极坐标、柱坐标和球坐标
笛卡尔坐标系、柱坐标系、球坐标系都有啥区别

笛卡尔坐标系、柱坐标系、球坐标系都有啥区别什么是坐标系坐标系,是理科常用辅助方法。
为了说明质点的位置、运动的快慢、方向等,必须选取其坐标系。
在参照系中,为确定空间一点的位置,按规定方法选取的有次序的一组数据,这就叫做“坐标”。
在某一问题中规定坐标的方法,就是该问题所用的坐标系。
坐标系有几种形式在数学中,坐标系的种类很多,常用的坐标系有以下几种,一是平面直角坐标系(笛卡尔坐标系),二则是平面极坐标系,三是柱坐标系,四是球坐标系坐标系的种类很多。
物理学中常用的坐标系,为直角坐标系,或称为正交坐标系。
为什么会有这么多种坐标系,难度不能统一用1种为什么我们需要多个坐标系统呢?任何一个坐标系统都是无限的,包括了空间中的所有点。
所以,我们用任意一个坐标系统,然后规定它是“世界空间”,然后所有的点位置都可以用这个坐标系统来描述了。
难道就不能更简单点了么?实践证明的答案是不能。
很多人发现在不同的场景下使用不同的坐标系统更方便。
使用多个坐标系统的原因是,在一个特定的场景上下文中,可以拥有一份确定的信息。
也许整个世界上的所有点都可以在一个坐标系里表示,然而,对于一个确定的顶点a,我们可能不知道它在世界坐标中的位置,但是我们可能可以明确它在相对于某些坐标系统中的位置。
比如,有两个相邻的城市A,B。
A城市聪明的居民们在代价公认的一个城市的中心建立了坐标原点,然后用罗盘所指的方向来作为坐标轴,而B城市的居民可能在他们的城市中一个任意的位置建立了坐标原点,然后然坐标轴的方向在一个任意的方向,两座城市的居民都觉得他们各自的坐标系统十分便利。
然而,这时候有一名工程师被分配了一个任务,要求他在两个城市之间建立第一条公路,而且需要一个地图来清楚地看两个城市以及城市间的所有细节。
因此引入了更为便利的第三坐标系,这个坐标系对于两座城市的居民没有任何影响。
两座城市中各自的坐标点都需要从本地坐标转换成新的坐标系的坐标来绘制新地图。
几种坐标系有什么区别笛卡尔坐标系:平面直角坐标系笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。
柱坐标与球坐标系

离组成的,即(r,φ,θ).注意求坐标的顺序为①到原点的距离r;②与z轴
正方向所成的角φ;③与x轴正方向所成的角θ.
2.柱坐标系又称半极坐标系,它是由平面极坐标系及空间直角坐标系中 的一部分建立起来的,空间任一点P的位置可以用有序数组(ρ,θ,z)表 示,(ρ,θ)是点P在Oxy平面上的射影Q的极坐标,z是P在空间直角坐标 系中的竖坐标.
解答
(2)已知点 N 的柱坐标为(2,2π,3),求它的直角坐标.
x=ρcos θ,
解 由变换公式y=ρsin θ,
得 x=2cos π2=0,y=2sin 2π=2,
z=z,
故点N的直角坐标为(0,2,3).
解答
类型二 球坐标与直角坐标的互化
例 2 (1)已知点 P 的球坐标为4,34π,π4,求它的直角坐标;
柱坐标与球坐标系
学习目标
1.了解柱坐标系、球坐标系的特征. 2.掌握柱坐标系、球坐标系与空间直角坐标系的关系,并掌握坐标间 的互化公式. 3.能利用柱坐标、球坐标与空间坐标的转化解决相关问题.
思考
要刻画空间一点的位置,就距离和角的个数来说有什么限制? 答案 空间点的坐标都是三个数值,其中至少有一个是距离.
其到原点距离为 2 3-02+2-02+3-02= 25=5.
12345
解析 答案
5 5.已知点M的直角坐标为(1,2,3),球坐标为(r,φ,θ),则tan φ=__3___, tan θ=__2__.
解析 如图所示,
tan φ=
x2+y2 z=
35,tan
θ=yx=2.
12345
解析 答案
1.空间点的坐标的确定
解 由变换公式y=ρsin θ,
z=z, 得 x=4cos π3=2,y=4sin π3=2 3,z=8. ∴点 P 的直角坐标为(2,2 3,8).
第1章 3 柱坐标系和球坐标系

§3 柱坐标系和球坐标系1.柱坐标系(1)定义:在平面极坐标系的基础上,通过极点O ,再增加一条与极坐标系所在平面垂直的z 轴,这样就建立了柱坐标系.设M (x ,y ,z )为空间一点,并设点M 在xOy 平面上的投影点P 的极坐标为(r ,θ),则这样的三个数r ,θ,z 构成的有序数组(r ,θ,z )就叫作点M 的柱坐标,这里规定r ,θ,z 的变化范围为0≤r <+∞,0≤θ<2π,-∞<z <+∞.特别地,r =常数,表示的是以z 轴为轴的圆柱面;θ=常数,表示的是过z 轴的半平面;z =常数,表示的是与xOy 平面平行的平面.(2)空间点M 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式为⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z .2.球坐标系(1)定义:设M (x ,y ,z )为空间一点,点M 可用这样三个有次序的数r ,φ,θ来确定,其中r 为原点O 到点M 间的距离,φ为有向线段OM→与z 轴正方向所夹的角,θ为从z 轴正半轴看,x 轴正半轴按逆时针方向旋转到有向线段OP →的角,这里P 为点M 在xOy 平面上的投影.这样的三个数r ,φ,θ构成的有序数组(r ,φ,θ)叫作点M 的球坐标,这里r ,φ,θ的变化范围为0≤r <+∞,0≤φ≤π,0≤θ<2π.特别地, r =常数,表示的是以原点为球心的球面;φ=常数,表示的是以原点为顶点,z 轴为轴的圆锥面; θ=常数,表示的是过z 轴的半平面.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间的变换关系为⎩⎨⎧x =r ·sin φ·cos θ,y =r ·sin φ·sin θ,z =r cos φ.【思维导图】【知能要点】 1.柱坐标系. 2.球坐标系.3.空间点的坐标的确定.题型一 柱坐标系柱坐标系又称半极坐标系,它是由平面极坐标系及空间直角坐标系中的一部分建立起来的.空间任一点P 的位置可以用有序数组(ρ,θ,z )表示,(ρ,θ)是点P 在Oxy 平面上的射影Q 的极坐标,z 是P 在空间直角坐标系中的竖坐标. 【例1】 柱坐标满足方程ρ=2的点所构成的图形是什么?解 在平面极坐标系中,ρ=2表示以极点为圆心,2为半径的圆.因此,在柱坐标系中,设Oz 轴所在的直线为l ,则方程ρ=2表示以l 为轴,且垂直于轴的截面是半径为2的圆柱面.【反思感悟】 柱坐标满足ρ=2的点可以和平面直角坐标系中满足x =1的点构成一条直线,空间直角坐标系中满足y =2的点构成的图形是一个平面结合考虑.1.将下列各点的柱坐标化为直角坐标. P ⎝ ⎛⎭⎪⎫2,π6,1,Q ⎝ ⎛⎭⎪⎫4,23π,-3 解直接代入互化公式⎩⎨⎧x =ρcos θy =ρsin θz =z,可得P 的直角坐标为(3,1,1),Q 点的直角坐标为(-2,23,-3).题型二 球坐标系球坐标系又称空间极坐标系,用空间任意一点P 到O 的距离r 以及两个角θ,φ来刻画点P 的位置.【例2】 经过若干个固定和流动的地面遥感观测站监测,并通过数据汇总,计算出一个航天器在某一时刻离地面2 384千米的位置,地球半径为6 371千米,此时经度为80°,纬度为75°.试建立适当的坐标系,确定出此时航天器点P 的坐标.解 在赤道平面上,我们选取地球球心为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立平面极坐标系,在此基础上,取以O 为端点且经过北极的射线Oz (垂直于赤道平面)为另一条极轴,如图所示建立一个球坐标系.由已知航天器位于经度为80°,可知θ=80°,由航天器位于纬度75°,可知,φ=90°-75°=15°,由航天器离地面2 384千米,地球半径为6 371千米,可知r =2 384+6 371=8 755千米.所以点P 的球坐标为(8 755,15°,80°).【反思感悟】 写空间任一点的球半径,就是求该点到点O 的距离和方位角、高低角.两个角可以和地球的经纬度相结合,要搞清它们的联系和区别.2.在赤道平面上,我们选取地球球心O 为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立坐标系.有A ,B 两个城市,它们的球坐标分别为A ⎝ ⎛⎭⎪⎫R ,π4,π6,B ⎝ ⎛⎭⎪⎫R ,π4,2π3,飞机应该走怎样的航线最快,所走的路程有多远?解 由题意可知面AOO 1,面BOO 1都垂直于两圆平面, ∴∠AO 1B 是两平面AOO 1和BOO 1的夹角, 又∵A ⎝ ⎛⎭⎪⎫R ,π4,π6,B ⎝ ⎛⎭⎪⎫R ,π4,2π3,∴∠AO 1B =2π3-π6=π2, ∠AOO 1=∠BOO 1=π4, ∠AO 1O =∠BO 1O ,∴小圆O1的半径r=22R,∴AB=R,∴∠AOB=π3,则经过A、B两地的球面距离为π3R.故飞机经过A、B两地的大圆,航线最短,其路程为π3R.题型三空间点的坐标1.空间直角坐标系中点的坐标是由横坐标、纵坐标和竖坐标三度来确定的,即(x,y,z).2.空间点的柱坐标是由平面极坐标系及空间直角坐标系中的竖坐标组成的,即(ρ,θ,z).3.(1)空间点的球坐标是点和原点的连线与x轴正方向所成的角θ,与z轴的正方向所成的角φ,以及点到原点的距离r组成的,即(r,φ,θ).(2)注意球坐标的顺序为:①到原点的距离r;②与z轴正方向所成的角φ;③与x轴正方向所成的角θ.【例3】已知长方体ABCD—A1B1C1D1的边长为AB=14,AD=6,AA1=10,以这个长方体的顶点A为坐标原点,以射线AB、AD、AA1分别为Ox、Oy、Oz 轴的正半轴,建立空间直角坐标系,求长方体顶点C1的空间直角坐标,球坐标,柱坐标.分析如图所示,此题是考查空间直角坐标,球坐标,柱坐标的概念,我们要能借此区分三个坐标,找到它们的相同和不同来.C1点的(x,y,z),分别对应着CD、BC、CC1,C1点的(ρ,θ,z)分别对应着CA、∠DCA、CC1,C1点的(r,φ,θ)分别对应着AC1、∠A1AC1、∠BAC.解C1点的空间直角坐标为(14,6,10),C1点的柱坐标为(258,arctan 37,10),C 1点的球坐标为⎝⎛⎭⎪⎫283,arccos 58383,arctan37. 【反思感悟】 注意空间任一点的直角坐标、球坐标和柱坐标的联系和区别,它们都能刻画点的位置,可以进行互化.3.结晶体的基本单位称为晶胞,图(1)是食盐晶胞的示意图(可看成是八个棱长为12的小正方体堆积成的正方体),图形中的点代表钠原子,其他点代表氯原子,如图(2)所示,建立空间直角坐标系O -xyz 后,试写出全部钠原子所在位置的球坐标,柱坐标.解 把图中的钠原子分成下、中、上三层来写它们所在位置的坐标.下层的原子全部在xOy 平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的球坐标分别为(0,0,0),⎝ ⎛⎭⎪⎫1,π2,0,⎝ ⎛⎭⎪⎫2,π2,π4,⎝ ⎛⎭⎪⎫1,π2,π2,⎝ ⎛⎭⎪⎫22,π2,π4,它们的柱坐标分别为(0,0,0),(1,0,0),⎝ ⎛⎭⎪⎫2,π4,0,⎝ ⎛⎭⎪⎫1,π2,0,⎝ ⎛⎭⎪⎫22,π4,0; 上层的钠原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为1,所以,这五个钠原子所在位置的球坐标分别为(1,0,0),⎝ ⎛⎭⎪⎫2,π4,0,⎝ ⎛⎭⎪⎫3,arctan 2,π4,⎝ ⎛⎭⎪⎫2,π4,π2,⎝ ⎛⎭⎪⎫62,arctan 22,π4,它们的柱坐标分别为(0,0,1),(1,0,1),⎝ ⎛⎭⎪⎫2,π4,1,⎝ ⎛⎭⎪⎫1,π2,1,⎝ ⎛⎭⎪⎫22,π4,1. 中层的原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为12,所以,这四个钠原子所在位置的球坐标分别为⎝ ⎛⎭⎪⎫22,π4,0,⎝ ⎛⎭⎪⎫62,arccos 66,arctan 12,⎝ ⎛⎭⎪⎫62,arccos 66,arctan 2,⎝ ⎛⎭⎪⎫22,π4,π2,它们的柱坐标分别为⎝ ⎛⎭⎪⎫12,0,12,⎝ ⎛⎭⎪⎫52,arctan 12,12,⎝ ⎛⎭⎪⎫52,arctan 2,12,⎝ ⎛⎭⎪⎫12,π2,121.一个圆形体育馆,自正东方向起,按逆时针方向等分为十六个扇形区域,顺次记为一区,二区,…,十六区,我们设圆形体育场第一排与体育中心O 的距离为500 m ,每相邻两排的间距为1 m ,每层看台的高度为0.7 m ,现在需要确定第九区第四排正中的位置A ,请建立适当的坐标系,求出点A 的坐标.解 以圆形体育场中心O 为极点,选取以O 为端点且过正东入口的射线Ox 为极轴,在地平面上建立极坐标系.则点A 与体育场中轴线Oz 的距离为503 m ,极轴Ox 按逆时针方向旋转17π16,就是OA 在地平面上的射影,A 距地面的高度为2.8 m ,因此我们可以用柱坐标来表示点A 的准确位置.所以点A 的柱坐标为⎝ ⎛⎭⎪⎫503,17π16,2.8. 2.一只蚂蚁在一个母线与轴线夹角为π3的圆锥面上从顶点出发盘旋着向上爬行,已知它上升的速度为v >0,盘旋的角速度为ω>0,求t 时刻蚂蚁所在的位置的球坐标.解 取圆锥的顶点O 为坐标原点,建立球坐标系,设t 时刻蚂蚁在点M (r ,φ,θ)处,由题意得θ=ωt ,z =v t ,φ=π3, 由于z r =cos φ=cos π3=12, 于是r =2z =2v t ,所以t 时刻蚂蚁在球坐标系中的位置为M ⎝ ⎛⎭⎪⎫2v t ,π3,ωt , t ∈[0,+∞).3.摊开世界地图,问初次降临地球的外星人:台湾在哪里?阿根廷的Formosa(福尔摩沙)省又位于何处(如图所示)?外星人必然一头雾水,如果你再给他一组数据:.想一想,它们的位置有什么关联?解两地经度差180°,纬度相反.故它们位于地球同一直径的两个端点上.1.空间点的坐标的确定(1)空间直角坐标系中点的坐标是由横坐标、纵坐标和竖坐标三度来确定的,即(x,y,z).(2)空间点的柱坐标是由平面极坐标系及空间直角坐标系中的竖坐标组成的,即(ρ,θ,z).(3)空间点的球坐标是点在Oxy平面上的射影和原点的连线与x轴正方向所成的角θ,点和原点的连线与z轴的正方向所成的角φ,以及点到原点的距离r组成的,即(r,φ,θ).注意球坐标的顺序为:①到原点的距离r;②与z轴正方向所成的角φ;③与x轴正方向所成的角θ.2.球坐标的应用在球坐标系中,它的三度实际上也是我们所熟悉的,它与前面所学的球的一些基本知识是有着密切联系的.我们得熟悉这部分内容.(1)经线与经度:地球球面上从北极到南极的半个大圆叫做经线,规定以经过英国格林尼治天文台原址的经线为0°经线.一个地方的经度是指经过当地经线的所在半平面和0°经线所在半平面之间的夹角的度数,以0°经线为基准,向东度量的为东经,向西度量的为西经.如东经30°,西经60°等.(2)纬线与纬度:与地轴(通过北极和南极的直线)垂直的平面截地球球面所得的圆叫做纬线(纬线圈),其中的大圆叫做赤道.一个地方的纬度是指当地与球心的连线和地球赤道平面之间所成的角的度数,赤道为0°纬线;以赤道为基准,向北度量为北纬,向南度量为南纬.如北纬25°,南纬23.5°.与球坐标比较,点P (r ,φ,θ)中的r 是到球心的距离,φ与纬度是互余的;θ与经度是相关的,若建立适当的坐标系,θ就是经度. 【规律方法总结】1.根据图形的特征,可以选择不同的坐标系来确定点的位置.2.点的直角坐标、柱坐标、球坐标可以相互转化.3.利用柱坐标系、球坐标系解决空间点的位置时,对于含角度的比较方便.一、选择题1.已知点P 的柱坐标为⎝ ⎛⎭⎪⎫2,π4,5,点B 的球坐标为⎝ ⎛⎭⎪⎫6,π3,π6,则这两个点在空间直角坐标系中的点的坐标为( ) A.P 点(5,1,1),B 点⎝ ⎛⎭⎪⎫364,324,62B.P 点(1,1,5),B 点⎝ ⎛⎭⎪⎫364,324,62 C.P 点⎝ ⎛⎭⎪⎫364,324,62,B 点(1,1,5) D.P 点(1,1,5),B 点⎝ ⎛⎭⎪⎫62,364,324 解析 设P 点的直角坐标为(x ,y ,z ),x =2·cos π4=2·22=1,y =2·sin π4=1,z =5. 设B 点的直角坐标为(x ,y ,z ), x =6·sin π3·cos π6=6·32·32=364, y =6·sin π3·sin π6=6·32·12=324,z =6·cos π3=6·12=62.所以,点P 的直角坐标为(1,1,5),点B 的直角坐标为⎝ ⎛⎭⎪⎫364,324,62. 答案 B2.设点M 的直角坐标为(-1,-3,3),则它的柱坐标是( ) A.⎝ ⎛⎭⎪⎫2,π3,3 B.⎝ ⎛⎭⎪⎫2,2π3,3 C.⎝ ⎛⎭⎪⎫2,4π3,3D.⎝ ⎛⎭⎪⎫2,5π3,3 解析 ∵ρ=(-1)2+(-3)2=2,θ=43π,z =3.∴M 的柱坐标为⎝ ⎛⎭⎪⎫2,43π,3.答案 C3.设点M 的直角坐标为(-1,-1,2),则它的球坐标为( ) A.⎝ ⎛⎭⎪⎫2,π4,π4 B.⎝ ⎛⎭⎪⎫2,π4,5π4 C.⎝ ⎛⎭⎪⎫2,5π4,π4D.⎝ ⎛⎭⎪⎫2,3π4,π4 解析 由变换公式r =x 2+y 2+z 2=2,cos φ=z r =22,∴φ=π4.∵tan θ=y x =1,∴θ=54π. ∴M 的球坐标为⎝ ⎛⎭⎪⎫2,π4,54π.答案 B4.点M 的球坐标为⎝ ⎛⎭⎪⎫8,π3,56π则它的直角坐标为( )A.(-6,23,4)B.(6,23,4)C.(-6,-23,4)D.(-6,23,-4)解析 由x =8sin π3cos 5π6=-6,y =8sin π3sin 5π6=23,z =8cos π3=4, 得点M 的直角坐标为(-6,23,4).答案 A5.点P 的柱坐标为⎝ ⎛⎭⎪⎫8,π4,2,则点P 到原点的距离为( ) A.17 B.217 C.417D.817解析 x =8cos π4=42,y =8sin π4=42, ∴柱坐标化为直角坐标为(42,42,2), |OP |=32+32+4=68=217.答案 B 二、填空题6.在球坐标系中A ⎝ ⎛⎭⎪⎫2,π4,π4和B ⎝ ⎛⎭⎪⎫2,3π4,3π4的距离为________.解析 把A 、B 两点的球坐标化为直角坐标为A ()1,1,2, B ()-1,1,-2. |AB |=(1+1)2+(1-1)2+(2+2)2=12=2 3.答案 2 37.在空间的柱坐标系中,方程ρ=2表示________. 解析 在极坐标系中,ρ=2表示圆心在极点半径为2的圆.在柱坐标系中方程ρ=2表示以z 轴为中轴线的,半径为2的圆柱面. 答案 以z 轴为中轴线的,半径为2的圆柱面8.已知点M 的球坐标为⎝ ⎛⎭⎪⎫4,π4,34π,点N 的球坐标为⎝ ⎛⎭⎪⎫4,-π4,34π,则M 、N 两点间的距离为________.解析 x =4sin π4cos 3π4=4·22·⎝ ⎛⎭⎪⎫-22=-2, y =4sin π4sin 3π4=4·22·22=2,z =4cos π4=4·22=22,∴点M 的直角坐标为(-2,2,22).同理点N 的直角坐标为(2,-2,22),∴|MN |=16+16=4 2.答案 4 29.在球坐标系中,方程r =1表示______________________,方程φ=π4表示空间的________________________.解析 r =1表示球心在原点半径为1的球面,φ=π4表示顶点在原点,母线与z 轴夹角为π4的圆锥面.答案 球心在原点,半径为1的球面 顶点在原点,轴截面夹角为π2的圆锥面三、解答题10.如图所示,在长方体OABC -D ′A ′B ′C ′中,|OA |=3,|OC |=5,|OD ′|=3,A ′C ′与B ′D ′相交于点P ,分别写出点C 、B ′、P 的柱坐标.解 C 点的ρ、θ分别为|OC |及∠COA .B ′点的ρ为|OB |=|OA |2+|AB |2=32+52=34;θ=∠BOA ,而tan ∠BOA =|AB ||OA |=53,所以∠BOA =arctan 53.P 点的ρ、θ分别为OE 、∠AOE ,|OE |=12|OB |=342,∠AOE =∠AOB .∴各点的柱坐标为C ⎝ ⎛⎭⎪⎫5,π2,0,B ′⎝ ⎛⎭⎪⎫34,arctan 53,3,P ⎝ ⎛⎭⎪⎫342,arctan 53,3.11.用两平行面去截球,如图,在两个截面圆上有两个点,它们的球坐标分别为A ⎝ ⎛⎭⎪⎫8,π4,θA 、B ⎝ ⎛⎭⎪⎫8,34π,θB ,求出这两个截面间的距离. 解 在△OO 1A 中,由球坐标知∠AOO 1=π4,|OA |=8,∴|OO 1|=8cos ∠AOO 1=8×22=42,同理在△OO 2B 中,|OB |=8,∠O 2OB =π4,∴OO 2=42,∴O 1O 2=82, ∴两个截面间的距离为8 2.12.在柱坐标系中,求满足⎩⎨⎧ρ=1,0≤θ<2π,0≤z ≤2的动点M (ρ,θ,z )围成的几何体的体积.解 根据柱坐标系与点的柱坐标的意义可知,满足ρ=1,0≤θ<2π,0≤z ≤2的动点M (ρ,θ,z )的轨迹是以直线Oz 为轴,轴截面为正方形的圆柱,如图所示,圆柱的底面半径r=1,h =2,∴V =Sh =πr 2h =2π(体积单位).习题1-3 (第22页)1.解 点A 的柱坐标为(3,0,3),球坐标为⎝ ⎛⎭⎪⎫32,π4,0; 点B 的柱坐标为⎝ ⎛⎭⎪⎫2,π2,2,球坐标为⎝ ⎛⎭⎪⎫22,π4,π2; 点C 的柱坐标为⎝ ⎛⎭⎪⎫42,π4,0,球坐标为⎝ ⎛⎭⎪⎫42,π2,π4. 图略2.解 点A 的直角坐标为(-22,22,2);点B 的直角坐标为(3,33,-5). 图略.3.解 点M 的直角坐标为⎝ ⎛⎭⎪⎫12,32,3;点N 的直角坐标为(6,23,4).。
测量常用的坐标系有哪几种

测量常用的坐标系有哪几种在测量学中,坐标系是用来确定物体或点在空间中位置的重要工具。
根据应用的不同,测量中常用的坐标系可以分为直角坐标系、极坐标系和球坐标系三种。
1. 直角坐标系直角坐标系,也被称为笛卡尔坐标系,是最常见和基本的坐标系。
它利用三个垂直于彼此的坐标轴来定位物体的位置。
通常,这三个坐标轴被标记为x、y和z 轴。
在直角坐标系中,任何一个点可以通过一个有序的三个数字来表示,例如(x, y, z)。
这个三元组表示物体相对于图像的原点在各个轴方向上的位移。
直角坐标系广泛应用于计算机图形学、工程测绘和物理学领域。
2. 极坐标系极坐标系也称为极径坐标系,主要用于描述平面上的点。
极坐标系与直角坐标系不同,它采用两个参数来表示点的位置。
一个参数是极径,表示点到坐标原点的距离;另一个参数是极角,表示点相对于参考方向的角度。
通常,极坐标系中,角度以角度值或弧度值来表示,而极径则表示为非负实数。
极坐标系主要应用于极坐标追踪、极位移测量和天体测量等领域。
3. 球坐标系球坐标系是在三维空间中描述点的位置的一种坐标系。
球坐标系使用三个参数来确定点的位置:距离、极角和方位角。
距离表示点到坐标原点的距离;极角表示点相对于参考方向的角度;方位角表示点相对于参考平面的角度。
球坐标系通常用于天文学、导航系统以及物体在球面上运动的描述。
常见的球坐标系表示方法为(r, θ, φ),其中r表示距离,θ表示极角,φ表示方位角。
结论直角坐标系、极坐标系和球坐标系是测量学中常用的坐标系。
直角坐标系适用于描述三维空间中的点的位置;极坐标系适用于平面上的点的位置描述;球坐标系则适用于描述三维空间中的点相对于球面的位置。
不同的坐标系在不同领域具有广泛的应用,在解决测量问题中发挥着重要作用。
了解这些坐标系的特点和适用范围,有助于我们更好地理解并运用测量学中的相关知识和技术。
参考文献:1.Berman, H. (2014). Spherical coordinates. In Principles of ComputerGraphics (pp. 1-4). Springer, New York, NY.。
简单曲线的极坐标方程 柱坐标系与球坐标系简介课件

题型四 极坐标系中曲线位置关系
例4 已知曲线 C1,C2 的极坐标方程分别为 ρcos θ=3,ρ=
2.柱坐标系 一般地,如图建立空间直角坐标系Oxyz.设P是空间_任_意___ 一点,它在Oxy平面上的射__影____为Q,用(ρ,θ)(ρ≥0,0≤θ<2π) ___________________表极示坐点标Q在平面Oxy上的
__________,
这时点的位置可用有序数组_ρ_,_θ_,_z_(z_∈__R_)__表示.这样,我
【解】 法一:将极坐标方程 ρ=3 转化为普通方程:x2+y2 =9,ρ(cos θ+ 3sin θ)=2 可化为 x+ 3y=2, 在 x2+y2=9 上任取一点 A(3cos α,3sin α), 则 点 A 到 直 线 的 距 离 d = |3cos α+3 2 3sin α-2| = |6sinα+230°-2|,所以它的最大值为 4.
【解】 以极点为原点,极轴为 x 轴正半轴,建立平面直角
坐标系,两坐标系中取相同的长度单位. (1)x=ρcos θ,y=ρsin θ,由 ρ=4cos θ 得 ρ2=4ρcos θ. 所以 x2+y2=4x. 即 x2+y2-4x=0 为圆 O1 的直角坐标方程. 同理 x2+y2+4y=0 为圆 O2 的直角坐标方程. (2)由xx22++yy22-+44xy==00.,
标
x=ρcos θ
y=ρsin θ
z=z
(ρ,θ,z)之间的变换公式为______________.
浅谈几种坐标系的坐标转换

浅谈几种坐标系的坐标转换在计算机图形学和计算机视觉领域,不同的坐标系在模拟和仿真方面发挥着重要的作用。
在这篇文章中,我们将浅谈几种坐标系的坐标转换。
这些坐标系包括笛卡尔坐标系、极坐标系、柱坐标系、球坐标系、欧拉角坐标系和四元数坐标系。
1. 笛卡尔坐标系笛卡尔坐标系是所有坐标系中使用最普遍的坐标系。
在笛卡尔坐标系中,一个点在一个平面内由x,y坐标确定,在3D空间中由x,y,z坐标确定。
笛卡尔坐标系是一种直角坐标系,其中的任何一点都可以由其从原点到该点的距离和其与x轴之间的角度确定。
2. 极坐标系极坐标系是一种使用极径和极角来确定环境中一个点的位置的坐标系。
在极坐标系中,距离和角度都是必需的。
它可以表示欧几里德平面上的所有点,但不适合用于仿真。
3. 柱坐标系柱坐标系是一种使用半径、角度和高度来定位三维空间中某个点的坐标系。
柱坐标系通常用于有相关圆柱体或柱状物的仿真问题。
4. 球坐标系球坐标系是一种使用经度、纬度和距离来定位三维空间中某个点的坐标系。
球坐标系适合模拟宇宙和行星的运动。
5. 欧拉角坐标系欧拉角坐标系是一种使用三个地址向量来描述中心在旋转、移动或缩放的三维物体的位置的坐标系。
用户可以选择旋转的角度以及旋转的方向和顺序。
欧拉角坐标系是用于机器人学、模拟和游戏编程中常用的坐标系。
6. 四元数坐标系四元数坐标系是一种四元数作为坐标系统的数学模型,用于描述三维空间中旋转。
四元数坐标系具有良好的数学性质,适合用于计算机图形学和数据处理方面。
关于坐标系的转换,通常包括从笛卡尔坐标系到其他坐标系的转换和从其他坐标系到笛卡尔坐标系的转换。
这可以通过一些基本的公式和规则来实现。
例如,笛卡尔坐标系到极坐标系的转换可以使用以下公式:r = sqrt(x^2 + y^2)theta = atan(y / x)其中r是极径,theta是极角。
综上所述,坐标系在计算机图形学和计算机视觉领域中扮演着非常重要的角色,它们可以用于描述物体的位置、方向和大小。
测量坐标系的种类
测量坐标系的种类1.直角坐标系(笛卡尔坐标系):直角坐标系是最常见的坐标系类型之一、它使用三个垂直的坐标轴,通常表示为X、Y和Z轴。
这种坐标系适用于描述三维空间中的绝对位置,例如地理位置、建筑物坐标等。
2.极坐标系:极坐标系以一个定点作为原点,以连续的旋转轴表示距离(r)和角度(θ)。
这种坐标系适用于圆、柱体或球形物体的测量,它们用极径和角度来描述位置,例如天文学中的天体测量。
3.球坐标系:球坐标系也是一种用于描述三维空间中物体位置的坐标系。
它使用一个原点作为中心以及距离(r)、极角(θ)和方位角(φ)来定义位置。
这种坐标系常用于天体测量、机器人定位等领域。
4.地理坐标系:地理坐标系使用经度和纬度来确定位置,适用于地理学、地理信息系统(GIS)、全球定位系统(GPS)等应用。
经度表示东西方向,纬度表示南北方向,因此地理坐标系可用于描述任意地球表面上的位置。
5.本地坐标系:本地坐标系是相对于一些基准点或者参考物体而言的坐标系,适用于工程测量、建筑设计等领域。
它可以是平面坐标系或立体坐标系,常用于描述建筑物、工业设施的位置和方向。
6.构造坐标系:构造坐标系同样是相对于参考物体的坐标系。
它使用东、北、高(E、N、U)作为坐标轴,适用于地质测量、土木工程等领域。
构造坐标系能够描述相对位移和形变等变量。
7.图像坐标系:图像坐标系用于计算机视觉和图像处理领域,用于描述图像中像素的位置。
它通常以图像的左上角作为原点,使用水平和垂直坐标轴来表示像素位置。
除了上述常见的坐标系,还有一些特殊的坐标系形式,如椭球坐标系、柱坐标系、二维坐标系等,它们在特定领域具有特定的应用。
总结起来,测量坐标系的种类很多,每种坐标系都适用于特定的应用领域。
正确选择合适的坐标系对于进行准确的测量和定位是至关重要的。
科学家、测量工程师和研究人员需要根据实际需求选择合适的坐标系,并进行相应的计算和转换,以确保测量结果的精度和可靠性。
直线的极坐标方程及柱坐标系和球坐标系课件
新课讲授 例题1:求过极点,倾角为 4 的射线 的极坐标方程。 M 分析: 如图,所求的射线 上任一点的极角都 ﹚ 4 o x 是 / 4,其 极径可以取任意的非负数。故所求 直线的极坐标方程为
4 ( 0)
思考: 5 1、求过极点,倾角为 的射线的极 4 5 坐标方程。 易得 ( 0 ) 2、求过极点,倾角为 坐标方程。
点M(ρ 0,θ 0),且极轴到此直线的角为α ,直 线l的极坐标方程为: ρ sin(α -θ ) =
ρ 0sin(α -θ 0)
.
阅读课本P16---17
了解柱坐标系的定义, 以及如何用
柱坐标系描述空间中的点.
z 设P是空间任意一点, P(ρ,θ,Z) 在oxy平面的射影为Q, 用(ρ ,θ )(ρ ≥0, 0≤θ <2π )表示点Q o y 在平面oxy上的极坐标, θ 点P的位置可用有 Q x 序数组(ρ ,θ ,z)表示. 把建立上述对应关系的坐标系叫做柱 坐标系. 有序数组(ρ ,θ ,Z)叫点P的柱 坐标,记作(ρ ,θ ,Z). 其中 ρ ≥0, 0≤θ < 2π , -∞<Z<+∞
柱坐标系又称半极坐标系,它是由 平面极坐标系及空间直角坐标系中的 一部分建立起来的. 空间点P的直角坐标(x, y, z)与柱坐 标 (ρ ,θ ,Z) 之间的变换公式为
x cos y sin z z
设点的直角坐标为(1,1,1),求它 在柱坐标系中的坐标.
由已知的对称直线的问题关于sin12一个圆的方程为在极坐标系中已知sinsin直线的方程是相切的一条化为极坐标方程为圆的方程为那么一条与此圆相切的面积所围成的的面积积就是扇形解
§1.3.2直线的极坐标方程
工业机器人的五个坐标系
工业机器人的五个坐标系在工业机器人领域,坐标系是用来描述机器人末端执行器(或工具)在空间中的位置和姿态的框架。
为了确保机器人的准确性和一致性,通常会使用一系列标准的坐标系。
以下是工业机器人领域中最常用的五个坐标系:1、笛卡尔坐标系:在三维空间中,笛卡尔坐标系使用三个相互垂直的坐标轴(X、Y、Z),以及三个相互垂直的旋转轴(Rx、Ry、Rz)。
这种坐标系常用于描述机器人在空间中的位置和姿态,以及机器人末端执行器的位置和姿态。
2、极坐标系:极坐标系是一种以机器人末端执行器为中心的坐标系,它使用径向距离(r)、方位角(θ)和高度(z)来描述机器人在空间中的位置和姿态。
这种坐标系常用于路径规划、路径插补和机器人运动学分析。
3、圆柱坐标系:圆柱坐标系是一种以机器人末端执行器为中心的坐标系,它使用径向距离(r)、方位角(θ)和垂直距离(z)来描述机器人在空间中的位置和姿态。
这种坐标系常用于描述机器人在圆柱体或球体等形状上的路径和姿态。
4、球坐标系:球坐标系是一种以机器人末端执行器为中心的坐标系,它使用径向距离(r)、方位角(θ)和极角(φ)来描述机器人在空间中的位置和姿态。
这种坐标系常用于描述机器人在球体或类似形状上的路径和姿态。
5、工具坐标系:工具坐标系是一种以机器人末端执行器(或工具)为中心的坐标系,它使用工具的几何中心作为原点,并使用三个旋转轴(Rx、Ry、Rz)来描述工具的空间姿态。
这种坐标系常用于机器人运动学建模、路径规划和机器人控制等方面。
这些坐标系在工业机器人领域中具有广泛的应用,它们为机器人控制、路径规划和运动学建模提供了方便的框架。
根据实际应用场景的不同,选择合适的坐标系可以有效地提高机器人的精度和效率。
ABB工业机器人操作和坐标系一、引言在现代化的制造和自动化流程中,工业机器人扮演着关键的角色。
它们被广泛应用于各种复杂任务,从装配到质量检测,从搬运到喷漆,无所不能。
ABB集团作为全球领先的机器人技术提供商,其产品广泛应用于全球的各个行业。
高中数学同步备课 柱坐标系与球坐标系简介
三、解答题
8.设点M的直角坐标为(1,1, ),求点M的柱坐标与球坐标.
解:由坐标变换公式,可得ρ= = ,
∵tan θ= =1,x>0,y>0,∴θ= .
r= = =2.
由rcos φ=z= (0≤φ≤π),得cos φ= = ,φ= .
所以点M的柱坐标为 ,球坐标为 .
9.已知点M的柱坐标为 ,点N的球坐标为 ,求线段MN的长度.
∴它的球坐标为 .
(2)由变换公式得,
r= = =2.
由z=rcos φ,得cos φ= =- ,∴φ= .
又tan θ= = =-1,x<0,y>0,∴θ= ,
∴它的球坐标为 .
一、选择题
1.在球坐标系中,方程r=2表示空间的( )
A.球B.球面
C.圆D.直线
解析:选B r=2,表示空间的点到原点的距离为2,即表示球心在原点,半径为2的球面.
解:设点的直角坐标为(x,y,z).
(1)∵(r,φ,θ)= ,
∴
∴ 为所求.
(2)∵(r,φ,θ)= ,
∴
∴ 为所求.
4.求下列各点的球坐标.
(1)M(1, ,2);(2)N(-1,1,- ).
解:(1)由变换公式得,
r= = =2 .
由z=rcos φ,得cos φ= = = ,∴φ= ,
又tan θ= = = ,x>0,y>0,∴θ= ,
由坐标变换公式 且
得 且
得 且
结合图形,得θ= ,由cos φ= 得tan φ= .
所以点C1的直角坐标为(1,1,1),柱坐标为 ,球坐标为 ,其中tan φ= ,0≤φ≤π.
∴点N的直角坐标为(0, , ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 极坐标
极坐标、柱坐标和球坐标
• 极坐标 极坐标矩形
极坐标、柱坐标
• 极坐标 极坐标系的面积元
极坐标、柱坐标和球坐标
• 极坐标 二重积分 设 f 在区域D上连续
极坐标、柱坐标和球坐标
• 柱坐标
z=z
极坐标、柱坐标和球坐标
• 柱坐标 柱形区域
极坐标、柱坐标和球坐标
• 柱坐标 柱坐标下的面积元
极坐标、柱坐标和球坐标
• 柱坐标 计算积分
极坐标、柱坐标和球坐标
• 柱坐标
极坐标、柱坐标和球坐标
• 球坐标
极坐标、柱坐标和球坐标
• 球坐标 球坐标方体 • 球坐标系下微元
极坐标、柱坐标和球坐标
• 球坐标 体积元
极坐标、柱坐标和球坐标
• 如图,E是由球面和圆柱面所围成的体,求E的体积
V(E)=?
极坐标、柱坐标和球坐标
极坐标、柱坐标和球坐标
• E的体积