不等式的证明练习

合集下载

三角形不等式(含练习题)

三角形不等式(含练习题)

三角形不等式的应用根据两点之间线段最短导出了三角形任意两边之和大于第三边,我们把这个关系叫做三角形不等式.这一定理在证明一些结构特别的不等式中有广泛应用.下面我们举几个例子来说明这个定理的应用.类型一:证明形如a b c +>型的不等式例1、已知x y z 、、证明:作角∠120AOB =,∠120BOC =,则∠120AOC =,设x y z OA OB OC ===、、,由余弦定理:==又OA OB OC,+>所以原不等式成立.例2、已知x y z 、、证明:在空间直角坐标系中,取A(,0,0)B 0,0)C 00)x y z 、(,、(,,,则BC C A ==又AB BC C,A +>所以原不等式成立.类型二:证明形如a b c d ++>型的不等式例3、已知x y z 、、y z).++证明:以x y z ++为边作正方形,).BC CD AB x y z =++≥++DAx yzx y z类型三:证明形如a b c d e +++>型的不等式例4、设01,01x y <<<<求证:≥证明:左边即表示动点(,)P x y 到四个定点(0,0),(1,0),(1,1),(0,1)O A B C 的距离之和. 另由题设知,P 在边长为1的正方形OABC 的内部.由()()OP BP CP AP OB AC +++≥+=.应当注意,有些不等式从表面上看很难用三角形不等式来证明,似乎只能用代数方法证明,但是如果仔细分析,也可能用上三角形不等式,一般说来,用三角形不等式证明要比代数方法简单的多,但是其构造的难度也很大,需要一些很技巧的变形,例如配方变形法,凑两点间距离公式等.例5、已知正数x y 、满足1x y +=, 2.≥分析:用代数法可以使用分析法,并随时利用1x y +=这个条件进行化简.证明:2,只要证22224,x y y ++++≥x即证22224,x y y ++++x即证22224,x y y ++++≥x即证22[()2]x y xy x y +-+++注意到1x y +=,即证2[12]14,xy -++即证14,xy +即证224(4()52)1816(),xy xy xy xy -+≥++即证287,xy -≥-1,4xy ≤而21(),24x y xy +≤=故14xy ≤成立. 所以原不等式成立.如果用几何法,开始要用消元法,中间利用两点间距离公式配凑,最后也用到了三角形不等式:证明:左边===设(,0)P x ,1(,)44A ,3(,44B ,则|||)PA PB =+左边,1(4A 关于x 轴的对称点为11(,4A , 由对称及三角形不等式知1||||||PA PB A B +≥,当P 为1A B 与x 轴交点时取等号.1A B ==2.≥左边即原不等式成立比较两种解法,可以看出利用三角形不等式证明运算量较小,但是思考的难度是很大的. 但是,我们仔细思考可以发现,编拟这些题目时,命题者大都是从几何的角度入手.因此,我们在这里研究一下几何的证明方法,对于走进命题人的思维是很有好处的,希望同学们在解题过程中多进行一些数形结合方面的思考.下面的练习可以利用三角形不等式来证明或求解:1、求y =.(答案:5)2、已知a b ≠,求证:||.a b <-3、 求证:01≤<.4、已知x y z 、、为正数,求证:(1>(2)|<。

100道不等式练习题

100道不等式练习题

3

8abc(
1 a2
) 1
11: a,b, c 0, pro :
(a b)2 (a b)2
(a c)(b c) a2 b2 c2
由柯西 : LHS (a b)2 (b c)2 (c a)2 (a c)(b c) (b a)(c a) (c b)(a b)
ab c 1 1 1 1 1 1 1 c 1 1 1
1 ab 1 c
1 ab (1 c)2 1 2c c2 1 ab (1 c)2 ab 2 c
20 : x, y, z 0; pro : x y yz z x 1 引理 : 0 x, y 1 x y x
27
(4 xy)(4 xy)( x

y)2

27 x2 [

y2
10xy ]3

4( x 2

xy

y2 )3
16
16
3
8 : a,b, c 0, a b c 3, pro : 1 1 1 1 ab a 1 bc b 1 ca c 1
(a x 1)(b y 1) (a x 1)(b y 1)(c z 1)

(a a2
b)2 b2 c2
12
:
a,b, c

0;
pro
:
1 a

1 b

1 c

a

9 b

c

4(
a
1
) b
两边乘以(a

第二讲证明不等式的基本方法 (1)

第二讲证明不等式的基本方法 (1)

一、选择题1.若a>b>0,则下列不等式中一定成立的是( )A.a+>b+B.>C.a->b-D.>解析 ∵a>b>0,∴>>0,∴a+>b+.答案 A2.已知x>y>z,且x+y+z=1,则下列不等式中恒成立的是( )A.xy>yzB.xz>yzC.x|y|>z|y|D.xy>xz解析 令x=2,y=0,z=-1,可排除选项A,B,C,故选D.答案 D3.已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是( )A.c≥b>aB.a>c≥bC.c>b>aD.a>c>b解析 ∵c-b=(a-2)2≥0,∴c≥b.由题中两式相减,得b=a2+1,∴b-a=a2-a+1=+>0.∴b>a,∴c≥b>a.答案 A4.已知b>a>0,且a+b=1,那么( )A.2ab<<<bB.2ab<<<bC.<2ab<<bD.2ab<<b<解析 取特殊值法.令a=,b=,则2ab=,=,=,故选B.答案 B5.若实数a,b满足a+b=2,则3a+3b的最小值是( )A.18B.6C.2D.2解析 3a+3b≥2=2=2×3=6(当且仅当a=b=1时,等号成立).答案 B6.对于任意的x∈[0,1],不等式ax+2b>0恒成立,则代数式a+3b的值( )A.恒为正值B.恒为非负值C.恒为负值D.不确定解析 令f(x)=ax+2b,则在[0,1]上,若a>0,则f min(x)=f(0)=2b>0;若a<0,则f min(x)=f(1)=a+2b>0,∴a+3b=b+a+2b>0.答案 A7.设a、b、c是互不相等的正数,则下列等式中不恒成立的是( )A.|a-b|≤|a-c|+|b-c|B.a2+≥a+C.|a-b|+≥2D.-≤-解析 因为a-b的符号不确定,所以|a-b|+≥2不一定正确,所以应选C.答案 C8.若x,y∈R+,且x≠y,下列四个数中最小的一个是( )A. B.C. D.解析 >·2=,>>.由<⇒>⇒>⇒>,故选D.答案 D9.要使-<成立,a,b应满足的条件是( )A.ab<0,且a>bB.ab>0,且a>bC.ab<0,且a<bD.ab>0,且a>b或ab<0,且a<b解析 -<⇔a-b+3-3<a-b⇔<,∴当ab>0时,有<,即b<a.当ab<0时.有>,即b>a.答案 D10.在△ABC中,A,B,C分别为边a,b,c所对的角,且a,b,c成等差数列,则角B适合的条件是( )A.0<B≤B.0<B≤C.0<B≤D.<B<π解析 ∵2b=a+c,∴cos B====-≥-=.当且仅当a=b=c时等号成立.∵余弦函数在上为减函数,∴0<B≤.答案 B二、填空题11.lg 9·lg 11与1的大小关系是________.解析 ∵lg 9>0,lg 11>0,∴<<<=1.∴lg 9·lg 11<1.答案 lg 9·lg 11<112.已知a,b>0,则x=a b b a,y=a a b b的大小关系是________.解析 ==a b-a·b a-b=,若a≥b>0,则≥1,而b-a≤0,∴≤1.若0<a≤b,则≤1,而b-a≥0,∴≤1.综上,y≥x.答案 y≥x13.设a=-,b=-,c=-,则a,b,c的大小顺序是________.解析 a-b=--+=+-(+),而(+)2=8+2,(+)2=8+2,∴+>+.∴a-b>0,即a>b.同理可知b>c.∴a>b>c.答案 a>b>c14.已知a,b,c,d都为正数,且S=+++,则S的取值范围是________.解析 由放缩法,得<<;<<;<<;<<.以上四个不等式相加,得1<S<2.答案 (1,2)三、解答题15.设a>0,b>0,且a+b=+.证明:①a+b≥2;②a2+a<2与b2+b<2不可能同时成立.证明 由a+b=+=,a>0,b>0,得ab=1.①由基本不等式及ab=1,有a+b≥2=2,即a+b≥2.②假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.16.已知a,b,c为三角形的三边,求证:,,也可以构成一个三角形.证明 设f(x)=,x∈(0,+∞),0<x1<x2,则f(x2)-f(x1)=-=>0,f(x2)>f(x1),∴f(x)在(0,+∞)上为增函数.∵a,b,c为三角形的三边,∴a+b>c,∴<=+<+,即<+,同理可证<+,<+,∴以,,为边可构成一个三角形.17.已知数列{a n}满足a1=且a n+1=a n-a(n∈N*).(1)证明:1≤≤2(n∈N*);(2)设数列{a}的前n项和为S n,证明:≤≤(n∈N*).(1)证明 由题意得a n+1-a n=-a≤0,即a n+1≤a n,故a n≤.由a n=(1-a n-1)a n-1得a n=(1-a n-1)(1-a n-2)…(1-a1)a1>0.由0<a n≤得==∈(1,2],所以1≤≤2.(2)解 由题意得a=a n-a n+1,所以S n=a1-a n+1,①由-=和1≤≤2得1≤-≤2,所以n≤-≤2n,因此≤a n+1≤(n∈N*).②由①②得≤≤(n∈N*).18.设各项均为正数的数列{a n}的前n项和为S n,且S n满足S-(n2+n-3)S n-3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有++…+<.(1)解 令n=1代入得a1=2(负值舍去).(2)解 由S-(n2+n-3)S n-3(n2+n)=0,n∈N*得[S n-(n2+n)](S n+3)=0,又已知各项均为正数,故S n=n2+n,当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n,当n=1时,a1=2也满足上式,所以a n=2n(n∈N*).(3)证明 k∈N*,4k2+2k-(3k2+3k)=k2-k=k(k-1)≥0,∴4k2+2k≥3k2+3k,∴==≤=.∴++…+≤=<.∴原不等式成立.。

不等式的证明典型例题

不等式的证明典型例题

不等式的证明·典型例题【例1】已知a,b,c∈R+,求证:a3+b3+c3≥3abc.【分析】用求差比较法证明.证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)[a2+b2+c2-ab-bc-ca]∵a,b,c∈R+,∴a+b+c>0.(c-a)]2≥0即 a3+b3+c3-3abc≥0,∴a3+b3+c3≥3abc.【例2】已知a,b∈R+,n∈N,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).【分析】用求差比较法证明.证明:左-右=a n+1+ab n+a n b+b n+1-2a n+1-2b n+1=ab n+a n b-a n+1-b n+1=a(b n-a n)+b(a n-b n)=(b n-a n)(a-b)(*) 当a>b>0时,b n-a n<0,a-b>0,∴(*)<0;当b>a>0时,b n-a n>0,a-b<0,∴(*)<0;当a=b>0时,b n-a n=0,a-b=0,∴(*)=0.综上所述,有(a+b)(a n+b n)-2(a n+1+b n+1)≤0.即 (a+b)(a n+b n)≤2(a n+1+b n+1).【说明】在求差比较的三个步骤中,“变形”是关键,常用的变形手段有配方、因式分解等,常将“差式”变形为一个常数,或几个因式积的形式.【例3】已知a,b∈R+,求证a a b b≥a b b a.【分析】采用求商比较法证明.证明:∵a,b∈R+,∴a b b a>0综上所述,当a>0,b>0,必有a a b b≥a b b a.【说明】商值比较法的理论依据是:【例4】已知a、b、c是不全等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【分析】采用综合法证明,利用性质a2+b2≥2ab.证明:∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc.①同理b(c2+a2)≥2abc②c(a2+b2)≥2abc③∵a,b,c不全相等,∴①,②,③中至少有一个式子不能取“=”号∴①+②+③,得a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.【例5】已知a,b,c∈R+,求证:(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;【分析】用综合法证明,注意构造定理所需条件.证明:(1)ab+a+b+1=(a+1)(b+1),ab+ac+bc+c2=(a+c)(b+c).∴(a+1)(b+1)(a+c)(b+c)≥16abc因此,当a,b,c∈R+,有(ab+a+b+1)(ab+ac+bc+c2)≥16abc.【说明】用均值定理证明不等式时,一要注意定理适用的条件,二要为运用定理对式子作适当变形,把式子分成若干分,对每部分运用均值定理后,再把它们相加或相乘.【分析】采用分析法证明.(*)∵a<c,b<c,∴a+b<2c,∴(*)式成立.∴原不等式成立.用充分条件代替前面的不等式.【例7】若a、b、c是不全相等的正数,求证:证明二:(综合法)∵a,b,c∈R+,abc成立.上式两边同取常用对数,得【说明】分析法和综合法是对立统一的两个方面.在证法一中,前面是分析法,后面是综合法,两种方法结合使用,使问题较易解决.分析法的证明过程恰恰是综合法的分析、思考过程,综合法的证明方法是分析思考过程的逆推.【例8】已知a>2,求证log a(a-1)·log a(a+1)<1.【分析】两个对数的积不好处理,而两个同底对数的和却易于处理.因为我们可以先把真数相乘再取对数,从而将两个对数合二为一,平均值不等式恰好有和积转化功能可供利用.证明:∵a>2,∴log a(a-1)>0,log a(a+1)>0.又log a(a-1)≠log a(a+1)∴log a(a-1)·log a(a+1)<1.【说明】上式证明如果从log a(a-1)·log a(a+1)入手,得log a(a-1)二为一了.另外,在上述证明过程中,用较大的log a a2代替较小的log a(a2-1),并用适当的不等号连结,从而得出证明.这种方法通常叫做“放缩法”.同样,也可以用较小的数代替较大的数,并用适当的不等号连结.【例9】已知:a,b,c都是小于1的正数;【分析】采用反证法证明.其证明思路是否定结论从而导出与已知或定理的矛盾.从而证明假设不成立,而原命题成立.对题中“至少∵a,b,c都是小于1的正数,故与上式矛盾,假设不成立,原命题正确.【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.|a|≤1.【说明】换元法是将较为复杂的不等式利用等价转换的思想转换成易证明的不等式.常用的换元法有(1),若|x|≤1,可设x=sinα,α∈R;(2)若x2+y2=1,可设x=sinα,y=cosα;(3)若x2+y2≤1,可设x=【例11】已知a1、a2、…a n,b1、b2、…b n为任意实数,求证明:构造一个二次函数它一定非负,因它可化为(a1x-b1)2+(a2x-b2)2+…+(a n x-b n)2.∴Δ≤0,(当a1,a2,…a n都为0时,所构造式子非二次函数,但此时原不等式显然成立.)【说明】上例是用判别式法证明的“柯西不等式”,它可写为:变量分别取|a+b|,|a|、|b|时就得到要证的三个式子.因此,可考虑从函数∴f(x2)>f(x1),f(x)在[0,+∞)上是增函数.取x1=|a+b|,x2=|a|+|b|,显然0≤x1≤x2.∴f(|a+b|)≤f(|a|+|b|).【说明】这里是利用构造函数,通过函数的单调性,结合放缩法来证明不等式的.应注意的是,所给函数的单调整性应予以论证.【例13】已知a,b,m,n∈R,且a2+b2=1,m2+n2=1,求证:|am+bn|≤1.证法一:(比较法)证法二:(分析法)∵a,b,m,n∈R,∴上式成立,因此原不等式成立.证法三:(综合法)∵a,b,m,n∈R,∴(|a|-|m|)2≥0,(|b|-|n|)2≥0.即a2+m2≥2|am|,b2+n2≥2|bn|∴a2+m2+b2+n2≥2(|am|+|bn|)∵a2+b2=1,m2+n2=1,∴|am|+|bn|≤1∴|am+bn|≤|am|+|bn|≤1.证法四:(换元法)由已知,可设a=sinα,b=cosα,m=sinβ,n=cosβ.于是|am+bn|=|sinαsinβ+cosαcosβ|=|cos(α-β)|≤1.【说明】一个不等式的证明方法往往不只一种,要注意依据题目特点选择恰当的方法.【例14】已知f(x)=x2-x+c,且|x-a|<1,(a,b,c∈R)求证:|f(x)-f(a)|<2(|a|+1).【分析】绝对值不等式的证明充分利用绝对值不等式性质:证明:|f(x)-f(a)|=|x2-x+c-a2+a-c|=|(x+a)(x-a)-(x-a)|=|x-a||x+a-1|<|x+a-1|=|(x-a)+2a-1|<|x-a|+|2a|+|(-1)|<1+2|a|+1=2(|a|+1).∴|f(x)-f(a)|<2(|a|+1).【例15】当h与|a|,|b|,1中最大的一个相等,求证:当|x|>h时,由已知,有|x|>h≥|a|,|x|>h≥|b|,|x|>h≥1 ∴|x|2≥b.。

一个不等式的七种证明方法

一个不等式的七种证明方法

一个不等式的七种证明方法证明不等式就是证明所给不等式在给定条件下恒成立.由于不等式的形式是多种多样的,因此,不等式的证明方法也可谓是千姿百态.针对不等式证明,要具体问题具体分析,灵活选用证明方法,提高代数变形,推理论证能力,一题多解,有助于我们对辩证唯物主义观点有进一步的认识. 题目:已知a ,b ,c ,d ∈R ,求证:ac +bd ≤))((2222d c b a ++ 分析一:用分析法证法一:(1)当ac +bd ≤0时,显然成立.(2)当ac +bd >0时,欲证原不等式成立, 只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2) 即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2 即证2abcd ≤b 2c 2+a 2d 2 即证0≤(bc -ad )2因为a ,b ,c ,d ∈R ,所以上式恒成立, 综合(1)、(2)可知:原不等式成立. 分析二:用综合法 证法二:(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)=(ac +bd )2+(bc -ad )2≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd .故命题得证. 分析三:用比较法证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0,∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2∴))((2222d c b a ++≥|ac +bd |≥ac +bd , 即ac +bd ≤))((2222d c b a ++. 分析四:用放缩法证法四:为了避免讨论,由ac +bd ≤|ac +bd |,可以试证(ac +bd )2≤(a 2+b 2)(c 2+d 2). 由证法1可知上式成立,从而有了证法四. 分析五:用三角代换法证法五:不妨设⎩⎨⎧==⎩⎨⎧==ββααsin cos ,sin cos 2211r d r c r b r a (r 1,r 2均为变量).则ac +bd =r 1r 2cos αcos β+r 1r 2sin αsin β=r 1r 2cos (α-β) 又|r 1r 2|=|r 1|·|r 2|=))((22222222d c b a d c b a ++=+⋅+ 及r 1r cos (α-β)≤|r 1r 2| 所以ac +bd ≤))((2222d c b a ++. 分析六:用换元法证法六:(1)当(a 2+b 2)(c 2+d 2)=0时,原不等式显然成立.(2)当(a 2+b 2)(c 2+d 2)≠0时,欲证原不等式成立, 只需证| 2222dc b a bd ac +⋅++|≤1.即证|22222222dc d ba b dc c ba a +⋅+++⋅+|≤1,注意到(22b a a +)2+(22b a b+)2=1与(22d c c +)2+(22d c d +)2=1和cos 2x +sin 2x =1的结构特征很类同,不妨设22ba a+=cos α, 22dc c +=cos β,则22ba b +=sin α,22dc d +=sin β,故|22222222dc b a bddc ba ac+⋅++++|=|cos αcos β+sin αsin β| =|cos (α-β)|≤1 所以ac +bd ≤))((2222d c b a ++. 分析七:用构造函数法(判别式法)证法七:待证不等式的结构特征与一元二次方程的判别式Δ =b 2-4ac ≤0的结构特征很类似,由此不妨构造函数, f (x )=(a 2+b 2)x 2+2(ac +bd )x +(c 2+d 2)=(a 2x 2+2acx +c 2)+(b 2x 2+2bdx +d 2) =(ax +c )2+(bx +d )2显然不论x 取任何实数,函数f (x )的值均为非负数,因此,(1)当a 2+b 2≠0时,方程f (x )=0的判别式Δ≤0, 即[2(ac +bd )]2-4(a 2+b 2)(c 2+d 2)≤0, 即(ac +bd )2≤(a 2+b 2)(c 2+d 2)故ac +bd ≤|ac +bd |≤))((2222d c b a ++(2)当a 2+b 2=0时,原不等式显然成立. 分析八:用构造复数法证法八:待证不等式的结构特征与复数的模相似设复数Z 1=a+bi,Z 2=c+di 则有|z 12又。

高中不等式证明练习题及参考答案

高中不等式证明练习题及参考答案

高中不等式证明练习题及参考答案高中不等式证明练习题及参考答案不等式证明是可以作文练习题经常出现的,这类的练习题是的呢?下面就是店铺给大家整理的不等式证明练习题内容,希望大家喜欢。

不等式证明练习题解答(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+c)(1/a + 2/b + 4/c)≥(1+√2+2)^2=(3+√2)^2=11+6√2≥18楼上的,用基本不等式要考虑等号时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z则原不等式等价于:x^2+y^2+z^2>=xy+yz+zx<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0<=>(x-y)^2+(y-z)^2+(z-x)^2>=0含有绝对值的不等式练习。

1.实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7, -1-7x-7, x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.函数y=arcsinx的定义域是 [-1, 1] ,值域是,函数y=arccosx的定义域是 [-1, 1] ,值域是[0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是(0, π) .直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。

不等式证明练习题

1.设,a b c n N >>∈,且ca nc b b a -≥-+-11恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .62. 若(,1)x ∈-∞,则函数22222x x y x -+=-有( )A .最小值1B .最大值1C .最大值1-D .最小值1- 3.设P =Q =R =,,P Q R 的大小顺序是( )A .P Q R >>B .P R Q >>C .Q P R >>D .Q R P >> 4.设不等的两个正数,a b 满足3322a b a b -=-,则a b +的取值范围是( ) A .(1,)+∞ B .4(1,)3 C .4[1,]3D .(0,1)5.设,,a b c R +∈,且1a b c ++=,若111(1)(1)(1)M a b c=---,则必有( ) A .108M ≤<B .118M ≤< C .18M ≤< D .8M ≥ 6.若,a b R +∈,且,a b M ≠=+N =M 与N 的大小关系是 A .M N > B .M N < C .M N ≥ D .M N ≤ 1.若log 2x y =-,则x y +的最小值是( )A . 2233B .3323C .233 D .3222.,,a b c R +∈,设a b c dS a b c b c d c d a d a b=+++++++++++, 则下列判断中正确的是( )A .01S <<B .12S <<C .23S <<D .34S << 3.若1x >,则函数21161xy x x x =+++的最小值为( ) A .16 B .8 C .4 D .非上述情况 4.设0b a >>,且P =,211Q a b=+,M = 2a b N +=,R =, 则它们的大小关系是( )A .P Q M N R <<<<B .Q P M N R <<<<C .P M N Q R <<<<D .P Q M R N <<<<二、填空题 1.函数23(0)1xy x x x =<++的值域是 .2.若,,a b c R +∈,且1a b c ++=,则c b a ++的最大值是3.已知1,,1a b c -<<,比较ab bc ca ++与1-的大小关系为 .4.若0a >,则1a a +的最大值为 . 5.若,,x y z 是正数,且满足()1xyz x y z ++=,则()()x y y z ++的最小值为______。

高中物理基本不等式练习题

高中物理基本不等式练习题1. 已知两个正数 a 和 b,且 a > b,求证 a² - b² > 0。

证明过程:首先,根据已知条件 a > b,我们可以得出 a + b > b + b。

接下来,我们可以将 a + b 和 b + b 进行对比,根据正数的性质,可得 a > 2b。

再进一步,我们可以将 a 和 b 分别进行平方,得到 a²和 4b²。

根据前面的推论,可得 a² > 4b²。

进而,我们将 a²和 4b²进行简化,得到 a² - 4b² > 0。

最后,我们将 4b²进行简化,得到 a² - b² > 0。

2. 如果 a > 0,b > 0,将下列不等式从小到大排列:a + b, a - b,b - a。

解决办法:首先,我们可以根据正数的性质得出 a + b > 0。

接下来,我们可以将 a 和 b 进行组合,得到 a - b 和 b - a。

根据已知条件 a > 0 和 b > 0,我们可以得出 a - b > 0 和 b - a < 0。

最后,我们可以将这三个不等式按照从小到大排列,得到 b - a < a - b < a + b。

3. 已知 a² > b²,求证 a > b。

证明过程:首先,我们可以将 a²和 b²进行开方,得到√a 和√b。

接下来,我们可以将不等式 a² > b²进行开方,得到√a > √b。

根据开方的性质,我们可以得出当 a > b 时,√a > √b。

最后,我们可以得出结论 a > b。

4. 如果 a > b > 0,将下列不等式从小到大排列:a²,ab,b²。

不等式区间练习题

不等式区间练习题一、一元一次不等式1. 解不等式:3x 5 > 22. 解不等式:4 2x ≤ 3x + 13. 解不等式:5x + 4 > 2x 34. 解不等式:7 3x < 2x + 65. 解不等式:9x 2 > 5x + 4二、一元二次不等式1. 解不等式:x^2 5x + 6 > 02. 解不等式:x^2 4x 5 < 03. 解不等式:2x^2 + 5x 3 ≥ 04. 解不等式:3x^2 2x 1 ≤ 05. 解不等式:4x^2 12x + 9 > 0三、分式不等式1. 解不等式:x / (x 2) > 12. 解不等式:1 / (2x 1) ≤ 23. 解不等式:(x + 3) / (x 4) < 04. 解不等式:(2x 5) / (3x + 2) ≥ 15. 解不等式:(3x + 4) / (x 3) > 2四、绝对值不等式1. 解不等式:|2x 3| > 52. 解不等式:|3x + 4| < 23. 解不等式:|x 1| ≥ 44. 解不等式:|2x + 5| ≤ 35. 解不等式:|x 7| > 2x 5五、综合题1. 解不等式组:\[\begin{cases} 2x 3 > 0 \\ x + 4 < 7\end{cases}\]2. 解不等式组:\[\begin{cases} x^2 5x + 6 ≥ 0 \\ 3x 2 < 0 \end{cases}\]3. 解不等式组:\[\begin{cases} |x 2| < 3 \\ x / (x 1) > 0 \end{cases}\]4. 解不等式组:\[\begin{cases} 4x 7 < 0 \\ |2x + 5| > 3 \end{cases}\]5. 解不等式组:\[\begin{cases} x^2 6x + 9 ≤ 0 \\ 1 / (x3) ≥ 0 \end{cases}\]六、不等式的应用题2. 一辆汽车以每小时x公里的速度行驶,要使其在t小时内行驶的距离超过200公里,求x的取值范围。

专项练习:证明不等式之泰勒展式和拉格朗日中值定理

证明不等式之泰勒展式和拉格朗日中值定理【典型例题】例1.已知函数f (x )=ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f (x )的极小值点.(ⅰ)证明:12<a <1;(ⅱ)求f (x )在区间(-∞,π)上的零点个数;(2)若a =1,f (x )x =1-x π 1+x π 1-x 2π 1+x 2π 1-x 3π 1+x 3π ⋯1-x n π 1+xn π ⋯,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n x 2n (2n )!+⋯,n ∈N *.证明:112+122+132+⋯+1n2+⋯=π26.例2.已知函数f(x)=x2+ln x-ax.(1)求函数f(x)的单调区间;(2)若f(x)≤2x2,对x∈[0,+∞)恒成立,求实数a的取值范围;(3)当a=1时,设g x =xe x2-f x -x-1.若正实数λ1,λ2满足λ1+λ2=1,x1,x2∈(0,+∞)(x1≠x2),证明:g(λ1x1+λ2x2)<λ1g(x1)+λ2g(x2).例3.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x33!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f(x)=m sin x,若区间[a,b]满足当f(x)定义域为[a,b]时,值域也为[a,b],则称为f(x)的“和谐区间”,(ⅰ)m=1时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由;(ⅱ)m=-2时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由.例4.给出以下三个材料:①若函数f(x)可导,我们通常把导函数f (x)的导数叫做f(x)的二阶导数,记作f (x).类似地,二阶导数的导数叫做三阶导数,记作f (x),三阶导数的导数叫做四阶导数⋯⋯一般地,n-1阶导数的导数叫做n阶导数,记作f(n)(x)=[f(n-1)(x)]′,n≥4.②若n∈N*,定义n!=n×(n-1)×(n-2)×⋯×3×2×1.③若函数f(x)在包含x0的某个开区间(a,b)上具有n阶的导数,那么对于任一x∈(a,b)有g(x)=f(x0)+f (x0)1!(x-x0)+f (x0)2!(x-x0)2+f (x0)3!(x-x0)3+⋯+f(n)(x0)n!(x-x0)n,我们将g(x)称为函数f(x)在点x=x0处的n阶泰勒展开式.例如,y=e x在点x=0处的n阶泰勒展开式为1+x+12x2+⋯+1n!x n.根据以上三段材料,完成下面的题目:(1)求出f1(x)=sin x在点x=0处的3阶泰勒展开式g1(x),并直接写出f2(x)=cos x在点x=0处的3阶泰勒展开式g2(x);(2)比较(1)中f1(x)与g1(x)的大小.(3)已知y=e x不小于其在点x=0处的3阶泰勒展开式,证明:x≥0时,e x+sin x+cos x≥2+2x.例5.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d(b2-c2)+e(c2-a2)+f(a2-b2)d(b-c)+e(c-a)+f(a-b)<b+c.例6.用拉格朗日中值定理证明不等式:x1+x<ln(1+x)<x(x>0).例7.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0)的图象在(2,f (2))处的切线与x 轴平行.(1)求n ,m 的关系式并求f (x )的单调减区间;(2)证明:对任意实数0<x 1<x 2<1,关于x 的方程:f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解;(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f (x )是在闭区间[a ,b ]上连续不断的函数,且在区间(a ,b )内导数都存在,则在(a ,b )内至少存在一点x 0,使得f (x 0)=f (b )-f (a )b -a.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:当0<a <b 时,b -a b<ln b a <b -a a (可不用证明函数的连续性和可导性).例8.已知f (x )=23x 3-2x 2+cx +4,g (x )=e x -e 2-x +f (x ),(1)若f (x )在x =1+2处取得极值,试求c 的值和f (x )的单调增区间;(2)如图所示,若函数y =f (x )的图象在[a ,b ]连续光滑,试猜想拉格朗日中值定理:即一定存在c ∈(a ,b ),使得f (c )=f (b )-f (a )b -a,利用这条性质证明:函数y =g (x )图象上任意两点的连线斜率不小于2e -4.xyabcA By =f x【同步练习】一、单选题1.十八世纪早期,英国数学家泰勒发现了公式sin x=x-x33!+x55!-x77!+⋯+-1n-1x2n-12n-1!+⋯,(其中x∈R,n∈N*,n!=1×2×3×⋯×n,0!=1),现用上述公式求1-12!+14!-16!+⋯+-1n-112n-2!+⋯的值,下列选项中与该值最接近的是()A.sin57°B.sin36°C.sin33°D.sin30°2.公元1715年英国数学家布鲁克·泰在他的著作中陈述了“泰勒公式”,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:e x=+∞n=0x nn!=x0 0!+x11!+x22!+x33!+⋯+x nn!+⋯,其中x∈R,n∈N*,试用上述公式估计e的近似值为(精确到0.001)()A.1.647B.1.649C.1.645D.1.6463.计算器是如何计算sin x,cos x,πx,ln x,x等函数值的呢?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x=x-x3 3!+x55!-x77!+⋯,cos x=1-x22!+x44!-x66!+⋯,其中n!=1×2×⋯×n,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x和cos x的值也就越精确.运用上述思想,可得到sinπ2+1的近似值为()A.0.50B.0.52C.0.54D.0.56二、填空题4.英国数学家泰勒(1685-1731)以发现泰勒公式和泰勒级数闻名于世,由泰勒公式,我们得到e=1+1 1!+12!+13!+⋯+1n!+eθ(n+1)!(其中e为自然对数的底数,0<θ<1,n!=n×n-1×n-2×...×2×1),其拉格朗日余项是R n=eθ(n+1)!.可以看出,右边的项用得越多,计算得到的e的近似值也就越精确.若3(n+1)!近似地表示e的泰勒公式的拉格朗日余项R n,R n不超过11000时,正整数n的最小值是_____三、解答题5.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)证明:e x +sin x +cos x ≥2+2x .6.在高等数学中,我们将y=f x 在x=x0处可以用一个多项式函数近似表示,具体形式为:f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),以上公式我们称为函数f x 在x=x0处的泰勒展开式.(1)分别求e x,sin x,cos x在x=0处的泰勒展开式;(2)若上述泰勒展开式中的x可以推广至复数域,试证明:e iπ+1=0.(其中i为虚数单位);(3)若∀x∈0,32,e a sin x>x+1恒成立,求a的范围.(参考数据ln52≈0.9)7.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x3 3!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f x =m sin x,若区间a,b满足当f x 定义域为a,b时,值域也为a,b,则称为f x 的“和谐区间”.(i)m=1时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由;(ii)m=-2时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由.8.计算器是如何计算sin x,cos x,e x,ln x,x等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x=x-x33!+x55!-x77!+⋯,cos x=1-x22!+x44!-x66!+⋯,其中n!=1⋅2⋅3⋅⋯⋅n.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得到的sin x和cos x的值也就越精确.例如,我们用前三项计算sin0.9,就得到sin0.9≈0.9-(0.9)3 3!+(0.9)55!≈0.78342075.像这些公式已被编入计算器内,计算器利用足够多的项就可确保其显示值是精确的.试用你的计算器计算sin0.9,并与上述结果进行比较.9.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)已知y =e x 不小于其在点x =0处的3阶泰勒展开式,证明:e x +sin x +cos x ≥2+2x .10.已知函数f x =ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f x 的极小值点.①证明:12<a <1;②求f x 在区间-∞,π 上的零点个数;(2)若a =1,f x x =1-x π 1+x π 1-x 2π 1-x 3π 1+x 3π ⋅⋅⋅1-x n π 1+xn π⋅⋅⋅,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋅⋅⋅+-1 n x 2n2n !+⋅⋅⋅n ∈N * ,证明:112+122+132+⋅⋅⋅+1n 2+⋅⋅⋅=π2611.英国数学家泰勒发现了如下公式:sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×3×4×5×⋯×n .这些公式被编入计算工具,计算工具计算足够多的项就可以确保显示值的精确性.比如,用前三项计算cos0.3,就得到cos0.3≈1-0.322!+0.344!=0.9553375.试用你的计算工具计算cos0.3,并与上述结果比较.四、双空题12.记f (n )(x )为函数f (x )的n 阶导数且f 2 x =f x ,f n x =f n -1 x n ≥3,n ∈N * .若f (n )(x )存在,则称f x n 阶可导.英国数学家泰勒发现:若f (x )在x 0附近n +1阶可导,则可构造T n x =f x 0 +f x 0 1!x -x 0 +f 2 x 0 2!x -x 0 2+⋯+f n x 0 n !x -x 0 n(称为n 次泰勒多项式)来逼近f (x )在x 0附近的函数值.据此计算f (x )=e x 在x 0=0处的3次泰勒多项式为T 3(x )=_________;f (x )=-1x在x 0=-1处的10次泰勒多项式中x 3的系数为_________证明不等式之泰勒展式和拉格朗日中值定理【典型例题】例1.已知函数f (x )=ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f (x )的极小值点.(ⅰ)证明:12<a <1;(ⅱ)求f (x )在区间(-∞,π)上的零点个数;(2)若a =1,f (x )x =1-x π 1+x π 1-x 2π 1+x 2π 1-x 3π 1+x 3π ⋯1-x n π 1+xn π ⋯,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n x 2n (2n )!+⋯,n ∈N *.证明:112+122+132+⋯+1n2+⋯=π26.【解析】解:(1)证明:(ⅰ)由题意得:f (x )=ln a (1-x )e -x +a cos x (a >0),因为x =0为函数f (x )的极值点,所以f (0)=ln a +a =0,令g (x )=ln x +x (x >0),则g (x )=1x+1>0,g (x )在(0,+∞)上单调递增,因为g (1)>0,g 12=ln 12+12=ln e 2<0,所以g (x )=ln x +x (x >0)在12,1上有唯一的零点a ,所以12<a <1;(ⅱ)由(ⅰ)知:ln a =-a ,f (x )=a (sin x -xe -x ),f (x )=a [cos x -(1-x )e -x ],①当x ∈(-∞,0)时,由a >0,-1≤cos x ≤1,1-x >1,e -x >1得:f (x )<0,所以f (x )在(-∞,0)上单调递减,f (x )>f (0)=0,所以f (x )在区间(-∞,0)上不存在零点;②当x ∈(0,π)时,设h (x )=cos x -(1-x )e -x ,则h (x )=(2-x )e -x -sin x ,1°若x ∈0,π2,令m (x )=(2-x )e -x -sin x ,则m (x )=(x -3)e -x-cos x <0,所以m (x )在0,π2 上单调递减,因为m (0)=2>0,m π2 =2-π2 e -π2-1<0;所以存在α∈0,π2,满足m (α)=0,当x ∈(0,α)时,m (x )=h (x )>0,h (x )在(0,α)上单调递增;当x ∈α,π2时,m (x )=h(x )<0,h (x )在α,π2 上单调递减;2°若x ∈π2,2,令φ(x )=(2-x )e -x ,x ∈π2,2 ,则φ (x )=(x -3)e -x <0,所以φ(x)在区间π2,2上单调递减,所以φ(x)<φπ2 =2-π2e-π2<1e,又因为sin x≥sin2=sin(π-2)>sin π6=12,所以h (x)=(2-x)e-x-sin x<0,h(x)在π2,2上单调递减;3°若x∈(2,π),则h (x)=(2-x)e-x-sin x<0,h(x)在(2,π)上单调递减;由1°2°3°得,h(x)在(0,α)上单调递增,h(x)在(α,π)单调递减,因为h(α)>h(0)=0,h(π)=(π-1)e-π-1<0,所以存在β∈(α,π)使得h(β)=0,所以当x∈(0,β)时,f (x)=h(x)>0,f(x)在(0,β)上单调递增,f(x)>f(0)=0,当x∈(β,π)时,f (x)=h(x)<0,f(x)在(β,π)上单调递减,因为f(β)>f(0)=0,f(π)<0,所以f(x)在区间(β,π)上有且只有一个零点;综上,f(x)在区间(-∞,π)上的零点个数为2个;(2)因为sin xx =1-x2π21-x24π21-x232π2⋯1-x2n2π2⋯①对cos x=1-x22!+x44!-x66!+⋯+(-1)n x2n(2n)!+⋯,两边求导得:-sin x=-x1!+x33!-x55!+⋯+(-1)n x2n-1(2n-1)!+⋯,sin x=x1!-x33!+x55!+⋯+(-1)n-1x2n-1(2n-1)!+⋯,所以sin xx=1-x23!+x45!+⋯+(-1)n-1x2n-2(2n-1)!+⋯②比较①②式中x2的系数,得:-13!=-1π2112+122+132+⋯+1n2+⋯所以112+122+132+⋯+1n2+⋯=π26.例2.已知函数f(x)=x2+ln x-ax.(1)求函数f(x)的单调区间;(2)若f(x)≤2x2,对x∈[0,+∞)恒成立,求实数a的取值范围;(3)当a=1时,设g x =xe x2-f x -x-1.若正实数λ1,λ2满足λ1+λ2=1,x1,x2∈(0,+∞)(x1≠x2),证明:g(λ1x1+λ2x2)<λ1g(x1)+λ2g(x2).【解析】解:(1)f′(x)=2x+1x-a=2x2-ax+1x,x>0,△=a2-8,①a≤22时,f′(x)≥0恒成立,故函数f(x)在(0,+∞)递增,无递减区间,②a >22时,f ′(x )>0⇒0<x <a -a 2-84或x >a +a 2-84,故函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,综上,a ≤22时,函数f (x )在(0,+∞)递增,无递减区间,a >22时,函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,(2)f (x )≤2x 2,对x ∈[0,+∞)恒成立,即x ∈[0,+∞)时,a ≥ln xx-x 恒成立,令F (x )=ln x x -x ,(x >0),则F ′(x )=1-ln x -x 2x 2,令G (x )=1-ln x -x 2(x >0),则G ′(x )=-1x-2x <0,∴G (x )在(0,+∞)递减且G (1)=0,∴x ∈(0,1)时,G (x )>0,F ′(x )>0,F (x )递增,当x ∈(1,+∞),G (x )<0,F ′(x )<0,F (x )递减,∴F (x )max =F (1)=-1,综上,a 的范围是[-1,+∞).(3)证明:当a =1时,g (x )=xe -(ln x -x )-x -1=xe x -ln x -x -1=e x -x -1,g ′(x )=e x -1>0(x >0),不妨设0<x 1<x 2,下先证:存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),构造函数H (x )=g (x )-g (x 1)-g (x 2)-g (x 1)x 2-x 1(x -x 1),显然H (x 1)=H (x 2),且H ′(x )=g ′(x )-)-g (x 2)-g (x 1)x 2-x 1,则由导数的几何意义可知,存在ξ∈(x 1,x 2),使得H ′(ξ)=g ′(ξ)-)-g (x 2)-g (x 1)x 2-x 1=0,即存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),又g ′(x )=e x -1为增函数,∴g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1)>g ′(x 1)(x 2-x 1),即g (x 2)>g (x 1)+g ′(x 1)(x 2-x 1),设x 3=λ1x 1+λ2x 2(λ1+λ2=0),则x 1-x 3=(1-λ1)x 1-λ2x 2,x 2-x 3=(1-λ2)x 2-λ1x 1,∴g (x 1)>g (x 3)+g ′(x 3)(x 1-x 3)=g (x 3)+g ′(x 3)[(1-λ1)x 1-λ2x 2]①,g (x 2)>g (x 3)+g ′(x 3)(x 2-x 3)=g (x 3)+g ′(x 3)[(1-λ2)x 2-λ1x 1]②,由①×λ1+②×λ2得,λ1g (x 1)+λ2g (x 2)>g (x 3)=g (λ1x 1+λ2x 2),即g (λ1x 1+λ2x 2)<λ1g (x 1)+λ2g (x 2).例3.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x33!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f(x)=m sin x,若区间[a,b]满足当f(x)定义域为[a,b]时,值域也为[a,b],则称为f(x)的“和谐区间”,(ⅰ)m=1时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由;(ⅱ)m=-2时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由.【解析】(1)证明:由已知当x∈0,π2时,sin x>x-x33!,得sin xx>1-x26>1-π226=1-π224>12,所以当x∈0,π2时,sin x x>12.(2)(i)m=1时,假设存在,则由-1≤f(x)≤1知-1≤a<b≤1,注意到1<π2,故[a,b]⊆-π2 ,π2,所以f(x)在[a,b]单调递增,于是f(a)=af(b)=b,即a,b是方程sin x=x的两个不等实根,易知x=±π2不是方程的根,由已知,当x∈0,π2时,sin x<x,令x=-t,则有t∈-π2 ,0时,sin(-t)<-t,即sin t>t,故方程sin x=x只有一个实根0,故f(x)不存在和谐区间.(ii)m=-2时,假设存在,则由-2≤f(x)≤2知-2≤a<b≤2,若a,b≥0,则由[a,b]⊆[0,π),知f(x)≤0,与值域是[a,b]⊆[0,π)矛盾,故不存在和谐区间,同理,a,b≤0时,也不存在,下面讨论a≤0≤b,若b≥π2,则0,π2⊆[a,b],故f(x)最小值为-2,于是a=-2,所以-π2 ,π2⊆[a,b],所以f(x)最大值为2,故b=2,此时f(x)的定义域为[-2,2],值域为[-2,2],符合题意.若b<π2,当a≤-π2时,同理可得a=-2,b=2,舍去,当a>-π2时,f(x)在[a,b]上单调递减,所以a=-2sin bb=-2sin a,于是a+b=-2(sin a+sin b),若b>-a即a+b>0,则sin b>sin(-a),故sin b+sin a>0,-2(sin a+sin b)<0,与a+b=-2(sin a+sin b)矛盾;若b<-a,同理,矛盾,所以b>-a,即b2=sin b,由(1)知当x∈0,π2时,sin x>x2,因为b∈0,π2,所以b=0,从而,a=0,从而a=b,矛盾,综上所述,f(x)有唯一的和谐区间[-2,2].例4.给出以下三个材料:①若函数f(x)可导,我们通常把导函数f (x)的导数叫做f(x)的二阶导数,记作f (x).类似地,二阶导数的导数叫做三阶导数,记作f (x),三阶导数的导数叫做四阶导数⋯⋯一般地,n-1阶导数的导数叫做n阶导数,记作f(n)(x)=[f(n-1)(x)]′,n≥4.②若n∈N*,定义n!=n×(n-1)×(n-2)×⋯×3×2×1.③若函数f(x)在包含x0的某个开区间(a,b)上具有n阶的导数,那么对于任一x∈(a,b)有g(x)=f(x0)+f (x0)1!(x-x0)+f (x0)2!(x-x0)2+f (x0)3!(x-x0)3+⋯+f(n)(x0)n!(x-x0)n,我们将g(x)称为函数f(x)在点x=x0处的n阶泰勒展开式.例如,y=e x在点x=0处的n阶泰勒展开式为1+x+12x2+⋯+1n!x n.根据以上三段材料,完成下面的题目:(1)求出f1(x)=sin x在点x=0处的3阶泰勒展开式g1(x),并直接写出f2(x)=cos x在点x=0处的3阶泰勒展开式g2(x);(2)比较(1)中f1(x)与g1(x)的大小.(3)已知y=e x不小于其在点x=0处的3阶泰勒展开式,证明:x≥0时,e x+sin x+cos x≥2+2x.【解析】(1)解:因为f1(x)=sin x,则f1 (x)=cos x,f1 (x)=-sin x,f1 (x)=-cos x,所以f1 (0)=1,f1 (0)=0,f1 (0)=-1,故g1(x)=sin0+11!(x-0)+02!(x-0)2+-13!(x-0)3,即g1(x)=x-16x3,同理可得,g2(x)=1-12x2;(2)解:由(1)可知,f1(x)=sin x,g1(x)=x-16x3,令h(x)=f1(x)-g1(x)=sin x-x+16x3,则h (x)=cos x-1+12x2,则h (x)=-sin x+x,h (x)=1-cos x≥0,所以h (x)在R上单调递增,又h (0)=0,故当x<0时,h (x)<0,故h (x)单调递减,当x>0时,h (x)>0,故h (x)单调递增,所以h (x)的最小值为h (0)=1-1+0=0,所以h (x)≥0,故h(x)在R上单调递增,又h(0)=0,所以当x<0时,h(x)<0,当x>0时,h(x)>0,综上所述,当x<0时,f1(x)<g1(x);当x=0时,f1(x)=g1(x);当x>0时,f1(x)>g1(x).(3)证明:令φ(x)=f2(x)-g2(x)=cos x-1+12x2,则φ (x)=-sin x+x,所以φ (x)=1-cos x≥0.则φ (x)在R上单调递增,又φ (0)=0,所以φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以φ(x)≥φ(0)=0,即cos x≥1-12x2,因为y=e x在点x=0处的3阶泰勒展开式为:1+x+12x2+16x3,所以e x≥1+x+12x2+16x3,又y=sin x在x=0处的3阶泰勒展开式为:x-16x3,当x≥0时,sin x≥x-16x3,所以当x≥0时,e x+sin x+cos x≥1+x+12x2+16x3+x-16x3+1-12x2≥2+2x,故e x+sin x+cos x≥2+2x(x≥0).例5.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d(b2-c2)+e(c2-a2)+f(a2-b2)d(b-c)+e(c-a)+f(a-b)<b+c.【解析】(1)解:由题意G(f)=d(a-b)(a-c)+e(b-a)(b-c)+f(c-a)(c-b)=4-1×(-2)+e1×(-1)+f2×1=12f-e+2,又f>e,所以G(f)>12e-e+2=-12e+2,当e≤4时,G(f)>-12e+2≥0,则G(f)的值域是-12e+2,+∞;当e>4时,-12e+2<0,所以G(f)的值域是-12e+2,0∪(0,+∞).(2)证明:因为a<b<c,d>0,e<0,f>0,所以d(b-c)+e(c-a)+f(a-b)<0,(a+b)[d(b-c)+e(c-a)+f(a-b)]=d(b-c)(a+b)+e(c-a)(a+b)+f(a2-b2) =d(b-c)([(b+c)+(a-c)]+e(c-a)[(c+a)+(b-c)]+f(a2-b2)=d(b2-c2)+e(c2-a2)+f(a2-b2)+d(b-c)(a-c)+e(c-a)(b-c),因为a<b<c,d>0,e<0,f>0,所以d(b-c)(a-c)>0,e(c-a)(b-c)>0,所以(a+b)[d(b-c)+e(c-a)+f(a-b)]>d(b2-c2)+e(c2-a2)+f(a2-b2),所以a+b<d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),(b+c)[d(b-c)+e(c-a)+f(a-b)]=d(b2-c2)+e(c-a)(b+c)+f(a-b)(b+c) =d(b2-c2)+e(c-a)(c-a+b-a)+f(a-b)(a+b+c-a)=d(b2-c2)+e(c2-a2)+f(a2-b2)+e(c-a)(b-a)+f(a-b)(c-a),因为a<b<c,d>0,e<0,f>0,所以e(c-a)(b-a)<0,f(a-b)(c-a)<0,所以(b+c)[d(b-c)+e(c-a)+f(a-b)]<d(b2-c2)+e(c2-a2)+f(a2-b2),所以b+c>d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),综上,原不等式成立.例6.用拉格朗日中值定理证明不等式:x1+x<ln(1+x)<x(x>0).【解析】证明:设g(t)=ln t,t∈(a,b),则g(x)符合拉格朗日中值定理的条件,即存在t0∈(a,b),使g′(t0)=g(b)-g(a) b-a,因为g′(t)=1t,由t∈(a,b),0<a<b,可知g ′(t )∈1b ,1a,b -a >0,即1b <g ′t 0)=g (b )-g (a )b -a <1a ,可得1b <g (b )-g (a )b -a =ln b -ln a b -a<1a ,即有b -a b<ln b a <b -aa ,令b a=1+x ,可得x =ba-1,即有x1+x<ln (1+x )<x (x >0).例7.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0)的图象在(2,f (2))处的切线与x 轴平行.(1)求n ,m 的关系式并求f (x )的单调减区间;(2)证明:对任意实数0<x 1<x 2<1,关于x 的方程:f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解;(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f (x )是在闭区间[a ,b ]上连续不断的函数,且在区间(a ,b )内导数都存在,则在(a ,b )内至少存在一点x 0,使得f (x 0)=f (b )-f (a )b -a.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:当0<a <b 时,b -a b <ln b a <b -a a (可不用证明函数的连续性和可导性).【解析】解:(1)因为f (x )=3mx 2+2nx ,------(1分)由已知有f (2)=0,所以3m +n =0即n =-3m ------(2分)即f (x )=3mx 2-6mx ,由f (x )>0知mx (x -2)>0.当m >0时得x <0或x >2,f (x )的减区间为(0,2);-----(3分)当m <0时得:0<x <2,f (x )的减区间为(-∞,0)和(2,+∞);-----(4分)综上所述:当m >0时,f (x )的减区间为(0,2);当m <0时,f (x )的减区间为(-∞,0)和(2,+∞);-----(5分)(2)∵f (x 2)-f (x 1)x 2-x 1=m (x 21+x 22+x 1x 2-3x 1-3x 2),------------(6分)∴f ′(x )-f (x 2)-f (x 1)x 2-x 1=0,可化为3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2=0,令h (x )=3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2----(7分)则h (x 1)=(x 1-x 2)(2x 1+x 2-3),h (x 2)=(x 2-x 1)(x 1+2x 2-3),即h (x 1)h (x 2)=-(x 1-x 2)2(2x 1+x 2-3)(x 1+2x 2-3)又因为0<x 1<x 2<1,所以(2x 1+x 2-3)<0,(x 1+2x 2-3)<0,即h (x 1)h (x 2)<0,-----------(8分)故h (x )=0在区间(x 1,x 2)内必有解,即关于x 的方程f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解-----(9分)(3)令g (x )=ln x ,x ∈(a ,b ),-----------(10分)则g (x )符合拉格朗日中值定理的条件,即存在x 0∈(a ,b ),使g (x 0)=g (b )-g (a )b -a =ln b -ln ab -a-----------(11分)因为g ′(x )=1x ,由x ∈(a ,b ),0<a <b 可知g ′(x )∈1b ,1a,b -a >0-----(12分)即1b <g ′(x 0)=g (b )-g (a )b -a =ln b -ln a b -a =ln bab -a<1a ,∴b -a b<ln b a <b -a a -----(14分)例8.已知f (x )=23x 3-2x 2+cx +4,g (x )=e x -e 2-x +f (x ),(1)若f (x )在x =1+2处取得极值,试求c 的值和f (x )的单调增区间;(2)如图所示,若函数y =f (x )的图象在[a ,b ]连续光滑,试猜想拉格朗日中值定理:即一定存在c ∈(a ,b ),使得f (c )=f (b )-f (a )b -a,利用这条性质证明:函数y =g (x )图象上任意两点的连线斜率不小于2e -4.xyabcA By =f x【解析】解:(1)f ′(x )=2x 2-4x +c ,(1分)依题意,有f (1+2)=0,即c =-2(1+2)2+4(1+2)=-2.(2分)∴f (x )=23x 3-2x 2-2x +4,f ′(x )=2x 2-4x -2.令f ′(x )>0,得x <1-2或x >1+2,(5分)从而f (x )的单调增区间为:(-∞,1-2]及[1+2,+∞);(6分)(2)f (c )=f (b )-f (a )b -a;g (x )=e x -e 2-x +f (x )=e x -e 2-x +23x 3-2x 2-2x +4,(7分)g ′(x )=e x+e2-x+2x 2-4x -2(9分)=e x+e 2ex +2(x -1)2-4≥2e x ⋅e 2e x +2⋅0-4=2e -4.(12分)由(2)知,对于函数y =g (x )图象上任意两点A 、B ,在A 、B 之间一定存在一点C (c ,g ′(c )),使得g ′(c )=K AB ,又g ′(x )≥2e -4,故有K AB =g ′(c )≥2e -4,证毕.(14分)【同步练习】一、单选题1.十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ,0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是()A.sin57°B.sin36°C.sin33°D.sin30°【答案】C【解析】因为sin x =x -x 33!+x 55!-x 77!+⋯+(-1)n -1x 2n -1(2n -1)!+⋯,则(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n -1x 2n -2(2n -2)!+⋯,当x =1时,则有cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯,又cos1=sin π2-1 ,则1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1 ≈sin0.57=sin 0.57×180π °≈sin32.7°≈sin33°,故选∶C .2.公元1715年英国数学家布鲁克·泰在他的著作中陈述了“泰勒公式”,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:e x=+∞n =0x nn !=x 00!+x 11!+x 22!+x 33!+⋯+x n n !+⋯,其中x ∈R ,n ∈N *,试用上述公式估计e 的近似值为(精确到0.001)()A.1.647 B.1.649 C.1.645 D.1.646【答案】B【解析】由题意可知,结果只需精确到0.001即可,令x =0.5,取前6项可得:e =+∞n =00.5n n ! ≈5n =00.5n n ! =0.500!+0.511!+0.522!+0.533!+0.544!+0.555!=1+0.5+0.252+0.1256+0.062524+0.03125120≈1.649所以e 的近似值为1.649,故选:B .3.计算器是如何计算sin x ,cos x ,πx ,ln x ,x 等函数值的呢?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×⋯×n ,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到sin π2+1 的近似值为()A.0.50 B.0.52C.0.54D.0.56【答案】C【解析】由题意可得,sin π2+1=cos1,故cos1=1-122!+144!-166!+⋯=1-12+124-1720+⋯≈1-0.5+0.041-0.001+⋯=0.54.故选:C .二、填空题4.英国数学家泰勒(1685-1731)以发现泰勒公式和泰勒级数闻名于世,由泰勒公式,我们得到e =1+11!+12!+13!+⋯+1n !+e θ(n +1)!(其中e 为自然对数的底数,0<θ<1,n !=n ×n -1 ×n -2 ×...×2×1),其拉格朗日余项是R n =e θ(n +1)!.可以看出,右边的项用得越多,计算得到的e 的近似值也就越精确.若3(n +1)!近似地表示e 的泰勒公式的拉格朗日余项R n ,R n 不超过11000时,正整数n 的最小值是_____【答案】6【解析】依题意得3n +1 !≤11000,即n +1 !≥3000,5+1 !=6×5×4×3×2×1=720<3000,6+1 !=7×6×5×4×3×2×1=5040>3000,所以n 的最小值是6.故答案为:6三、解答题5.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;同理可得:g 2x =1-12x 2;(2)由(1)知:f 1x =sin x ,g 1x =x -16x 3,令h x =f 1x -g 1x =sin x -x +16x 3,则h x =cos x -1+12x 2,∴h x =-sin x +x ,h x =1-cos x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0,h x 单调递减;当x ∈0,+∞ 时,h x >0,h x 单调递增;∴h x min =h 0 =1-1+0=0,∴h x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0;当x ∈0,+∞ 时,h x >0;综上所述:当x <0时,f 1x <g 1x ;当x =0时,f 1x =g 1x ;当x >0时,f 1x >g 1x ;(3)令φx =f 2x -g 2x =cos x -1+12x 2,则φ x =-sin x +x ,∴φ x =1-cos x ≥0,∴φ x 在R 上单调递增,又φ 0 =0,∴φx 在-∞,0 上单调递减,在0,+∞ 上单调递增,∴φx ≥φ0 =0,即cos x ≥1-12x 2;∵y =e x 在点x =0处的4阶泰勒展开式为:1+x +12x 2+16x 3+124x 4,∴e x =1+x +12x 2+16x 3+124x 4≥1+x +12x 2+16x 3,当且仅当x =0时取等号,①当x ≥0时,由(2)可知,sin x ≥x -16x 3,当且仅当x =0时取等号,所以e x +sin x +cos x ≥1+x +12x 2+16x 3 +x -16x 3 +1-12x 2 =2+2x ;②当x<0时,设F x =e x+sin x+cos x-2-2x,F0 =0,F x =e x+cos x-sin x-2=e x+2cos x+π4-2,F x =e x-sin x-cos x,当x∈-1,0,由(2)可知sin x<x-16x3,所以,F x =e x-sin x-cos x>1+x+12x2+16x3+16x3-x-cos x=1-cos x+16x23+2x>0,即有F x <F 0 =0;当x∈-∞,-1时,F x =e x+2cos x+π4-2<1e+2-2<12+2-2<0,所以,x<0时,F x 单调递减,从而F x >F0 =0,即e x+sin x+cos x>2+2x.综上所述:e x+sin x+cos x≥2+2x.6.在高等数学中,我们将y=f x 在x=x0处可以用一个多项式函数近似表示,具体形式为:f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),以上公式我们称为函数f x 在x=x0处的泰勒展开式.(1)分别求e x,sin x,cos x在x=0处的泰勒展开式;(2)若上述泰勒展开式中的x可以推广至复数域,试证明:e iπ+1=0.(其中i为虚数单位);(3)若∀x∈0,32,e a sin x>x+1恒成立,求a的范围.(参考数据ln52≈0.9)【解析】(1)因为函数f x 在x=x0处的泰勒展开式为f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),所以e x,sin x,cos x在x=0处的泰勒展开式分别为:e x=1+x+12!x2+⋯+1n!x n+⋯,sin x=x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯,cos x=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯;(2)证明:把e x在x=0处的泰勒展开式中的x替换为ix,可得e ix=1+(ix)+12!(ix)2+13!(ix)3+14!(ix)4+⋯+1n!(ix)n+⋯=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯+i⋅x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯=cos x+i⋅sin x,所以e iπ=cosπ+i⋅sinπ=-1,即e iπ+1=0;(3)由sin x在x=0处的泰勒展开式,先证∀x∈0,32,sin x>x-16x3,令f(x)=sin x-x+16x3,f′(x)=cos x-1+12x2,f′′(x)=x-sin x,f (x)=1-cos x,易知f (x)>0,所以f′′(x)在0,32上单调递增,所以f′′(x)>f′′(0)=0,所以f′(x)在0,3 2上单调递增,所以f′(x)>f′(0)=0,所以f(x)在0,3 2上单调递增,所以f(x)>f(0)=0,再令g(x)=x-16x3-ln(x+1),x∈0,32,易得g′(x)=-12x(x-1)(x+2)x+1,所以g(x)在(0,1)上单调递增,在1,3 2上单调递减,而g(0)=0,g32=1516-ln52>0,所以∀x∈0,3 2,g(x)>0恒成立,当a≥1时,a sin x≥sin x>x-16x3>ln(x+1) ,所以e a sin x>x+1成立,当a<1时,令h(x)=a sin x-ln(x+1),x∈0,3 2,易求得h (0)=a-1<0,所以必存在一个区间(0,m),使得h(x)在(0,m)上单调递减,所以x∈(0,m)时,h(x)<h(0)=0,不符合题意.综上所述,a≥1.7.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x3 3!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f x =m sin x,若区间a,b满足当f x 定义域为a,b时,值域也为a,b,则称为f x 的“和谐区间”.(i)m=1时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由;(ii)m=-2时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由.【解析】(1)由已知当x∈0,π2时,sin x>x-x33!,得sin x x >1-x 26>1-π226=1-π224>12,所以当x ∈0,π2 时,sin x x >12.(2)(i )m =1时,假设存在,则由-1≤f x ≤1知-1≤a <b ≤1,注意到1<π2,故a ,b ⊆-π2,π2 ,所以f x 在a ,b 单调递增,于是f a =af b =b,即a ,b 是方程sin x =x 的两个不等实根,易知x =±π2不是方程的根,由已知,当x ∈0,π2时,sin x <x ,令x =-t ,则有t ∈-π2,0 时,sin -t <-t ,即sin t >t ,故方程sin x =x 只有一个实根0,故f x 不存在“和谐区间”.(ii )m =-2时,假设存在,则由-2≤f x ≤2知-2≤a <b ≤2,若a ,b ≥0,则由a ,b ⊆0,π ,知f x ≤0,与值域是a ,b ⊆0,π 矛盾,故不存在“和谐区间”,同理,a ,b ≤0时,也不存在,下面讨论a ≤0≤b ,若b ≥π2,则0,π2⊆a ,b ,故f x 最小值为-2,于是a =-2,所以-π2,π2⊆a ,b ,所以f x 最大值为2,故b =2,此时f x 的定义域为-2,2 ,值域为-2,2 ,符合题意.若b <π2,当a ≤-π2时,同理可得a =-2,b =2,舍去,当a >-π2时,f x 在a ,b 上单调递减,所以a =-2sinb b =-2sin a ,于是a +b =-2sin a +sin b ,若b >-a 即a +b >0,则sin b >sin -a ,故sin b +sin a >0,-2sin a +sin b <0,与a +b =-2sin a +sin b 矛盾;若b <-a ,同理,矛盾,所以b =-a ,即b2=sin b ,由(1)知当x ∈0,π2 时,sin x >x 2,因为b ∈0,π2,所以b =0,从而,a =0,从而a =b ,矛盾,综上所述,f x 有唯一的“和谐区间”-2,2 .8.计算器是如何计算sin x ,cos x ,e x ,ln x ,x 等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1⋅2⋅3⋅⋯⋅n .英国数学家泰勒(B .Taylor ,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得到的sin x 和cos x 的值也就越精确.例如,我们用前三项计算sin0.9,就得到sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075.像这些公式已被编入计算器内,计算器利用足够多的项就可确保其显示值是精确的.试用你的计算器计算sin0.9,并与上述结果进行比较.【解析】用计算器计算sin0.9得sin0.9=0.783326909627,和数值0.78342075比较发现,通过sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075计算的答案只能精确到小数点后第3位.9.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)已知y =e x 不小于其在点x =0处的3阶泰勒展开式,证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档