第一学期常微分方程期中试卷

合集下载

常微分方程试题及解答

常微分方程试题及解答

常微分期终考试试卷(1)一、填空题( 30%)1、方程M (x, y)dx N( x, y)dy 0有只含x 的积分因子的充要条件是( )。

有只含y 的积分因子的充要条件是 ____________________ 。

2、_____________ 称为黎卡提方程,它有积分因子_________________ 。

3、__________________ 称为伯努利方程,它有积分因子______________________ 。

4、若X1(t),X2(t), ,X n(t)为n阶齐线性方程的n个解,则它们线性无关的充要条件是______________________________ 。

5、形如__________________ 的方程称为欧拉方程。

6、若(t)和(t)都是x' A(t) x的基解矩阵,则(t)和(t )具有的关系是__________________________________ 。

7、当方程的特征根为两个共轭虚根是,则当其实部为_______ 时,零解是稳定的,对应的奇点称为__________ 。

二、解答题(60%)1、ydx ( x y3)dy 02、 x x sin t cos2t21 14 试求方程组 x Ax 的解 (t), (0)21并求dyx y 2经过( 0,0)的第三次近似解 dx4、(d dy x )3 dx4xy d d y x 8 y 2 03、若 A expAt5、求方程6.求d d x t x y 1,d d y t x y 5的奇点,并判断奇点的类型及稳定性.三、证明题(10%)、n 阶齐线性方程一定存在n个线性无关解。

试卷答案填空题MNy x(x)N MNyxM(y)2、dy p(x y) 2 Q x(y )R x dx()ddyxp(x)y Q x( y)n u(x, y) n e (n 1)p(x)dx4、 w[x 1(t),x 2(t), ,x n (t)] 06、 (t) (t)C 7、零 稳定中心 二计算题MN1, 11、解:因为 y x ,所以此方程不是恰当方程,方程有积x y2 x yc 即 2x y(y 2 c) 另外 y=0 也是解 y22、线性方程 x x 0的特征方程 2 1 0 故特征根if 1(t) sinti 是特征单根, 原方程有特解 x t(Acost Bsint)1代入原方程 A=- 1 B=0f 2(t) cos2t 2i 不是特征221根,原方程有特解 x Acos2t B sin 2t 代入原方程 A 1 B=0311 所以原方程的解为 x c 1cost c 2 sint tcost cos2tdx na n 1d d y x a n y 02dy 2分因子 (y) e y e ln y2x y 3dy 0所以解为1y dx yd n ya1两边同乘y 2x y 3y 2k=1n 1 2*)两边对 y 求导: 2y(p 3 4y 2)dp p(8y 2 p 3) 4y 2pdy即(p 3 4y 2)(2y dp p) 0由2y dp p 0得 p cy 21即y (p )2将 ydy dy c3、解:p( )26 9 0解 得1,23 此 时1 (t) e 3ti0t i i!(A 3E)i 1e 3t 1 t( 1 2)2 t( 1 2)n 1t i由公式 expAt= e t t (A E)i 得i 0 i!3t 3t 1 01expAt e 3t E t(A 3E) e 3tt0 1111 e 3t 1 t t t1t4、解:方程可化为 xdy dx4y dydx8y2dy 令dy p则有xdx32 p 3 8y 2(*)4yp代入(*)c 2x 422p即方程的 含参数形式的通解为:c 2xc 2 2px 2 4 c 2 4c p p 2 y ( )2c为参数 又由 p 34y 2140得 p (4y 2)3代入( *)得: y 4 x 3也是方程的解x y 1 06、解:由解得奇点(3,-2)令X=x-3,Y=y+2 则xy50dx x y d d t y dy dt 因为 1 1=1+1 0 故有唯一零解( 0,0)111 12 2由2 2 1 1 2 2 2 0得 1 i 故( 3,-2)11为稳定焦点三、证明题由解的存在唯一性定理知:n 阶齐线性方程一定存在满足如下条件的n 解:x1(t0) 1,x2(t0) 0, ,x n(t0) 0x1'(t0) 0,x2'(t0) 1, ,x n(t0) 0x1n 1(t0) 0,x2n 1(t0) 0, ,x n n 1(t0) 1考虑w[x1(t0),x2(t0), ,x n(t0)]0 01 0100 115、解:2x x1y0xdx1 0022 x x y0(x )dx x20 04 24 10x x x043 y0 (x5 x207 2 5x x x)dx400 20 2 20 4400 160x11 x8xy从而x i(t)(i 1,2, n) 是线性无关的。

(完整版)常微分方程练习试卷及答案

(完整版)常微分方程练习试卷及答案

常微分方程练习试卷一、填空题。

1. 方程23210d xx dt+=是 阶 (线性、非线性)微分方程. 2. 方程()x dyf xy y dx=经变换_______,可以化为变量分离方程 . 3. 微分方程3230d yy x dx--=满足条件(0)1,(0)2y y '==的解有 个.4. 设常系数方程x y y y e αβγ'''++=的一个特解*2()x x xy x e e xe =++,则此方程的系数α= ,β= ,γ= .5. 朗斯基行列式()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的 条件.6. 方程22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 .7. 已知()X A t X '=的基解矩阵为()t Φ的,则()A t = .8. 方程组20'05⎡⎤=⎢⎥⎣⎦x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程.10 .是满足方程251y y y y ''''''+++= 和初始条件 的唯一解.11.方程的待定特解可取 的形式:12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是二、计算题1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直.2.求解方程13dy x y dx x y +-=-+. 3. 求解方程222()0d x dx x dt dt+= 。

4.用比较系数法解方程..5.求方程 sin y y x '=+的通解.6.验证微分方程22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.7.设 3124A -⎡⎤=⎢⎥-⎣⎦ , ⎥⎦⎤⎢⎣⎡-=11η ,试求方程组X A dt dX =的一个基解基解矩阵)(t Φ,求X A dt dX=满足初始条件η=)0(x 的解. 8. 求方程2213dyx y dx=-- 通过点(1,0) 的第二次近似解.9.求 的通解试求方程组x Ax '=的解(),t ϕ 12(0),ηϕηη⎡⎤==⎢⎥⎣⎦并求expAt 10.若三、证明题1. 若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ.2. 设),()(0βαϕ≤≤x x x 是积分方程],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx的皮卡逐步逼近函数序列)}({x n ϕ在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ϕψ≡.3. 设 都是区间 上的连续函数, 且 是二阶线性方程的一个基本解组. 试证明:(i) 和 都只能有简单零点(即函数值与导函数值不能在一点同时为零); (ii) 和 没有共同的零点; (iii) 和没有共同的零点.4.试证:如果)(t ϕ是AX dtdX=满足初始条件ηϕ=)(0t 的解,那么ηϕ)(ex p )(0t t A t -= .2114A ⎡⎤=⎢⎥-⎣⎦32()480dy dy xy y dx dx -+=答案一.填空题。

《常微分方程》期中试卷-解答

《常微分方程》期中试卷-解答

)()()(2cos 31cos 31sin 21)(**t x t x t x tt t t t x c +=∴-+=通解 五. 证明题(5分)证明:性无关解,下面只要证明其线是对应齐次方程的两个、是非齐方程的解,、、)()()()()()()(3231321t x t x t x t x t x t x t x --∴ 是齐次方程的基解线性无关,、,,线性无关,、、即:令∴--∴=+==⇒=+-+=-+-)()()()(000)()()(0)()()()(0)]()([)]()([323121213213212211322311t x t x t x t x k k k k t x t x t x t x k k t x k t x k t x t x k t x t x k)()]()([)]()([)(1322311t x t x t x c t x t x c t x +-+-=非齐次方程的通解:六. 应用题(任选1题, 10分)1.设运动员从跳落到开伞前为自由落体运动, 开伞后在空气中下落时受到的空气阻力与速度平方成正比(比例系数为k )。

一运动员从高空跳下T 秒后才打开降落伞。

试建立微分方程, 求开伞后, 该运动员在下降过程中速度与时间关系, 并求出极限速度。

解:kmgt v aeae k mg v a gT kmggT kmgc gT v c t m kg v kmgvkmgv gTv m k g dt dvt t v t t mkg t m kg =⇒+-=⇒∆-+=⇒=+=-+⇒⎪⎩⎪⎨⎧=-=+∞→)(lim 11ln ln)0(2ln)0()(22112由第二定律得:秒时的速度,根据牛顿表示运动员开伞用第 4 页2. 在一个电阻R 、电感L 、电容C 和电源E 串联而成的闭合回路中, 已知E=100sin60t(V)R=2欧姆, L=0.1(H ), C=1/260(F )。

复旦大学常微分期中试卷

复旦大学常微分期中试卷

˙ = A(t)x, 其中 A(t) 为 R 上以 T (T > 0) 为周期的 考虑线性方程 n 维线性常微分方程: x 连续矩阵值函数. (1) 设 上 述 方 程 的 一 个 基 本 解 方 阵 为 ϕ(t), 证 明 存 在 一 个 ϕ(t + T ) = ϕ(t) · B . (2) 如 果 已 知 存 在 n 阶 矩 阵 C 使 得 eC T = B , 我 们 对 原 方 程 进 行 坐 标 变 换 y (t) = eC t ϕ−1 (t)x(t). 证明在此坐标变化下, 存在常数 C1 , C2 > 0 使得 C2 ∥x(t)∥ ≤ ∥y (t)∥ ≤ C1 ∥x(t)∥, 对于 t ∈ R 成立,并求出 y (t) 满足的微分方程. (3) 若 (2) 中得到的矩阵 C 的一切特征值实部都小于 0, 设 H (t) 为 R 上的 n 阶 连 常 值 矩 阵 B, 使 得
, ∥A∥2 2 =
得分 . .
已知 h(t) 为 (α, β ) 上的实值连续函数,x0 ∈ R, t0 ∈ (α, β ). 用逐次逼近法证明以下初值问 dx = h(t)(x + t2 sin x + t), dt 题 的解在 (α, β ) 上存在且惟一. x(t ) = x
(1) 若 A(t) ≡ A, 试用常数变易公式写出上述方程满足初值条件 x(t0 ) = x0 (t0 ∈ R, x0 ∈ Rn ) 的解. (2) 在 (1) 的条件下,若 A 的一切特征值实部大于 0,证明该方程存在唯一在 R 上有界 的解. 1 2 t2 + 1 , f (t) ≡ 0. 证明存在 x0 ∈ R , 使得该方程满 cos 2t
6
, 分 6 分, 5 分 6 分, 6 分 12

《常微分方程》试题-5页精选文档

《常微分方程》试题-5页精选文档

常微分方程试卷1一、填空题(每题3分,共15分)1.一阶微分方程的通解的图像是 维空间上的一族曲线.2.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是3.方程02=+'-''y y y 的基本解组是 .4.一个不可延展解的存在在区间一定是 区间. 5.方程21d d y xy-=的常数解是 . 二、单项选择题(每题3分,共15分)6.方程y x xy+=-31d d 满足初值问题解存在且唯一定理条件的区域是( ).(A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 7. 方程1d d +=y xy ( )奇解.(A )有一个 (B )有两个 (C )无 (D )有无数个8.)(y f 连续可微是保证方程)(d d y f xy=解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分9.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间 (B )构成一个3维线性空间 (C )不能构成一个线性空间 (D )构成一个无限维线性空间10.方程323d d y xy=过点(0, 0)有( ).(A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、计算题(每题6分,共30分) 求下列方程的通解或通积分:11.y y x yln d d = 12. x yx y x y +-=2)(1d d13. 5d d xy y xy+=14.0)d (d 222=-+y y x x xy 15.32y y x y '+'=四、计算题(每题10分,共20分) 16.求方程255x y y -='-''的通解. 17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=x ty ty t x d d sin 1d d五、证明题(每题10分,共20分)18.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程)(d d x f y xy=+ 的一切解)(x y ,均有0)(lim =+∞→x y x .19.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.常微分方程试卷1答案及评分标准一、填空题(每题3分,共15分) 1.22.线性无关(或:它们的朗斯基行列式不等于零)3.x x x e ,e 4.开5.1±=y二、单项选择题(每题3分,共15分) 6.D 7.C 8.B 9.C 10.A 三、计算题(每题6分,共30分)11.解 当0≠y ,1≠y 时,分离变量取不定积分,得 C x y y y+=⎰⎰d ln d (3分)通积分为x C y e ln = (6分)12.解 令xu y =,则xu x u x y d d d d +=,代入原方程,得 21d d u xux-= (3分)分离变量,取不定积分,得 C xxu u ln d 1d 2+=-⎰⎰(0≠C )通积分为: Cx xyln arcsin= (6分)13.解 方程两端同乘以5-y ,得x y xyy +=--45d d 令 z y =-4,则xzx y y d d d d 45=--,代入上式,得 x z xz=--d d 41(3分) 通解为41e 4+-=-x C z x 原方程通解为41e 44+-=--x C y x (6分)14.解 因为xNx y M ∂∂==∂∂2,所以原方程是全微分方程. (2分)取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx=-⎰⎰020d d 2(4分)即C y y x =-3231 (6分)15.解 原方程是克莱洛方程,通解为32C Cx y += (6分)四、计算题(每题10分,共20分)16.解 对应齐次方程的特征方程为052=-λλ,特征根为01=λ,52=λ,齐次方程的通解为x C C y 521e += (4分)因为0=α是特征根。

《常微分方程》测试题 1

《常微分方程》测试题 1

《常微分方程》测试题 1一、填空题 30%1、 形如 的方程,称为变量分离方程,这里.分别为x.y 的连续函数。

2、 形如 -的方程,称为伯努利方程,这里的连续函数.n3、 如果存在常数 -对于所有函数称为在R 上关于满足利普希兹条件。

4、 形如 -的方程,称为欧拉方程,这里5、 设的某一解,则它的任一解- 。

二、计算题40%1、 求方程2、 求方程的通解。

)().(y x f ϕx x Q x P 为)().(,可化为线性方程。

是常数。

引入变量变换-------≠1.0使得不等式,0 L 称为利普希兹常数。

都成立,(L R y x y x ∈),(),,21),(y x f y 是常数。

,,21a a 是的基解矩阵,是)()(t Ax x t ϕφ=')()(t f x t A x +='可表为)(t γ的通解。

26xy x ydx dy -=xye x ydx dy =+3、 求方程的隐式解。

4、 求方程三、证明题30%1.试验证=是方程组x =x,x=,在任何不包含原点的区间a 上的基解矩阵。

2.设为方程x =Ax (A 为n n 常数矩阵)的标准基解矩阵(即(0)=E ),证明: (t )=(t- t )其中t 为某一值.<%建设目标%>te x x x 25'6''=++)的第三次近似解。

、通过点(002y x dx dy+=()t Φ⎥⎦⎤⎢⎣⎡122t t t '⎥⎥⎦⎤⎢⎢⎣⎡-t t 22102⎥⎦⎤⎢⎣⎡21x x b t ≤≤()t Φ'⨯Φ()t Φ1-Φ0Φ00《常微分方程》测试题 1 答案一、填空题(每空5分)1 2、 z=34、5、 二、计算题(每题10分)1、这是n=2时的伯努利不等式,令z=,算得 代入原方程得到,这是线性方程,求得它的通解为z= 带回原来的变量y ,得到=或者,这就是原方程的解。

(整理)《常微分方程》试题.

(整理)《常微分方程》试题.

常微分方程试卷1一、填空题(每题3分,共15分)1.一阶微分方程的通解的图像是 维空间上的一族曲线.2.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 .3.方程02=+'-''y y y 的基本解组是 . 4.一个不可延展解的存在在区间一定是 区间. 5.方程21d d y xy-=的常数解是 .二、单项选择题(每题3分,共15分)6.方程y x xy+=-31d d 满足初值问题解存在且唯一定理条件的区域是( ). (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 7. 方程1d d +=y xy ( )奇解.(A )有一个 (B )有两个 (C )无 (D )有无数个 8.)(y f 连续可微是保证方程)(d d y f xy=解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分 9.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间 (B )构成一个3维线性空间 (C )不能构成一个线性空间 (D )构成一个无限维线性空间10.方程323d d y xy=过点(0, 0)有( ). (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、计算题(每题6分,共30分)求下列方程的通解或通积分:11. y y x yln d d = 12. x y x y x y +-=2)(1d d 13. 5d d xy y xy+= 14.0)d (d 222=-+y y x x xy15.32y y x y '+'=四、计算题(每题10分,共20分)16.求方程255x y y -='-''的通解.17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=x ty ty t x d d sin 1d d五、证明题(每题10分,共20分)18.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程)(d d x f y xy=+ 的一切解)(x y ,均有0)(lim =+∞→x y x .19.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.常微分方程试卷1答案及评分标准一、填空题(每题3分,共15分)1.22.线性无关(或:它们的朗斯基行列式不等于零) 3.xxx e ,e 4.开5.1±=y二、单项选择题(每题3分,共15分)6.D 7.C 8.B 9.C 10.A三、计算题(每题6分,共30分)11.解 当0≠y ,1≠y 时,分离变量取不定积分,得 C x y y y+=⎰⎰d ln d (3分) 通积分为xC y e ln = (6分)12.解 令xu y =,则xuxu x y d d d d +=,代入原方程,得 21d d u x ux-= (3分) 分离变量,取不定积分,得C xxu u ln d 1d 2+=-⎰⎰(0≠C ) 通积分为: Cx xyln arcsin= (6分)13.解 方程两端同乘以5-y ,得x y xyy+=--45d d 令 z y =-4,则xz x y y d d d d 45=--,代入上式,得 x z xz=--d d 41 (3分)通解为41e 4+-=-x C z x原方程通解为 41e 44+-=--x C yx (6分)14.解 因为xNx y M ∂∂==∂∂2,所以原方程是全微分方程. (2分) 取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx =-⎰⎰020d d 2 (4分)即 C y y x =-3231 (6分)15.解 原方程是克莱洛方程,通解为32C Cx y += (6分)四、计算题(每题10分,共20分)16.解 对应齐次方程的特征方程为052=-λλ,特征根为01=λ,52=λ,齐次方程的通解为 xC C y 521e += (4分) 因为0=α是特征根。

常微分方程期中考试题

常微分方程期中考试题

优秀学习资料 欢迎下载常微分方程期中测试试卷(1)一、填空(dy)ndy y 2 x 21 微分方程 dx dx的阶数是 ____________2若M ( x, y)和N ( x, y)在矩形区域 R 内是 (x, y)的连续函数 , 且有连续的一阶偏导数 , 则方 程 M ( x, y) dx N ( x, y)dy0 有 只 与 y有 关 的 积 分 因 子 的 充 要 条 件 是 _________________________ 3 _________________________________________ 称为齐次方程 .dyf ( x, y)4 如果f ( x, y)___________________________________________ , 则 dx存在唯一的解 y(x) , 定义于区间 x x 0h 上 , 连续且满足初始条件 y 0( x 0 ) , 其中h_______________________ .5 对 于 任 意 的( x, y 1 ) ,( x, y 2)R (R 为某一矩形区域), 若存在常数N(N0) 使______________________ , 则称f (x, y)在 R 上关于 y满足利普希兹条件 .dy x 2 y 22 x2, 2 y2上 , 则经过点(0,0) 的解6 方程 dx定义在矩形区域 R :的存在区间是 ___________________7 若 x i (t )(i 1,2,.....n) 是齐次线性方程的n 个解 , w(t )为其伏朗斯基行列式 , 则w(t )满足一阶线性方程 ___________________________________8若 x i (t)(i1,2,.....n)为齐次线性方程的一个基本解组,x(t)为非齐次线性方程的一个特解 , 则非齐次线性方程的所有解可表为_________________________9 若( x)为毕卡逼近序列 n (x)的极限,则有 (x) n ( x)__________________10 _________________________________________称为黎卡提方程, 若它有一个特解y(x) ,则经过变换___________________,可化为伯努利方程.二求下列方程的解dyy1dx x y 3dy xy 22求方程dx经过( 0,0)的第三次近似解dyy21的解的存在区间3讨论方程 dx, y(1)(dy)2y 21 04 求方程 dx的奇解(cos x1)dx (1x)dy5y yy 26y ' y 2 2 y sin x cosx sin 2 x 7( 2xy 23y 3 )dx (7 3xy 2 ) dy 0三 证明题1 试证 : 若已知黎卡提方程的一个特解, 则可用初等积分法求它的通解2 试用一阶微分方程解的存在唯一性定理证明: 一阶线性方程 P( x) , Q( x) 在 ,上连续时 , 其解存在唯一参考答案一 填空题 1 1dyQ( x)P(x) ydx, 当234 56M N1()()( y)yx Mdy g ( y)形如dxx 的方程在 R 上连续且关于y满足利普希兹条件f ( x, y 1 ) f (x, y 2 ) N y 1y 21 1 x44h min( a, b)m7w ' a 1 (t )w 0n8xc i x ixi 1nMLh n 19(n 1)!dyp( x) y 2 q( x) y r ( x)y z y10 形如 dx的方程二 求下列方程的解dxxy 3x 211 dyy3y x eydyxcy1解:dyyy( y 2 eydy c),则所以2另外 y 0也是方程的解2解:0 ( x)x2( x) dx1x 2 1 ( x)x2x12( x) dx 1 x 2 1 x 5 2 ( x)x220x22( x) dx1x 21x 51 x 111x 83 (x)x2204400160dydx3解: y21x c两边积分y1y所以方程的通解为x c过 y(1) 1 的解为y12故x通过点(1,1)的解向左可以延拓到,但向右只能延拓到 2,所以解的存在区间为(,2)4 解 : 利用 p判别曲线得p 2y 2 1 02 p 0消去 p 得 y21 即 y1所以方程的通解为ysin( x c) , 所以 y1是方程的奇解My 2N y2MN5 解 :y = ,x =,y =x, 所以方程是恰当方程 .u cos x1x yv 1 x得usin xx( y)y y y2yu xy2'( y)( y)ln yy所以sin xx ln y cy故原方程的解为6解 :y ' y 2 2 ysin x cosx sin 2 x 故方程为黎卡提方程 . 它的一个特解为ysin x , 令 yzsin x ,dz z 2z1 则方程可化为 dx,x cy sin x1ysin x1x c ,xc即故7解 : 两边同除以 y 2得2xdx 3ydx7 dy 3xdy 0y 2dx2d3xyd7y优秀学习资料欢迎下载x 23xy7c y 0也是方程的解所以y, 另外三证明题1证明 : 设黎卡提方程的一个特解为y y令yz y ,dy dz d y dy p( x) y2q( x) y r ( x)dx dx dx又dxdz p( x)( z y) 2q( x)( z y)r ( x) d y dx dxd y2q( x) y r ( x)dzp( x) z2 2 p( x) yp( x) y得 dx由假设dx此方程是一个 n2的伯努利方程,可用初等积分法求解2证明 :令 R :x,,y RP( x) ,Q( x) 在,上连续, 则f ( x, y)P(x) y Q( x)显然在 R 上连续,因为 P( x)为,上的连续函数 ,故 P(x) 在,上也连续且存在最大植,记为L即 P( x)L ,x,y1, y2R f ( x, y1 ) f ( x, y2 )P(x) y1P( x) y2=P(x) y1因此一阶线性方程当P( x) ,Q ( x) 在,上连续时 , 其解存在唯一q( x) zy2L y1y2常微分方程期中测试卷(2)1.辨别题指出下列方程的阶数,是否是线性方程:(12%)dydy4322x 2x sin yd y2 d yd y 0y x(1) dx( 2) dx(3) dx 4dx 3 dx 2dr3d 2r(4) x xx x t( 5) ( ds)1 ds 2( 6) x2dy y 2dx 02、填空题 (8%)dyx tan y(1).方程dx的所有常数解是 ___________.( 2).若 y=y 1( x ) , y=y 2( x ) 是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为 ________________.( 3 ) . 若 方 程 M ( x, y )d x + N ( x, y )d y = 0 是 全 微 分 方 程 , 同 它 的 通 积 分 是________________. (4) . 设 M ( x 0, y 0) 是可微曲线 的截距分别是 _________________.3、单选题 (14%)y = y ( x ) 上的任意一点,过该点的切线在 x轴和 y 轴上(1).方程y ln ydx( x ln y)dy是() .(A) 可分离变量方程 ( B )线性方程 (C) 全微分方程( D )贝努利方程dyy (0y)( 2).方程 dx,过点( 0, 0)有() .(A) 一个解( B )两个解(C) 无数个解 22 ( D )三个解( 3).方程 (1)d( 1)d=0 的所有常数解是( ) .y - yxx+y x -(A) y =± 1, x =±1,(B) y =± 1(C) x =± 1(D)y =1, x =1( 4).若函数 y ( x ) 满足方程xyy y 2 ln x,且在 x =1 时, y =1, 则在 x = e 时y =().11(A)e(B)2(C)2(D) e( 5). n 阶线性齐次方程的所有解构成一个( )线性空间.( A ) n 维( B )n1维( C )n1维( D )n2 维dyxy 2( 6) . 方程 dx()奇解.( A )有三个( B )无( C )有一个( D ) 有两个dy23y3( 7).方程 dx 过点 (0, 0) ().( A )有无数个解(B )只有三个解(C )只有解y( D )只有两个解4. 计算题 (40%)求下列方程的通解或通积分:dy xy( 1) . dx 1 x 2dy 3ye 2 x(2). dx(3) .(x 3xy 2 )dx (x 2 y y 3 )dy 0dy y ( y ) 2(4).dxxx(5) . y (x ln y ) 15. 计算题 (10%)求方程y5 y sin 5x 的通解.6.证明题( 16%)设f ( x, y) 在整个xoy平面上连续可微,且f ( x, y 0 ) 0 .求证:方程dy f (x, y)dx的非常数解yy( x) ,当 xx0 时,有y(x)y0 ,那么x0 必为或.参考答案: 1.辨别题( 1)一阶,非线性 ( 2)一阶,非线性 (3)四阶,线性 ( 4)三阶,非线性 ( 5)二阶,非线性 (6)一阶,非线性2.填空题( 1).yk , k 0, 1, 2,(2).C 1[ y 1( x)y 2 ( x)] y 1 (x) xM (x, y) dxy N ( x 0 , y) dyx 0y0 ,y 0 x 0 y( 3). x 0 y 0( 4).y3.单选题( 1).B (2).C(3).A (4).B (5). A (6).B 7.A4. 计算题( 1).解 当y 0时,分离变量得dy xdxy1 x2 等式两端积分得ln y1ln(1 x 2 ) ln C2即通解为y C 1 x 2( 2).解 齐次方程的通解为y Ce 3x令非齐次方程的特解为y C (x)e 3 xC (x)1e 5 x C代入原方程,确定出5原方程的通解为yCe 3x 1e 2 x+ 5M 2xyN(3).解yx,所以原方程是全微分方程.由于取 ( x 0 , y 0 )( 0, 0),原方程的通积分为x xy 2)dxyC 10 (x3y 3dy即x 4 2 x 2 y 2 y 4 C令yxuy ux du(4). ,则dx ,代入原方程,得ux duu u 2x duu 2dx,dx当u时,分离变量,再积分,得du dxCu2x1 ln x Cu1uln xC,yxln xC即:5. 计算题令yp,则原方程的参数形式为x 1 ln ppypdy y由基本关系式dx,有dy y dxp (1 1)dp1 p2p (1p )dp积分得y p ln p C得原方程参数形式通解为x1 ln ppy p ln pC5.计算题解方程的特征根为 1, 25齐次方程的通解为 yC 1 C 2e 5 x因为i5i不是特征根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北 京 交 通 大 学
2013-2014学年第一学期《常微分方程》期中考试试卷
考试方式:闭卷 任课教师:曹鸿钧 学院 专业 班级
学号 姓名
请注意:本卷共四大题,如有不对,请与监考老师调换试卷!
一、 填空题(每小题1分,共10分)
1、下列微分方程中
(1)
;46
y x dx dy -=(2);12)(222xy dx dy dx
y d -= (3);03)(3
2=-+y dx dy x dx dy (4);0sin 362
2=-+-x xy dx dy dx y d x (5);02cos =++x y dx dy
(6).0)sin(22=-+x e dx
y d y 每个方程的阶数分别是 ,其中,线性方程有(写出方程
的标号) ,而是非线性方程的有(写出方程的标号) .
2、一曲线经过原点,且曲线上任意一点()y x ,处 的切线斜率为x 6,则曲线方程为 .
3、对于贝努利方程n y x q y x p dx
dy
)()(=+,则可通过变量变换 将其化为一阶线性方程,从而可以求解.
4、一阶微分方程0),(),(=+dy y x N y x M 为恰当微分方程的充要条件为 .
5、方程31
23
y dx dy =在区域________________________中满足解的存在唯一性定理.
6、方程21
2-=y dx dy 通过点)0,0(的饱和区间为 . 7、方程
22y x dx
dy
+=定义在矩形域11,11:≤≤-≤≤-y x R 上,则经过点(0,0)的解的存在区间是 .
8、方程0),(),(=+dy y x N dx y x M 具有形为)(y x +μ的积分因子的充要条件是 .
二、选择题:(每小题1分,共6分) 1、方程
y x dx
dy
-=24为 A 、一阶齐次线性方程 B 、一阶非齐次非线性方程 C 、一阶齐次非线性方程 D 、一阶非齐次线性方程
2、方程y x x
y
+=-3
1d d 满足初值问题解的存在唯一定理条件的区域是 .
(A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面
3、方程32
3y dx
dy
=过点(0, 0)有 . A 、无数个解 B 、只有一个解 C 、只有两个解 D 、只有三个解 4、方程0)(2=-+dy x y x ydx 的一个积分因子为 .
A 、x 1
B 、21
x
C 、x ln
D 、x x ln
5.设函数)(),(21x y x y 是微分方程0)(=+'y x p y 的两个不同特解,则该方程的通解为 .
(A)2211y C y C y += (B) 21Cy y y += (C) )(211y y C y y ++= (D) )(12y y C y -=
6、李普希兹条件是保证一阶微分方程初值问题解唯一的 条件. A 、充分 B 、必要 C 、充分必要 D 、不确定
三、计算题(本大题包含8个小题,共75分) 1、求解方程xy dx
dy
2=的通解,并求满足初值条件1,0==y x 的特解.(9分)
2、求方程2
52
6)(22xy xy x y dx dy +-=的通解.(9分)
3.求方程0)d (d 222=-+y y x x xy 的通解.(9分)
4、求方程2y x dx
dy
-=通过点(1,0)的第二次近似解.(10分)
5、求方程x y dx
dy
sin +=的通解.(9分)
6、设函数)(t ϕ于),
(+∞-∞上连续,)0('ϕ存在且满足关系式)()()(s t s t ϕϕϕ=+,试求此函数)(t ϕ.(10分)
7、求方程2''2)2()1(y y y -=-的解.(9分)
8、已知里卡蒂微分方程x
x x
e ye
y
e
y 22
'12-=-+-的一个特解为x e y =_

求此方程的特解(提示:取变换-
+=y z y )(10分).
四、证明:(9分)
(1)、一阶非齐次线性微分方程
)()(x Q y x P dx
dy
+=的任两解之差必为对应的齐次线性微分方程
y x P dx
dy
)(=的解(3分); (2)、若)(x y y =是齐次线性微分方程y x P dx
dy
)(=的非零解,而)(x y y -
=是非齐次线性微分方程
)()(x Q y x P dx
dy
+=的解,则非齐次线性微分方程
)()(x Q y x P dx
dy
+=的通解可表为)()(x y x cy y -
+=,
其中,c 为任意常数(3分).。

相关文档
最新文档