量经济模型中,应当同时包含定量和属性两种因素对被说明变量的阻碍作用。

定量因素是指那些可直截了当测度的数值型因素,如GDP、M2等。

定性因素,或称为属性因素,是不能直截了当测度的、说明某种属性或状态存在与否的非数值型因素,如男性或女性、都市居民或非都市居民、气候条件正常或专门、政府经济政策不变与改革等。

在计量经济学的建模中应当将定量因素和定性因素同时纳入模型之内。

为了在模型中反映定性因素,能够将定性因素转化为虚拟变量去表现。

虚拟变量(或称为属性变量、双值变量、类型变量、定性变量、二元型变量等),是人工构造的取值为0和1的作为属性变量代表的变量,一样用字母D(或DUM,英文dummy的缩写)表示。

属性因素通常具有若干类型或水平,通常虚拟变量的取值为0和1,当虚拟变量取值为0,即D=0时,表示某种属性或状态不显现或不存在,即不是某种类型;当虚拟变量取值为1,即D=1时,表示某种属性或状态显现或存在,即是某种类型。

例如,构造政府经济政策人工变量,当经济政策不变时,虚拟变量取值为0,当经济政策改变时,虚拟变量取值为1。

第八章 虚拟变量回归 答案

第八章 虚拟变量回归 答案

第八章 虚拟变量回归一、判断题1.虚拟变量只能作为解释变量。

(F )2. 引入虚拟变量后,用普通最小二乘法得到的估计量仍是无偏的。

( T )3.引入虚拟变量的个数与模型有无截距项无关。

(F )4.虚拟变量用来表示某些具有若干属性的变量。

(T )5.引入虚拟变量的个数与样本容量大小有关。

(F )二、单项选择题1.设消费函数011t t t y a a D b x u =+++,其中虚拟变量10D ⎧=⎨ ⎩东中部西部,如果统计检验表明10a =成立,则东中部的消费函数与西部的消费函数是( D )。

A. 相互平行的B. 相互垂直的C. 相互交叉的D. 相互重叠的2.虚拟变量( A )A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B.只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素3.分段线性回归模型的几何图形是( D )A. 平行线B. 垂直线C. 光滑曲线D. 折线4.如果一个回归模型中(包含截距项),对一个具有m 个特征的质的因素要引入虚拟变量数目为( B )。

A.mB.m-1C.m-2D.m+15.设某商品需求模型为01t t t y b b x u =++,其中Y 是商品的需求量,X 是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为( D )。

A .异方差性B .序列相关C .不完全的多重共线性D .完全的多重共线性6.设消费函数为i i i 33i 22i 11o i u bx D D D y +++++=αααα,其中y 为消费,x 为收入,虚拟变量⎩⎨⎧=⎩⎨⎧=⎩⎨⎧=其他季度第三季度,其他季度第二季度,其他季度第一季度 0 0 0 321D 1D 1D 1,该模型中包含了几个定性影响因素?( A )。

A.1B. 2C. 3D. 47. 设消费函数为i i i o i u Dx b x b D y ++++=101αα,其中虚拟变量⎩⎨⎧=农村家庭城镇家庭 0 1D ,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭有一样的消费行为( A )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章虚拟变量回归第一节虚拟变量一、虚拟变量的基本概念在前面的分析中,被解释变量主要受到一些可以直接度量的变量影响,如收入、产出、商品需求量、价格、成本、资金、人数等。

但现实经济生活中,影响被解释变量变动的因素,除了这些可以直接获得实际观测数据的定量变量外,还包括一些本质上为定性因素(或称属性因素)的影响,例如性别、种族、肤色、职业、季节、文化程度、战争、自然灾害、政府经济政策的变动等因素。

在实际经济分析中,这些定性变量有时具有不可忽视的重要影响。

例如,研究某个企业的销售水平,产业部门(制造业、零售业)、所有制(私营、非私营)、地理位置(东、中、西部)、管理者素质的高低等是值得经常考虑的影响因素,这些因素有共同的特征,即都是表示某种属性的,不能直接用数据精确描述的因素。

因此,被解释变量的变动经常是定量因素和属性因素共同作用的结果。

在计量经济模型中,应当同时包含定量和属性两种因素对被解释变量的影响作用。

定量因素是指那些可直接测度的数值型因素,如GDP、M2 等。

定性因素,或称为属性因素,是不能直接测度的、说明某种属性或状态存在与否的非数值型因素,如男性或女性、城市居民或非城市居民、气候条件正常或异常、政府经济政策不变与改革等。

在计量经济学的建模中应当将定量因素和定性因素同时纳入模型之内。

为了在模型中反映定性因素,可以将定性因素转化为虚拟变量去表现。

虚拟变量(或称为属性变量、双值变量、类型变量、定性变量、二元型变量等),是人工构造的取值为0 和1 的作为属性变量代表的变量,一般用字母D (或DUM ,英文dummy 的缩写)表示。

属性因素通常具有若干类型或水平,通常虚拟变量的取值为0和1,当虚拟变量取值为0,即D=0 时,表示某种属性或状态不出现或不存在,即不是某种类型;当虚拟变量取值为1,即D=1 时,表示某种属性或状态出现或存在,即是某种类型。

例如,构造政府经济政策人工变量,当经济政策不变时,虚拟变量取值为0,当经济政策改变时,虚拟变量取值为1。

这种做法实际上是一种变换或映射,将不能精确计量的定性因素的水平或状态变换为用0 和1 来定量描述。

二、虚拟变量的设置规则在计量经济学模型中引入虚拟变量,可以使我们同时兼顾定量因素和定性因素的影响和作用。

但是,在设置虚拟变量时应遵循一定的规则。

1、虚拟变量数量的设置规则虚拟变量个数的设置规则是:若定性因素有m 个相互排斥的类型(或属性、水平),在有截距项的模型中只能引入m-1 个虚拟变量,否则会陷入所谓“虚拟变量陷阱”,产生完全的多重共线性。

在无截距项的模型中,定性因素有m个相互排斥的类型时,引入m个虚拟变量不会导致完全多重共线性,不过这时虚拟变量参数的估计结果,实际上是D=1 时的样本均值。

例如,城镇居民和农村居民住房消费支出的模型可设定为:其 中 , C i 为 居 民 的 住 房 消 费 支 出 , Y i 为 居 民 的 可 支 配 收 入 , D i 为 虚 拟 变 量 ,D i1 城镇居民,即当 D i 1时为城镇居民; 当 D i 0 时为其他 (农村居民)。

这里区分城Di0 其他i i镇居民和农村居民的定性变量的类型有 m=2 个,按虚拟变量的设置规则应引入m - 1=2-1=1 个虚拟变量。

1 城镇居民 ,1 农村居民,其他D 3i0 其他3D 3i u i( 8.2)这时,当 D 2i =1 时同时有 D 3i =0;反之,当 D 2i =0 时有 D 3i =1。

即对于任何被调查的居民家庭都有D 2i + D 3i =1 , D 2和D 3存在完全的共线性,无法利用OLS 估计其参数,从而陷入“虚 拟变量陷阱” 。

由此,所谓的 “虚拟变量陷阱 ”的实质是出现完全多重共线性。

可见,虚拟变 量有其积极作用的一面, 也有不良影响的一面, 引入的虚拟变量适当, 则发挥了积极的作用, 引入的虚拟变量过度,则会带来负面的影响。

2、虚拟变量的 “0”和“1”的选取原则虚拟变量取“ 1”或“ 0”的原则,应从分析问题的目的出发予以界定。

从理论上讲,虚 拟变量取“ 0”值通常代表为比较的基础类型;而虚拟变量取“1 ”值通常代表为被比较的类型。

例如, 引入政府经济政策的变动对被解释变量的影响时, 由于此时的比较是在政府经济 政策不变的基础上进行的,故虚拟变量确定为:1 基础类型 : 政府经济政策变动D t0 比较类型 : 政府经济政策不变三、虚拟变量的作用 在计量经济模型中,虚拟变量可以发挥多方面的作用: (1) 可以作为属性因素的代表,如性别、所有制等;(2) 作为某些非精确计量的数量因素的代表,如受教育程度、管理者素质等; (3) 作为某些偶然因素或政策因素的代表,如战争、灾害、改革前后等; (4) 还可以作为时间序列分析中季节(月份)的代表;C iY i2D i ui8.1)但是,如果引入了 m=2 个虚假变量: D 2i则有:Ci 1 Yi2D2i(5)可以实现分段回归,研究斜率、截距的变动,或比较两个回归模型的结构差异。

在计量经济学中,把包含有虚拟变量的模型称为虚拟变量模型。

常用的虚拟变量模型有三种类型:(1)解释变量中只包含虚拟变量,作用是在假定其他因素都不变时,只研究定性变量是否使被解释变量表现出显著差异;(2)解释变量中既含定量变量,又含虚拟变量,研究定量变量和虚拟变量同时对被解释变量的影响;(3)被解释变量本身为虚拟变量的模型,是被解释变量本身取值为0或1的模型,适于对某社会经济现象进行“是”与“否”的判断研究。

特别要注意的是,定型或属性变量,通常由1 个以上的虚拟变量描述。

例如,分析考证区域这样一个定性因素的影响时,若将区域因素划分为东、中、西三种属性时,在有截距项的回归模型中,只能引人2 个虚拟变量,而这两个虚拟变量只是描述了1 个定性因素(区域因素),而不是2 个定性因素。

当然,当定性因素为性别因素时,1 个虚拟变量就描述了1 个定性因素。

第二节虚拟解释变量的回归在计量经济模型中,加入虚拟解释变量的途径有两种基本类型:一是加法类型;二是乘法类型。

不同的途径引入虚拟变量有不同的作用,加法方式引入虚拟变量改变的是截距;乘法方式引入虚拟变量改变的是斜率。

一、用虚拟变量表示不同截矩的回归——加法类型以加法类型引入虚拟解释变量的模型,如(8.3)式那样,Y t 1 2X t 3D u t (8.3)在(8.3)所设定的计量经济模型中,虚拟解释变量与其他解释变量是相加关系。

以加法形式引入虚拟解释变量,从计量经济模型的意义看,其作用是改变了设定模型的截距水平。

以加法方式引入虚拟变量时,分为四种情形:(1)解释变量只有一个分为两种相互排斥类型的定性变量而无定量变量;(2)解释变量包含一个定量变量和一个分为两种类型的定性变量;(3)解释变量包含一个定量变量和一个两种以上类型的定性变量;(4)解释变量包含一个定量变量和两个定性变量。

1、解释变量只有一个分为两种相互排斥类型的定性变量而无定量变量的回归这种情况的模型又被称为方差分析模型,例如(8.4)式Y i D i u i 8.4)其中, Y i 为居民的年可支配收入, D i 为虚拟解释变量, D i =1 代表城镇居民; D i =0 代表非 城镇居民。

8.4)式的意义是,假设其他因素(包括文化程度、职业、性别等)保持不变的条件有:其中:Y :消费支出;x :收入;D i 0城镇居民模型( 8.7)的意义在于描述收入和城乡差别对居民消费支出的影响。

量解释变量 X 和一个分为两种类型的虚拟解释变量组成。

注意这里一个定性变量具有两种 类型,只使用了一个虚拟变量。

当( 8.7)式中的 u i 服从古典假定时,有:基础类型: 农村居民消费支出: E Y i |x i ,D i 0 1 x i(8.8)比较类型: 城镇居民消费支出: E Y i |x i ,D i 1 ( 1 2) x i (8.9) 其中 1为差异截距系数。

( 8.7)式可图示为 8.1,表明非城镇居民与城镇居民两种类型收入函数的斜率相同(均 为 ),而截距水平不同。

这说明,城镇居民和非城镇居民在消费支出水平上,存在着规模下,研究城镇居民和非城镇居民的收入是否存在差别。

当u i 满足古典假设时,由式( 8.4)非城镇居民的年平均收入: E (Y i |D i 0)(8.5) 城镇居民的年平均收入:E(Y i | D i 1)8.6)即在( 8.4)式中,截距项给出了非城镇居民的年平均可支配收入水平,而另一系数表明城镇居民年平均可支配水平不同于非城镇居民年平均可支配收入的部分。

由式( 8.5)和(8.6)可知,虚拟解释变量的作用是改变设定模型的截距水平。

为了检验城镇居民和非城镇居民的年均可支配收入是否有显著差别,可构造假设H 0:0 ,即城镇与非城镇居民年均可支配收入无差别。

对式(8.4)回归,依据估计值的 t检验是否显著,可作出接受或不能接受H 0假设的判断。

2、解释变量包含一个定量变量和一个分为两种类型定性变量的回归例如Yi 1 2D iXi i8.7)8.7)式由一个定为1的差异,而由收入因素而产生的平均消费支出水平变化却是相同的。

-a20X图8.1城镇农村居民消费支出水平的差异在H 0 : 1 0的假设下,对参数1估计值的t检验,可以进行消费支出是否存在城乡差异的检验。

3、解释变量包含一个定量变量和一个两种以上类型的定性变量的回归考虑以下模型:显然,模型( 8.9)是描述居民的年医疗保健费用支出与居民可支配收入(定量变量) 和受教育程度(定性变量)间的因果关系。

这里,定性因素(受教育的程度)划分为三种类 型;高中以下、高中、大专及大专以上。

注意这里的定性变量有 3 种类型,依据虚拟变量设 置规则引入了 m - 1=3- 1=2 个虚拟变量,而且一个定性变量多种类型时,虚拟变量可同时 取值为 0,但不能同时取值为 1,因为同一定性变量的各种类型间 “非此即彼 ”。

当式( 8.10)服从古典假定时,有: 基础类型: 高中以下教育:E(Y i | X i ,D 2 0,D 3 0) 1X 1(8.11)比较类型: 高中教育:E(Y i |X i ,D 21,D 30) ( 12)X i (8.12)大专及大专以上 : E(Y i | X i ,D 2 0,D 3 1) ( 13)X i(8.13)这表明,三种不同教育程度居民的医疗保健费用年均支出的起点水平(截距)不同,差异截距系数为 2和3。

对式(8.10)进行回归,检验 H 。

: 2 0和H 。

: , 0的t 检验可 以发现与比较基准组 (高中以下教育水平) 相比, 另两种类型截距的差异在统计上是否存在 显著差异。

关于 2 3 0 的联合假设检验,也可由方差分析或F 检验完成。

相关文档
最新文档