数学建模-生产计划问题
数学建模规划问题的经典案例

s.t.
x13 x34 x36 0; x12 x24 x25 0; x24 x34 x45 x47 0; x25 x45 x56 x57 0; x47 x57 x67 Q x36 x56 x67 0; xij 0, i , j 1,2,,7.
§2.4 案例
建立优化模型的一般步骤
1.确定决策变量 2.确定目标函数的表达式 3.寻找约束条件 例1:设某厂生产电脑和手机两种产品,这两种产品的生产需要 逐次经过两条装配线进行装配。电脑在第一条装配线每台需要2 小时,在第二条装配线每台需要3小时;手机在第一条装配线每 台需要4小时,在第二条装配线每台需要1小时。第一条装配线每 天有80个可用工时,第一条装配线每天有60个可用工时,电脑和 手机每台的利润分别为100元和80元。问怎样制定生产计划?
问题1
不允许缺货的存贮模型
配件厂为装配线生产若干种部件,轮换生产不
同的部件时因更换设备要付生产准备费(与生产数
量无关),同一部件的产量大于需求时因积压资金、 占用仓库要付存贮费。今已知某一部件的日需求量 100件,生产准备费5000元,存贮费每日每件1元。 如果生产能力远大于需求,并且不允许出现缺货,
A
T1
B
T
t
允许缺货模型的存贮量q(t)
一个周期内存贮费
c2
T1
0
Q2 QT1 c2 q(t )dt c2 2r 2
( rT Q )(T T1 ) 一个周期内缺货损失费 c3 q(t )dt c3 T1 2 ( rT Q )2 c3 一个周期的总费用 2r
T
Q ( rT Q ) C c1 c2 c3 2r 2r
生产计划问题2

《数学建模与计算》问题生产计划问题一、问题的提出已知某工厂计划生产I 、II、III三种产品,各产品需要在A、B、C设备上加工,有关数据如下:I II III 设备有效台数(每月)A 8 2 10 300B 10 5 8 400C 2 13 10 420单位产品利润(千元) 3 2 2.9试回答:(1) 如何发挥生产能力,使生产盈利最大?(2) 若为了增加产量,可租用别的工厂设备B,每月可租用60台时,租金1.8万元,租用B设备是否划算?(3) 若另有二种新产品IV、V,其中新产品IV需要设备A为12台时、B为5台时、C为10台时,单位产品盈利2.1千元;新产品V需要A为4台时、B为4台时、C为12台时,单位产品盈利1.87千元,如果A、B、C的设备台时不增加,这两种新产品投产在经济上是否划算?(4) 对产品工艺重新进行设计,改进结构。
改进后生产每件产品I需要设备A 为9台时、设备B为12台时、设备C为4台时,单位盈利4.5千元,这时对原计划有何影响?二、问题的分析对问题进行分析,该问题属于线性规划问题中的整数规划问题,需要根据线性规划的思想,根据题意建立线性规划问题。
根据线性规划的思想,建立线性规划模型,要根据已知条件建立出目标函数,意义对目标函数所影响的约束条件。
对于该问题,首先要确定决策变量,要求如何生产三种产品使得利润最大。
其次,根据约束条件,利用工具求解。
最后,确定问题的目标函数,由题意知安排最好的生产方式使得总的盈利最大。
三、基本假设(1) 在已知条件下该问题存在可行解。
(2) 生产产品是设备部损坏。
四、定义符号的说明1x 每月生产产品I 的台数 2x 每月生产产品II 的台数3x 每月生产产品III 的台数 4x 每月生产产品IV 的台数5x 每月生产产品V 的台数 z 每月最大的总盈利五、模型的分析、建立以及结果分析 5.1模型的分析对问题进行分析,该问题属于规划问题中的整数规划问题!建立线性规划模型有三个基本步骤:第一步,找出待定的未知变量(决策变量),并用代数符号来表示它们;第二步,找出问题的所有限制或约束条件,写出未知变量的线性方程或线性不等式; 第三步,找到模型的目标,写成决策变量的线性函数,以便求其最大或最小值。
数学建模题目c (2)

关于炼油厂生产计划的分析讨论问题引出炼油厂将A、B、C三种原料加工成甲乙丙三种汽油。
一桶原油加工成汽油的费用为4元,每天至多能加工汽油14,000桶。
原油的买入价、买入量、辛烷值、硫含量,及汽油的卖出价、需求量、辛烷值、硫含量由下表给出。
问如何安排生产计划,在满足需求的条件下使利润最大?一般来说,作广告可以增加销售,估计一天向一种汽油投入一元广告费,可以使这种汽油日销量增加10桶。
问如何安排生产计划和广告计划使利润最大?基本假设假设A、B、C每种原油生产甲、乙、丙每种汽油的产量以及广告投入如下表所示:建立模型及求解一、不考虑广告投入时的模型求解:由以上述条件可知:PA=PB=PC=0;总利润为:70*3000+60*2000+50*1000-45*(X1+X2+X3)-35*(Y1+Y2+Y3)-25*(Z1+Z2+Z3)-4*(X1+X2+ X3+Y1+Y2+Y3+Z1+Z2+Z3)针对买入量与总产量得条件①:X1+X2+X3+Y1+Y2+Y3+Z1+Z2+Z3≤14000;X1+X2+X3≤5000;Y1+Y2+Y3≤5000;Z1+Z2+Z3≤5000;针对需求量得条件②:X1+Y1+Z1≥3000;X2+Y2+Z2≥2000;X3+Y3+Z3≥1000;针对辛烷值得条件③:12%*X1+6%*Y1+8%*Z1≥10%*(X1+Y1+Z1);12%*X2+6%*Y2+8%*Z2≥2%*(X2+Y2+Z2);12%*X3+6%*Y3+8%*Z3≥6%*(X3+Y3+Z3);针对硫含量得条件④:0.5%*X1+2.0%*Y1+3.0%*Z1≤1.0%*(X1+Y1+Z1);0.5%*X2+2.0%*Y2+3.0%*Z2≤0.8%*(X2+Y2+Z2);0.5%*X3+2.0%*Y3+3.0%*Z3≤1.0%*(X3+Y3+Z3);X1,X2,X3,Y1,Y2,Y3,Z1,Z2,Z3均为非负整数;结果分析与检验利用LING0 9.0求解在上述四条件下利润的最大值得(LINGO程序见附录一):当X1=2400,X2=1600, X3=800,Z1=600,Z2=400,Z3=200,其余变量值为0;即用A类原油生产2400桶甲类汽油,生产1600桶乙类石油,生产800桶丙类石油,用C类原油生产600桶甲类汽油,用C类原油生产400桶乙类汽油,用C类原油生产200桶丙类汽油时,总利润达到最大值为110000元。
数学建模-生产计划问题

- - . 数学建模作业生产计划问题班级数学与应用数学一班高尚学号- - 考试资料.WORD 格式 整理学习 参考 资料 分享生产计划问题摘 要本文通过对每个季度各种产品产量、需求量和存储量之间关系的分析,建立了基于Lingo 的生产决策模型,解决了生产计划问题,并提出合理的生产方案得到了总赔偿和存储费用的最优解。
针对该问题,采用线性规划的方法,首先确定ij x 为第j 季度产品i 的产量,ij d 为第j 季度产品i 的需求量,ij s 为第j 季度末产品i 的库存量,用0-1规划来限制上述变量,然后确定这些变量所具有的约束条件,最后列出目标函数与约束条件,利用Lingo 软件(见附录)求解出总的赔偿和库存费用的最小值为5900.70元。
模型思路清晰,考虑周全,可以针对同类问题进行建模,具有一定的应用性和推广性。
WORD 格式整理关键词:Lingo、0-1规划、生产决策、线性规划一、问题重述对某厂I、II、III三种产品下一年各季度的合同预订数如表1所示。
学习参考资料分享WORD 格式 整理学习 参考 资料 分享该三种产品1季度初无库存,要求在4季度末各库存150件。
已知该厂每季度生产工时为15000.8小时,生产I 、II 、III 产品每件分别需要2.1、4.3、2.7小时。
因更换工艺装备,产品I 在2季度无法生产。
规定当产品不能按期交货时,产品I 、II 每件每迟交一个季度赔偿20.5元,产品III 赔10.8元;又生产出来产品不在本季度交货的,每件每季度的库存费用为5.1元。
问该厂应如何安排生产,使总的赔偿加库存的费用为最小。
二、问题分析 该问题的目标是使一年内总的赔偿加库存费用最小,需要重新建立生产计划,每种产品在每个季度的产量、贮存量、需求量都对最终决策起到了限制,因此需要对变量进行0-1规划,建立目标函数与约束条件,在此基础上实现总的赔偿加库存的费用最小的目的。
三、模型假设1.产量、贮存量、需求量不受外界因素影响;2.产品的生产时间互不影响;3.变量间没有相互影响。
数学建模习题--某厂生产三种产品I,II,III

4.某厂生产三种产品I,II,III。
每种产品要经过A, B两道工序加工。
设该厂有两种规格的设备能完成A工序,它们以A1,A2表示;有三种规格的设备能完成B工序,它们以B1,B2,B3表示。
产品I可在A,B任何一种规格设备上加工。
产品II可在任何规格的A设备上加工,但完成B 工序时,只能在B1设备上加工;产品III只能在A2与B2设备上加工。
已知在各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床设备的费用如表2,求安排最优的生产计划,使该厂利润最大。
解:引入变量表示第i(i=1,2,3,4,5)种设备完成第j(j=1,2,3)种产品所消耗的时间,表示第i(i=1,2,3,4,5)种设备完成第j(j=1,2,3)种产品的件数,表示每完成一件第j(j=1,2,3)种产品所得利润,表示第i(i=1,2,3,4,5)种设备有效台时,f(i)表示第i(i=1,2,3,4,5)种设备满负荷时的设备费用。
目标函数,利润最大Max=0.5* (())约束条件:=< ;结果:A1生产第Ⅰ种产品1200件;A2生产第Ⅰ种产品230件,第Ⅱ种产品500件,第Ⅲ种产品324件;B1生产第Ⅱ种产品500件;B2生产第Ⅰ种产品859件,生产第Ⅲ种324件;B3生产第Ⅰ种产品571件。
利润最大为1146.414。
代码:model: sets: gx/1..5/:a,f; cp/1..3/:b; link(gx,cp):c,x; endsets data: a=6000 10000 4000 7000 4000; b=1 1.65 2.30; c=5 10 10000 7 9 12 6 8 10000 4 10000 11 7 10000 10000; f=300 321 250 783 200; enddata max=0.5*@sum(cp(j):@sum(gx(i):x(i,j))*b(j))-@sum(gx(i):@sum(cp(j):c(i, j)*x(i,j))*f(i)/a(i)); @for(gx(i):@sum(cp(j):c(i,j)*x(i,j))<=a(i)); @for(cp(j):@sum(gx(i)|i#LE#2:x(i,j))-@sum(gx(i)|i#GE#3:x(i,j))=0); @for(link(i,j):@gin(x(i,j))); end 。
数学建模与应用案例练习题

数学建模与应用案例练习题数学建模是将实际问题转化为数学问题,并通过数学方法和计算机技术求解的过程。
它在各个领域都有着广泛的应用,能够帮助我们更好地理解和解决现实中的复杂问题。
下面我们将通过一些具体的案例练习题来深入了解数学建模的方法和应用。
案例一:生产计划优化问题某工厂生产 A、B 两种产品,生产 A 产品每件需要消耗 2 个单位的原材料和 3 个单位的工时,生产 B 产品每件需要消耗 3 个单位的原材料和 2 个单位的工时。
工厂现有 100 个单位的原材料和 80 个单位的工时,A 产品的单位利润为 5 元,B 产品的单位利润为 4 元。
问如何安排生产计划,才能使工厂获得最大利润?首先,我们设生产 A 产品 x 件,生产 B 产品 y 件。
那么,目标函数就是利润最大化,即 Z = 5x + 4y。
然后,我们需要考虑约束条件。
原材料的限制为 2x +3y ≤ 100,工时的限制为 3x +2y ≤ 80,同时 x、y 都应该是非负整数。
接下来,我们可以使用线性规划的方法来求解这个问题。
通过绘制可行域,找到目标函数在可行域上的最大值点。
经过计算,我们可以得出当 x = 20,y = 20 时,工厂能够获得最大利润 180 元。
这个案例展示了数学建模在生产决策中的应用,通过合理地安排生产计划,能够有效地提高企业的经济效益。
案例二:交通流量预测问题在一个城市的某个十字路口,每天不同时间段的车流量不同。
我们收集了过去一段时间内每天各个时间段的车流量数据,希望建立一个数学模型来预测未来某一天的车流量。
首先,我们对收集到的数据进行分析,发现车流量具有一定的周期性和季节性变化。
然后,我们可以选择使用时间序列分析的方法来建立模型。
比如,可以使用 ARIMA 模型(自回归移动平均模型)。
在建立模型之前,需要对数据进行预处理,包括平稳性检验、差分处理等。
通过建立合适的 ARIMA 模型,并进行参数估计和检验,我们就可以利用这个模型对未来的车流量进行预测。
数学建模:生产计划

问题二:生产计划某厂用一套设备生产若干种产品。
工厂靠银行贷款筹集资金,根据市场需求安排生产,现考虑以下的简化情形:1) 设生产甲乙两种产品, 市场对它们的需求分别为d1,d2 (件/天),该设备生产它们的最大能力分别为U1,U2 (件/天),生产成本分别为c1,c2 (元/件)。
当改变产品时因更换零部件等引起的生产甲乙前的准备费用分别为 s1,s2(元)。
生产出的产品因超过当天的需求而导致的贮存费用,按生产成本的月利率r 引起的积压资金的k 倍计算(每月按30天计)。
设每种产品的生产率都可以从零到最大能力之间连续调节,每种产品当前的需求均需满足。
请您为工厂制订合理、易行的生产计划,使上面考虑到的费用之和尽可能小。
2)考虑有n 种产品的情形,自行给出一组数据进行计算,讨论模型有解的条件。
提示:考虑稳定的、周期性的计划(不必考虑初始情况)解:1)设每次生产周期中a 天生产甲产品,第i 天产量为x 1i 件;b 天生产乙产品,第j 天产量为x 2j 件。
则目标函数如下:∑∑==--+--++=bj a i k r c i a d j x k r c j b d i x 1130/**2*)(*)22(30/**1*)(*)11(s2s1minf约束条件为: d1<U1d2<U2x 1i ≤U1x 2j ≤U2解以上线性规划即可得出。
2)设每次生产周期中生产第i 种产品一共 用时k i 天,且在这k i 天中的第j 天产量为x ij 件。
其中,i ,j ≥0.由题可得,目标函数如下:30/***)(min 111k r c d x s f i k j i ij n i n i n i ∑∑∑===-+=约束条件为:di<Uix ij≤Ui0<i≤n0<j≤k i解以上线性规划即可。
以上线性规划都是以一般形式给出了题目的解答,模型缺少一定的数据,缺乏一定得说服力。
数学建模 机械生产

机械加工生产计划问题摘要文章所给的信息经过分析可以发现是线性规划问题,并且是最优方案的问题。
并且是求最大利润的问题。
对于问题一,首先由题目中的假设和表格对数据分析,以六个月的总利润作为目标函数,并以生产、销售、库存等件数的限制作为约束条件,从而建立整体的最优化模型。
用L IN G O计算得到生产-库存-销售的最优计划(表2-表4)。
并且得到的最大利润为3066033.00元。
在最优生产-库存-销售的计划前提下,与最大的销售量对比,得到表格5。
在促销的费用方面,我们考虑到促销的费用不能超过促销给公司带来的利润的增加,最终得到促销费用不能超过68725.00元。
问题二是建立在问题一的基础之上的,对销售上限和最优的生产量,最优销售量做对比分,对数据进一步处理。
得到表格6,库存费用的变化可能导致最优生产-库存-销售计划的变化。
问题三还是以最大利润为目标函数,对检修设备的方案改进,我们第一问的最优方案为基础,我们引入设备每个月创造利润最大化的原则即在某个月如果创造利润大于其他月,则不进行检修。
得到表7。
问题四我们建立最优模型的基础上,通过矩阵的求解,优化求解的过程,打破开始的检修确定方案改为检修未知,得到表8的最佳检修方案。
利润增加了13112.00元。
关键词:线性规划;L IN G O;整数规划;最优化方法;灵敏度分析1、问题重述机械加工厂生产五种产品。
并且工厂的设备有以下类别和台数:十台车床、四台台立钻、五台台水平钻、四台台镗床和两台台刨床。
表2给出了每种产品的利润(元/件,利润定义为销售价格与原料成本之差)以及生产单位产品需要的各种设备的加工时间情况;表3给出了从一月到六月的各种产品的市场销量上限;表4给出了六个月中五种设备要求的检修台数。
表5给出了一个一到六月份的检修计划表,设备如果在某个月被安排检修,则该设备全月不能用于生产。
每种产品的库存量均为50件,每件产品每月的库存费为5元,在一月初,所有产品都有50件库存,并且在六月底要求每种产品仍然还有50件库存,最大库存量为100件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- - . 数学建模作业
生
产
计
划
问
题
班级数学与应用数学一班
高尚
学号
- - 考试资料.
WORD 格式 整理
学习 参考 资料 分享
生产计划问题
摘 要
本文通过对每个季度各种产品产量、需求量和存储量之间关系的分析,建立了基于Lingo 的生产决策模型,解决了生产计划问题,并提出合理的生产方案得到了总赔偿和存储费用的最优解。
针对该问题,采用线性规划的方法,首先确定ij x 为第j 季度产品i 的产量,ij d 为第j 季度产品i 的需求量,ij s 为第j 季度末产品i 的库存量,用0-1规划来限制上述变量,然后确定这些变量所具有的约束条件,最后列出目标函数与约束条件,利用Lingo 软件(见附录)求解出总的赔偿和库存费用的最小值为5900.70元。
模型思路清晰,考虑周全,可以针对同类问题进行建模,具有一定的应用性和推广性。
WORD 格式整理
关键词:Lingo、0-1规划、生产决策、线性规划
一、问题重述
对某厂I、II、III三种产品下一年各季度的合同预订数如表1所示。
学习参考资料分享
WORD 格式 整理
学习 参考 资料 分享
该三种产品1季度初无库存,要求在4季度末各库存150件。
已知该厂每季度生产工时为15000.8小时,生产I 、II 、III 产品每件分别需要2.1、4.3、2.7小时。
因更换工艺装备,产品I 在2季度无法生产。
规定当产品不能按期交货时,产品I 、II 每件每迟交一个季度赔偿20.5元,产品III 赔10.8元;又生产出来产品不在本季度交货的,每件每季度的库存费用为5.1元。
问该厂应如何安排生产,使总的赔偿加库存的费用为最小。
二、问题分析 该问题的目标是使一年内总的赔偿加库存费用最小,需要重新建立生产计划,每种产品在每个季度的产量、贮存量、需求量都对最终决策起到了限制,因此需要对变量进行0-1规划,建立目标函数与约束条件,在此基础上实现总的赔偿加库存的费用最小的目的。
三、模型假设
1.产量、贮存量、需求量不受外界因素影响;
2.产品的生产时间互不影响;
3.变量间没有相互影响。
四、变量说明
变量 含义
z 总赔偿和库存费用
4,3,2,1,3,2,1,==j i x ij 第j 季度产品i 的产量
,34,2,1,3,2,1,==j i d ij 第j 季度产品i 的需求量
4,3,2,1,3,2,1,==j i s ij
第j 季度末产品i 的库存量 五、模型的建立与求解
WORD 格式 整理
学习 参考 资料 分享
根据题中所给条件分析可得:
决策目标:总的赔偿费用为每个季度各产品费用的总和,总的库存费用为每个季度各产品的总库存量与费用之积,总的赔偿加库存的费用最小为目标,即:
()∑∑∑===+++=3131313211.58.105.205.20min j i j ij
j j j s d d d z
约束条件一:每个季度总工时是有限的,第j 季度生产所有产品所耗总工时不能超过每季度生产工时,即:
8.150007.33.41.2321≤++j j j x x x
约束条件二:产品I 在第二季度无法生产,产量为0,即:
012=x
约束条件三:每种产品在第四季度给库存150件,四个季度的总产量与第四季度库存量总和为该种产品一年的总需求量,即:
1504141+=∑∑==j j ij ij
d x
约束条件四:第i 季度的库存量就是本季度生产量与上个季度库存量之和在除去需求量,即:
11j j
ik ij ij ik k k x
d s d ==+-=∑∑ 约束条件五:每个季度每种产品的产品量不可能为负数,并且也只能为整数,即:
4,3,2,1,3,2,1,0==≥j i x ij 且为整数,
线性规划的目标函数与约束条件方程为:
WORD 格式 整理
学习 参考 资料 分享
333
123111
12312
4
41
111min (20.520.510.8) 5.12.1 4.3 3.715000.8
0.150
01,2,3,1,2,3,4j j j ij
j i j j j j ij ij j j j
j ik ij ij ik k k ij z d d d s x x x x s t x d x d s d x i j ========+++⎧⎪++≤⎪⎪=⎪⎪=+⎨⎪⎪⎪+-=⎪⎪≥==⎩∑∑∑∑∑∑∑且为整数,
利用Lingo 得出总的赔偿加库存的费用最小为5900.70元。
六、模型结果的分析与检验
6.1结果分析
根据模型的计算式子,利用软件求解得出了总的赔偿和库存费用,在不考虑其它风险的情况下,限定的工时内,通过对每种产品安排不同的工时,求得了最少的赔偿以及库存费用,但是利润不一定是最高的。
6.2结果检验
当改变不同产品的总工时时,赔偿和库存费用便会增高。
七、模型的推广与改进方向
7.1模型的推广
本模型适用于以0-1规划为基础的线性规划的问题,考虑不同变量间的相互影响,为工厂或企业提供生产计划的最优解。
7.2模型的改进
WORD 格式整理
当约束条件增加时,模型求得的结果会更精确、
八、模型的优缺点
8.1优点
模型思路清晰,求解相对简单,可以针对同类问题进行建模,具有比较大的应用性和实际性。
8.2缺点
当变量之间有相互影响时,该模型就不适用。
九、参考文献
[1] 姜启源. 数学模型(第四版)[M]. :高等教育出版社,1999.:85-100.
[2] 韩中庚. 数学建模方法及其应用(第二版)[M]. :高等教育出版社,2009.
[3] 陈国华. 数学模型与数学建模方法[M].天津:南开大学出版社,2012.:53-62.
十、附录
学习参考资料分享
WORD 格式整理
学习参考资料分享
WORD 格式整理
学习参考资料分享
WORD 格式整理
学习参考资料分享。