第三讲单自由度系统的振动(阻尼) ppt课件

合集下载

机械振动--第03课 单自由度系统:阻尼自由振动

机械振动--第03课 单自由度系统:阻尼自由振动
第三十一页,共32页。
内容总结
第四课 单自由度系统: 阻尼自由振动。库仑阻尼与结构阻尼。库仑阻尼与结构阻尼。比如汽车上常用的液压筒式减振器,其内部的工 作缸被活塞分成上下两腔,并充满液体。当活塞与工作缸有相对运动时,强迫液体经过活塞上的阀在上下腔运 动,液体经脱阀时产生的阻力,使运动能量变为热能耗散掉。在理论分析中最常用的阻尼是气体和液体的粘性 阻尼,它是由于气体或液体在某些机械部件中运动,因而扩散到气体或液体中的热量等能量耗散的度量。例 题
(2.3-2)
第十一页,共32页。
粘性阻尼振动系统
s1,2
c 2m
c
c
2
k
2m 2m m
c
2
2m
k m
c 2m
c
i
2m
k c 2 m 2m
k
c
c
2
k
2m m
c
2
k
2m m
c 2 k 2m m
x m
第十二页,共32页。
粘性阻尼振动系统
考虑 x Aest Aeσ iω ( Aeσ )eiω ,如果 0 ,则物体的运动将不
fd jx
式中 为结构阻尼系数,它与刚度 k 成正比,
gk
式中 g 为结构阻尼损耗因子,或称结构阻尼比。结构阻尼系统运动
方程为
mx kx jx f
第三十页,共32页。
Homework
▪ Write the differential equation of motion for the system in the following figure and determine the natural frequency of damped oscillation and critical damping coefficient.

机械振动 第3章-单自由度系统的振动

机械振动 第3章-单自由度系统的振动

kx H sin(t ) m x
2 令 n k , h H 则 m m 2 x x h sin(t ) n
无阻尼受迫振动微分方程的标准形式 ,二阶常系数非齐次线性微分方程。
x x1 x2
x1 A sin( n t ) 为对应齐次方程的通解 x2 b sin(t ) 为特解 h h b 2 , x sin(t ) 2 2 2 2 n n h x A sin( t ) sin(t ) 全解为 n 2 2 n :
——初相位,决定振体运动的起始位置。
T ——周期,每振动一次所经历的时间。
2 f —— 频率,每秒钟振动的次数, f = 1 / T,T 。 n n —— 固有频率,振体在2秒内振动的次数。
n 1 c fn 2 2 a
n反映振动系统的动力学特性,只与系统本身的固有参数有关。
则自由振动的微分方程的标准形式 : 2
q q 0
其解为 也可以写成 有
q A sin(nt ) q C1 cos nt C2 sin nt
2 1 2 2
A C C
C1 tg C2
1
6
对于初始扰动引起的自由运动
=q 0 设 t = 0 时, q = q0 , q
单自由度系统无阻尼自由振动
一、自由振动的例子

J
k
实验确定转动惯量装置
5
二、单自由度系统无阻尼自由振动微分方程及其解 对于任何一个单自由度系统,以q 为广义坐标(从平衡位 置开始量取 ),则自由振动的运动微分方程必将是:
c a, c是与系统的物理参数有关的常数,令 a
2 n

17-3 单自由度系统的有阻尼自由振动

17-3 单自由度系统的有阻尼自由振动

振动微分方程
下面建立具有粘性阻尼系统的自由振动微分方程。
以平衡位置O为坐标原点,建立系统振动微分方程可不计重力
振动过程中作用在物块上的力有:
(1) 恢复力Fk,方向指向平衡位置O
大小: Fk = −kx
(2)粘性阻尼力Fc,方向与速度方向相反
大小:
Fc
=
−cvx
=
−c
dx dt
物块振动微分方程:
m
设振动质点的速度为v,则粘性阻尼的阻力FC 可表示为:
F
=
−cv
负号表示方向
比例常数c 称为粘性阻尼系数
振动系统中存在粘性阻尼时,经常用阻尼元件c 表示。
一般的机械振动系统都可以简化为: 由惯性元件(m) 弹性元件(k) 阻尼元件(c)组成的系统。
kc m
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
经过一个周期Td,系统到达另一个比前者略小的最大偏离值Ai+1
Ai+1 = Aen(ti +Td )
两相邻振幅之比为:
Ai Ai+1
=
Aenti Aen(ti +Td )
= enTd
这个比值称振幅减缩率。任意两相邻振幅之比为一常数,故
衰减振动的振幅呈几何级数减小,很快趋近于零。
分析表明:小阻尼情况下,阻尼对自由振动的频率影响较小,但 对自由振动的振幅影响较大,使振幅呈几何级数下降。
ωd =ωn 1−ζ 2
fd = f 1−ζ 2
表明:由于阻尼的存在,使系统自由振动的周期增大,频率减小。
空气中的振动系统阻尼比较小,可认为:
ωd =ωn , Td =T
由衰减振动运动规律:

《阻尼和振动公式》课件

《阻尼和振动公式》课件

线性阻尼的数学模型通常表示为: y''(t) + 2*zeta*omega*y'(t) +
omega^2*y(t) = 0,其中 y(t) 是振动 位移,zeta 是阻尼比,omega 是无阻
尼自然频率。
该模型描述了阻尼振动的基本特征,即 线性阻尼适用于描述大多数物理系统的
振幅随时间衰减的现象。
阻尼行为。
故障诊断与预测
通过监测机械设备的振动数据,结合振动公式,可以对设备故障进 行诊断和预测,及时发现潜在问题,提高设备维护效率。
在航空航天中的应用
1 2 3
飞行器稳定性分析
航空航天领域的飞行器在飞行过程中会受到各种 气动力的作用,振动公式的应用可以帮助分析飞 行器的稳定性。
结构强度与疲劳寿命评估
航空航天器的结构和零部件在长期使用过程中会 受到疲劳损伤,振动公式的应用可以评估结构的 强度和疲劳寿命。
受迫振动
当物体受到周期性外力作用时, 会产生受迫振动。受迫振动公式 的推导基于牛顿第二定律和周期
性外力模型。
多自由度系统的振动公式推导
多自由度系统
当一个物体有多个自由度时,其运动可以用多个振动公式 的组合来表示。多自由度系统的振动公式推导基于牛顿第 二定律和多自由度系统模型。
耦合振动
当多个自由度之间存在耦合作用时,其振动规律更为复杂 。耦合振动公式的推导需要考虑各自由度之间的相互作用 。
实验步骤与操作
步骤一
准备实验器材,包括振动平台、 阻尼器、测量仪器等。
步骤三
启动振动平台,记录物体在不同 阻尼条件下的振动情况。
步骤二
将待测物体放置在振动平台上, 调整阻尼器以模拟不同阻尼情况 。

单自由度系统的有阻尼自由振动

单自由度系统的有阻尼自由振动

0.8 (e nTd ) 20 0.16
ln5 20 nTd 20 n 2 n 1 2
由于 很小,ln5 40
ln5 W W ln5 1502 c 2 m k 2 2 40 g st 40 1980 0.122( Ns/cm)
nt
2 t n2 n
C2 e
2 t n2 n
)
代入初始条件 (t 0时 , x x0 , x x 0 )
C1
2 0 ( n n 2 n x ) x0
2 n
2
2 n
; C2
2 0 ( n n 2 n ) x0 x 2 2 n 2 n
可见阻尼使自由振动的周期增大,频率降低。当阻尼小时, 影响很小,如相对阻尼系数为5%时,为1.00125,为20%时, 影响为1.02,因此通常可忽略。
14
振幅的影响: 为价评阻尼对振幅衰减快慢的影响,引入减 幅系数η ,定义为相邻两个振幅的比值。
Ai Aewnti wnti td ewntd Ai 1 Ae
5
也可写成
x Ae nt sin(d t )
2 d n n2
—有阻尼自由振动的圆频率
x 0 , 则 设 t 0 时, x x0 , x
2 2 2 x n ( x nx ) 0 n 2 A x0 0 2 02 ; tg1 0 nx0 n n x
16
例4 如图所示,静载荷P去除后质量块越过平衡位置的最大 位移为10%,求相对阻尼系数。
17
x(t ) e
wnt
0 wn x0 x ( x0 cos wd t sin wd t ) wd
18

振动单自由度系统的振动 PPT课件

振动单自由度系统的振动 PPT课件
1
例3 品質彈簧系統,W=150N,st=1cm , A1=0.8cm,
A21=0.16cm。 求阻尼係數μ 。
解:n
g
st
9.8 31.3rad / s 0.01
A21 A2 A3 A21 (e ) nT1 20
A1 A1 A2
A20
0.16 (enT1 )20 0.8
ln( 0.16) 0.8
由 dHI
dt
mI (F )


(
3 2
M
m)Rx
4k xR
振動微分方程:
x
8k 3M
2m
x
0
固有頻率:
n
8k 3M 2m
1
解2 : 用機械能守恆定律 以x為廣義座標(取靜平衡位置為 原點)
T 1 Mx2 1 MR2 ( x )2 1 mx2
2
22 R 2
1 ( 3 M m)x2 22
1
§12-2 單自由度系統的有阻尼自由振動
自由振動是簡諧運動,振幅不隨時間而變。但實際中振 動的振幅幾乎都是隨時間逐漸減小的(也稱為衰減振動), 這是因為有阻尼。 一、阻尼的概念:
阻尼:振動過程中,系統所受的阻力。
粘性阻尼:在很多情況下,振體速度不大時,介質粘性引起 的阻尼力與速度的一次方成正比,這種阻尼稱為粘性阻尼。
mg F mx
F k(x st ) st — 振体静止平衡时弹簧的 变形:mg k st
1
mx mg F mg k(x st ) kx

2 n
k m
则:x
2 n
x
0
這就是品質——彈簧系統無阻尼自由振動的
微分方程。
對於其他類型,同理可得。如

《单自由度系的振动》课件

应用领域
主动控制技术广泛应用于航空航天、机械制造、土木工程等领域, 以减小或消除结构的振动。
优势与局限性
主动控制技术的优点在于能够快速响应并有效抑制振动,但需要外部 能源和复杂的控制系统,增加了系统的复杂性和成本。
被动控制技术
被动控制技术定义
被动控制技术是利用阻尼材料或结构来吸收或耗散振动能量的方 法。
弹性力学模型
描述弹性体的振动特性,适用于弹性体的振动。
振动分析的数值方法
有限元法
将系统离散化为有限个单元,求解每个单元的振动响应。
时域法
在时间域内直接求解系统的振动响应。
频域法
将系统振动问题转化为频率域内的问题,求解系统的振动特性。
04
单自由度系统的振动控 制
主动控制技术
主动控制技术定义
主动控制技术是一种通过向系统提供反向振动来抵消原始振动的方 法。
03
单自由度系统的振动分 析
振动分析的基本方法
解析法
通过数学公式推导,求解系统的振动特性。
实验法
通过实验测量系统的振动响应,分析其特性 。
数值法
利用数值计算方法,求解系统的振动响应。
振动分析的数学模型
线性模型
描述线性系统的振动特性,适用于小振幅振动。
非线性模型
描述非线性系统的振动特性,适用于大振幅振动 。
总结词
在机械系统中,振动控制是提高设备稳定性和延长使用寿命 的关键。
详细描述
机械系统中的许多设备,如发动机、压缩机、机床等,都容 易受到振动的影响。通过采用适当的控制策略,如主动或被 动隔振、阻尼减振等,可以有效减小振动对设备性能的影响 ,提高设备的稳定性和可靠性。
建筑结构中的振动控制

第三讲单自由度系统的振动(阻尼)解读


nt i
两端取自然对数得 其中
ln ln e nTd
nT
δ称为对数减缩系数
Td
2
0 1 2
c 0 2 m k
n
对数减缩率δ与阻尼比ζ之间的关系为:
n
2
0 1
2

2 1
2
2
( 2<<1 )
上式表明:对数减缩率δ与阻尼比ζ之间只差2π倍,δ也是反映阻尼
x
这种振动的 振 幅 是 随 时 间 A x0 不断衰减的, 称为衰减振动。 衰减振动的运 动图线如图所 示。 d
Ae nt
衰减曲线的包络线
A1
A2
A3
t
Td
x
由衰减振动的表达式:
Ae
A x0
nt
x Ae
nt
sin(d t )
A1
A2
A3
这种振动不符合周期振 动 f (t ) f (t nT ) 的定
机械振动学
2.1.2.单自由度系统的有阻尼自由振动
1.阻尼
上节所研究的振动是不受阻力作用的,振动的振幅是不随
时间改变的,振动过程将无限地进行下去。
实际中的振动系统由于存在阻力,而不断消耗着振动的能 量,使振幅不断地减小,直到最后振动停止。 振动过程中的阻力习惯上称为阻尼。 阻尼类型: 1)介质阻尼; 2)结构阻尼; 3)库仑阻尼
ωd =ω0 , Td =T
阻尼对振幅的影响
nt 2 2 x Ae sin( n t ) 由衰减振动运动规律: 0
Ae-nt相当于振幅
设在某瞬时ti,振动达到的最大偏离值为Ai有: 经过一个周期 Td ,系统到达另一个 比前者略小的最大偏离值Ai+1

第三讲(单自由度系统受迫振动)


四、单自由度系统在周期性激励作用下的受迫振动 1、谐波分析与叠加原理 2、傅立叶(Fourier)级数法 五、单自由度系统在任意激励作用下的受迫振动 1、脉冲响应函数法或杜哈梅(Duhamel)积分法 2、傅立叶(Fourier)变换法 3、拉普拉斯(Laplas)变换法
三、简谐激励下的受迫振动 1、简谐激励下的受迫振动响应及频谱分析 2、受迫振动的复数求解法--单位谐函数法 3、支座简谐激励(位移激励)引起的振动与被动隔振 4、偏心质量(力激励)引起的振动与主动隔振 5、测振传感器的基本原理
汽车振动学
第三讲
2009年3月2日
汽车振动学
第二章 单自由度系统的振动 (8学时)
2009年1月
第二章 单自由度系统的振动
一、单自由度振动系统 1、振动微分方程的建立 2、振动等效系统及外界激励 3、振动微分方程的求解 二、单自由度系统的自由振动 1、无阻尼系统的自由振动 2、有阻尼系统的自由振动 三、单自由度系统在简谐激励作用下的受迫振动 1、简谐激励下的受迫振动响应及频谱分析 2、受迫振动的复数求解法--单位谐函数法 3、支座简谐激励(位移激励)引起的振动与被动隔振 4、偏心质量(力激励)引起的振动与主动隔振 5、测振传感器的原理
其中
X β = = X0
1 (1 − λ 2 ) 2 + (2ζλ ) 2
称为放大因子
代表稳态响应振幅与最大静位移之比,它不仅随频率比而变,而且随阻尼比而变。 如果系统无阻尼,则系统的振动响应为 自由振动响应 受迫振动响应
F0 λ F0 x = x0 cos ωnt + sin ωn t − sin ωnt + sin ωt 2 2 k (1 − λ ) k (1 − λ ) ωn & x0

第三讲单自由度系统的振动(阻尼)

ωd与相应的无阻尼自由振动的T 、f和ω0的关系:
Td
T 1
2
d 0 1
2
fd f 1
2
表明:由于阻尼的存在,使系统自由振动的周期增大,频 率减小。当空气中的振动系统阻尼比比较小时,可认为:
ωd =ω0 , Td =T
阻尼对振幅的影响
nt 2 2 x Ae sin( n t ) 由衰减振动运动规律: 0
时间改变的,振动过程将无限地进行下去。
实际中的振动系统由于存在阻力,而不断消耗着振动的能 量,使振幅不断地减小,直到最后振动停止。 振动过程中的阻力习惯上称为阻尼。 阻尼类型: 1)介质阻尼; 2)结构阻尼; 3)库仑阻尼
当振动速度不大时,介质粘性引起的阻力与速度一次方成正 比,这种阻尼称为粘性阻尼。这种阻尼实际上较多,这里将以此 研究。
1 2ml 2 4kmb 2l 2 c 2 a 4
k b
l m
阻尼固有频率: 1 2 d 0
1
2bl cc 2 a
mk
k=2000 N/m。使系统发生自由振动,测得其相邻两个振幅之比为: Ai / Ai 1 100/ 98 ,求系统的临界阻尼系数和阻尼系数各为多少?
解:
求出对数减缩率:
Ai ln Ai 1
100 ln 0.0202 98
k
c
O
Fk
Fc
阻尼比为:
0.003215 2
sin(d t )
0;可求得有阻尼自 当初瞬时t=0,质点的坐标为x=x0 速度v= x
由振动中的振幅和相位:
A
2 ( x nx ) 2 x0 0 2 02 0 n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两点P、R的幅值之比xP/xR=r,如图所示, 试确定此振动系统的阻尼比。
解:振动衰减曲线的包络线方程为
x Aent
设P、R两点在包络线上的幅值为xP、xR ,则有
xP e nNTd r
xR
2π N ln r 1 2
当 2<<1时
对数减缩率δ与阻尼比ζ之间的关系为:
n 2 2 2 0 1 2 1 2
( 2<<1 )
上式表明:对数减缩率δ与阻尼比ζ之间只差2π倍,δ也是反映阻尼
特性的一个参数。
PPT课件
12
例 在欠阻尼( <1)的系统中,在振幅衰
减曲线的包络线上,已测得相隔N个周期的
动 f (t) f (t nT) 的定
义,所以不是周期振动。
Td
d
A3
t
但这种振动仍围绕平衡位置的往复运动,仍具有振动的特 点。我们将质点从一个最大偏离位置到下一个最大偏离位置所 需的时间称为衰减振动的周期,记为Td ,如上图所示。
PPT课件
9
阻尼对周期的影响
Td
2 d

2
x0 nx0
这种振动的
Aent 衰减曲线的包络线
振 幅 是 随 时 间 A x0 A1 不断衰减的,
A2
A3
称为衰减振动。
衰减振动的运
动图线如图所 示。

d
Td
PPT课件
t
8
x
由衰减振动的表达式:
Aent
x Aent sin(d t ) A x0 A1
A2
这种振动不符合周期振
有阻尼自由振动微分方程的标准形式,它是一个二 阶齐次常系数线性微分方程
PPT课件
5
x 2nx 02 x 0
(1)
其解可设为:
x ert
代入(1)式,得到特征方程:r 2 2nr 02 0
两个特征根为: r1,2 n n2 02
该方程通解为:
x C1er1t C2er2t
d 0 1 2 fd f 1 2
表明:由于阻尼的存在,使系统自由振动的周期增大,频 率减小。当空气中的振动系统阻尼比比较小时,可认为:
ωd =ω0 , Td =T
PPT课件
10
阻尼对振幅的影响 由衰减振动运动规律: x Aent sin( 02 n2 t ) Ae-nt相当于振幅
η称为振幅系数。任意两个相邻振幅之比为一常数,所以衰减振
动的振幅呈几何级数减小,很快趋近于零。
PPT课件
11



Ai Ai1

Aenti Aen(ti Td )
enTd
两端取自然对数得 ln ln enT nTd δ称为对数减缩系数
其中
2
Td
0
1 2
n c 0 2 mk
2
2
02 - n2
0
1 ( n )2
0
0 1 2
其中: n c 0 2 mk
ζ称为阻尼比。它是振动系统中反映阻尼特性的重要参数。
在小阻尼情形下,ζ<1,有阻尼自由振动周期Td、频率fd和圆频率
ωd与相应的无阻尼自由振动的T 、f和ω0的关系:
T
Td 1 2
(2)粘性阻尼力
Fc

c
dx dt

cx
;方向与速度方向相反。
根据达朗贝尔原理,质量块的微分方程为: mx cx kx 0
PPT课件
4
- mx kx cx 0
两端除以m,并令:
02

k m
2n c m
n称为衰 减系数
kx cx
o
x
m
x
mx
整理得: x 2nx 02 x 0
d 02 n2 称有阻尼自由振动 Aent sin(d t )
当初瞬时t=0,质点的坐标为x=x0 速度v= x0;可求得有阻尼自
由振动中的振幅和相位:
A
x02

(x0 nx0 )2
02 n2
x


arctan
x0 n2 n2
c
k 由惯性元件(m)、弹性元件(k)、阻
尼元件(c)组成的系统。
m
PPT课件
3
2.振动微分方程
当以平衡位置O为坐标原点,建立此系统的振动微分方程时 可以不再计入重力作用。
c
k
m
xs k
c
o
m xx
kx cx
x
m
mx
o
x
f (t)
振动过程中作用在物块上的力有:
(1) 恢复力 Fk kx ;方向指向平衡位置O;
当振动速度不大时,介质粘性引起的阻力与速度一次方成正
比,这种阻尼称为粘性阻尼。这种阻尼实际上较多,这里将以此
研究。
PPT课件
2
设振动质点的速度为为v,则粘性阻尼的阻力FC可表示为:
F

cv
负号表示方向
比例常数c称为粘性阻尼系数
振动系统中存在粘性阻尼时,经常用阻尼元件c表示。
一般的机械振动系统都可以简化为:
特征根 r1,2 n n2 02 为实数或复数时,运动规律有很大 不同,因此下面按n<ω0,n>ω0和PPTn课=件ω0三种不同情形分别进行讨论6 。
3.小阻尼情形
当 n<ω0 时 , ;其中
n c 2m
阻尼较小,称为小阻尼情形。
特征根 r1,2 n n2 02 为共轭复数,即:
设在某瞬时ti,振动达到的最大偏离值为Ai有: Ai Ae nti
经 过 一 个 周 期 Td , 系 统 到 达 另 一 个
比前者略小的最大偏离值Ai+1
Ai
Ai1 Aen(ti Td )
Ai+1
这两个相邻
振幅之比为:

Ai Ai1

Aenti Aen(ti Td )
enTd
机械振动学
PPT课件
1
2.1.2.单自由度系统的有阻尼自由振动
1.阻尼
上节所研究的振动是不受阻力作用的,振动的振幅是不随 时间改变的,振动过程将无限地进行下去。
实际中的振动系统由于存在阻力,而不断消耗着振动的能 量,使振幅不断地减小,直到最后振动停止。
振动过程中的阻力习惯上称为阻尼。 阻尼类型: 1)介质阻尼; 2)结构阻尼; 3)库仑阻尼
r1 n i 02 n2 r2 n i 02 n2
微分方程的解 x C1er1t C2er2t 可以表示为:
x Aent sin( 02 n2 t ) 或 x Aent sin(d t )
其中:A和φ为两个积分常数,由运动的初始条件确定
相关文档
最新文档