数字推理题型7种类型28种形式

合集下载

数字推理讲解及真题完美打印版

数字推理讲解及真题完美打印版

数字推理讲解及真题完美打印版数字推理题型的7种类型28种形式解题⽅法数字推理由题⼲和选项两部分组成,题⼲是⼀个有某种规律的数列,但其中缺少⼀项,要求考⽣仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的⼀个,使之符合数列的排列规律。

其不同于其他形式的推理,题⽬中全部是数字,没有⽂字可供应试者理解题意,真实地考查了应试者的抽象思维能⼒。

第⼀种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的⼀组数。

1、等差数列的常规公式。

设等差数列的⾸项为A1,公差为 D,则等差数列的通项公式为 An= A1+(n-1) D(n为⾃然数)。

[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13 [解析]这是⼀种很简单的排列⽅式:其特征是相邻两个数字之间的差是⼀个常数。

从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。

故选 C。

2、⼆级等差数列。

是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2]2,5,10,17,26,(),50 A.35 B.33 C.37 D.36[解析]相邻两位数之差分别为3,5,7,9,是⼀个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选 C。

3、分⼦分母的等差数列。

是指⼀组分数中,分⼦或分母、分⼦和分母分别呈现等差数列的规律性。

[例3]2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析]数列分母依次为3,4,5,6,7;分⼦依次为2,3,4,5,6,故括号应为7/8。

故选 D。

4、混合等差数列。

是指⼀组数中,相邻的奇数项与相邻的偶数项呈现等差数列。

[例4]1,3,3,5,7,9,13,15,,(),()。

A、1921B、1923C、2123D、2730[解析]相邻奇数项之间的差是以2为⾸项,公差为2的等差数列,相邻偶数项之间的差是以2为⾸项,公差为2的等差数列。

数字推理题型的7种类型28种形式,必会基础

数字推理题型的7种类型28种形式,必会基础

数字推理题型的7种类型28种形式,必会基础!第一种情形----等差数列1、等差数列的常规公式。

设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。

[例1]1,3,5,7,9,()A.7B.8C.11D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。

从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。

故选C。

2、二级等差数列。

是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。

3、分子分母的等差数列。

是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。

[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。

故选D。

4、混合等差数列。

是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。

[例4] 1,3,3,5,7,9,13,15,,(),()。

A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。

提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键第二种情形---等比数列:5、等比数列的常规公式。

设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。

[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。

数字推理常见七种基本类型

数字推理常见七种基本类型

数字推理常见七种基本类型数字推理题是行政职业能力测试中的一个固定题型,考察的是数字之间的联系。

只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。

航博教育公务员考试研究中心认为,行之有效的办法之一,就是要熟练把握几种基本类型。

一、和差关系。

又分为等差、移动求和或差两种。

1、等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()2、移动求和或差。

从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多了也就简单了。

1,2,3,5,(),13A 9B 11C 8D7选C。

1+2=3,2+3=5,3+5=8,5+8=130,1,1,2,4,7,13,()A 22B 23C 24D 25选C。

注意此题为前三项之和等于下一项。

一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。

二、乘除关系。

又分为等比、移动求积或商、分数数列1、等比关系。

从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。

8,12,18,27,(40.5)后项与前项之比为1.5。

6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,32、移动求积或商关系。

从第三项起,每一项都是前两项之积或商。

2,5,10,50,(500)100,50,2,25,(2/25)1,7,8,57,(457)后项为前两项之积+13、分数数列。

一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案1/24/39/416/525/6(36/7)分子为等比,分母为等差2/31/22/51/32/7(1/4)将1/2化为2/4,1/3化为2/6,可知下一个为2/8三、幂根关系。

又分为平方关系、立方关系和带根号的数列。

1、平方关系1,4,9,16,25,(36),4966,83,102,123,(146)8,9,10,11,12的平方后+22、立方关系1,8,27,(81),1253,10,29,(67),127立方后+20,1,2,9,(730)有难度,后项为前项的立方+13、带根号的数列。

公务员考试数字推理大全

公务员考试数字推理大全

精心整理公务员考试数字推理大全1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

3)看各数的大小组合规律,作出合理的分组。

如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40, 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。

4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。

如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

这组数比较巧的是都是6的倍数,容易导入歧途。

6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302∴下一个数为302+5=307。

数字推理题型及讲解

数字推理题型及讲解

1、前两个数相加等于第三个数例题:4,5,(),14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;【师说解析】:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;练习:6,9,(),24,39 // 1,0,1,1,2,3,5,()2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,() 99年考题A.162 B.156 C.148 D.145【师说解析】: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D。

四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,(),3,-3A.0B.1C.2D.3答案是A【师说解析】:6-3=3 3-3=0 3-0=3 0-3=-3提醒您别忘了:“空缺项在中间,从两边找规律”2、等差数列:例题:5,10,15,( )A. 16B.20C.25D.30答案是B.【师说解析】:通过相减发现:相邻的数之间的差都是5,典型等差数列;3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,()A.102B.101C.100D.99 答案是B【师说解析】:邻数之间的差值为5、4、3、(2),等差数列,差值为1 103-2=1014、二级等比:相减的差是等比数列例题:0,3,9,21,45, ( )相邻的数的差为3,6,12,24,48,答案为93例题:-2,-1,1,5,( ),29 ---99年考题【师说解析】:-1-(-2)=1 ,1-(-1)=2,5-1=4,13-5=8,29-13=16后一个数减前一个数的差值为:1,2,4, 8,16,所以答案是135、相减的差为完全平方或开方或其他规律例题:1,5,14,30,55,()相邻的数的差为4,9,16,25,则答案为55+36=916、相隔数相减呈上述规律:例题:53,48,50,45,47A.38B.42C.46D.51【师说解析】:53-50=3 50-47=3 48-45=3 45-3=42 答案为B注意:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,( )前两个数的乘积等于第三个数,答案是2562、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2例题:6,14,30,62,( )A.85B.92C.126D.250【师说解析】:6×2+2=14 14×2+2=30 30×2+2=62 62×2+2=126,答案为C 练习:28,54,106,210,()3、两数相乘的积呈现规律:等差,等比,平方,...例题:3/2, 2/3, 3/4,1/3,3/8 ()(99年海关考题)A. 1/6B.2/9C.4/3D.4/9【师说解析】:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/83/8×?=1/16 答案是 A六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:正序:4,9,16,25逆序:100,81,64,49,36间序:1,1,2,4,3,9,4,(16)2、前一个数的平方是第二个数。

数量关系之数字推理基本题型及解题规律

数量关系之数字推理基本题型及解题规律

数量关系之数字推理基本题型及解题规律数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.按照数字排列的规律, 数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1 5 3 7 ()A.2B.8C.9 nbsp;D.12解析:答案是C ,整个数列中全都是奇数,而答案中只有答案C是奇数2、全是偶数:例题:2 6 4 8 ()A.1B.3C.5D.10解析:答案是D ,整个数列中全都是偶数,只有答案D是偶数。

3、奇、偶相间例题:2 13 4 17 6 ()A.8B.10C.19D.12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C练习:2,1,4,3,(),5二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36()A.19B.18C.17D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。

三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,(),14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;练习:6,9,(),24,391,0,1,1,2,3,5,()2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,()A.162B.156C.148D.145解析: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,(),3,-3A.0B.1C.2D.3答案是A解析:6-3=3 3-3=0 3-0=3 0-3=-3提醒您别忘了:“空缺项在中间,从两边找规律”2、等差数列:例题:5,10,15,( )A.16B.20C.25D.30答案是 B.解析:通过相减发现:相邻的数之间的差都是5,典型等差数列; 3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,()A.102B.101C.100D.99 答案是B解析:邻数之间的差值为5、4、3、(2),等差数列,差值为1 103-2=101练习:8,8,6,2,()1,3,7,13,21,31,()4、二级等比:相减的差是等比数列例题:0,3,9,21,45, ( )相邻的数的差为3,6,12,24,48,答案为93例题:-2,-1,1,5,( ),29 ---99年考题解析:-1-(-2)=1 ,1-(-1)=2,5-1=4,13-5=8,29-13=16后一个数减前一个数的差值为:1,2,4, 8,16,所以答案是13 5、相减的差为完全平方或开方或其他规律例题:1,5,14,30,55,()相邻的数的差为4,9,16,25,则答案为55+36=916、相隔数相减呈上述规律:例题:53,48,50,45,47A.38B.42C.46D.51解析:53-50=3 50-47=3 48-45=3 45-3=42 答案为B注意:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,( )前两个数的乘积等于第三个数,答案是2562、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2例题:6,14,30,62,( )A.85B.92C.126D.250解析:6×2+2=14 14×2+2=30 30×2+2=6262×2+2=126,答案为C 练习:28,54,106,210,()3、两数相乘的积呈现规律:等差,等比,平方,...例题:3/2, 2/3, 3/4,1/3,3/8 ()A.1/6B.2/9C.4/3D.4/9解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/83/8×?=1/16 答案是 A六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:正序:4,9,16,25逆序:100,81,64,49,36间序:1,1,2,4,3,9,4,(16)2、前一个数的平方是第二个数。

数字推理(可直接打印)

数字推理(可直接打印)

数字推理(可直接打印)
数字推理
数字推理是一种基于对数字模式和规律的分析和推导的方法。

通过观察数列、图形、表格等数字序列,我们可以发现其中的规律,并预测下一个数字或者填充缺失的数字。

数字推理可以帮助我们锻炼逻辑推理和数学思维能力,培养我
们的观察力和分析能力。

在许多领域,如数学、科学、工程和计算
机科学中,数字推理都有着重要的应用。

数字推理可以分为以下几种类型:
1. 数列推理:观察数列中数字的变化规律,推测下一个数字或
填充缺失的数字。

常见的数列推理包括等差数列、等比数列和斐波
那契数列等。

2. 图形推理:观察图形的形状、图案或线条的变化规律,推断下一个图形的形状或填充缺失的部分。

图形推理可以锻炼我们的几何思维和空间想象力。

3. 表格推理:观察表格中数据的关系和变化规律,推断下一个数据或填充缺失的数据。

表格推理可以帮助我们培养数据分析和统计能力。

在进行数字推理时,我们应该注意以下几点:
1. 注意细节:仔细观察数字模式或图形的变化细节,寻找规律和共同特征。

2. 多角度思考:从不同的角度和思维方式来分析和推理,寻找可能的解决方案。

3. 实践和训练:通过解决各种类型的数字推理问题,不断练和提高我们的推理能力。

数字推理是一个锻炼思维和逻辑能力的过程,通过不断的实践和训练,我们可以提高我们的数字推理能力,应用到各种领域中。

数字推理公务员

数字推理公务员

数字推理核心提示基础知识:1、质数:只有1和它本身的两个约数合数:除了1和它本身之外还有其他的约数1即不是质数也不是合数2、100以内质数2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、101、103、107、113、127、131、137、139、149、151、157、163、167、173、179、181、191、193、197、199经典分解91=7×13 111=3×37 119=7×17 133=7×19 117=9×13 143=11×13147=7×21 153=9×17 161=7×23 171=9×19 187=11×17 209=19×113、平方、;立方数据背诵1、2、3、4、5等第一章基础数列类型1、常数数列:由一个固定的常数构成的数列1,1,1,1,1∙∙∙∙-7,-7,-7,-7,-7∙∙∙∙2、等差数列(实际上是二级差常数列):相邻两项之差等于固定常数的数列1,2,3,4,5∙∙∙∙3、等比数列(实际上是二级商常数列):相邻两项之比等于固定常数的数列1,2,4,8,16∙∙∙∙4、质数数列:全部有质数构成的数列2,3,5,7,11∙∙∙∙5、合数数列:全部有合数构成的数列4,6,8,9,10,12 ∙∙∙∙6、周期数列:自某项开始重复出现前面相同或相似项的数列1,2,1,2,1,2,1,2 ∙∙∙∙1,2,3,1,2,3,1,2,3∙∙∙∙1,3,5,-1,-3,-5,∙∙∙∙注意:周期数列一般要出现3个2循环节或2个3循环节,包括未知项至少6项。

7、对称数列:关于某一项相同或相似对称的数列1,3,4,5,4,3,1 ∙∙∙∙1,3,4,5,5,4,3,1∙∙∙∙1,3,6,8,-6,-3,-11,3,4,5,-5,4,3,1∙∙∙∙1,3,4,5,-5,-4,-3,-1∙∙∙∙8、递推数列【和】1、1、2、3、5、8、13……【和】1、0、1、1、2、3、5……【和】4、1、5、6、11、17……【和】0、1、2、3、6、11、20……【差】20、11、9、2、7、-5、12……【积】4、1/2、2、1、2、2、4……说明:1、单数字之间的发散联系主要有以下两种形式:1)因式分解 2)幂次26=2×13 26=33-1=52+1(相邻幂次关系)[国考2005一类-32]2,3,10,15,26,()A、29B、32C、35D、372、多数字之间的联系有以下两种形式:1)幂次联系 2)递推联系一般是三个数字片段进行研究居多,例如:1 4 9 =50 41 32=12 22 32(幂次共性关系)9=(4-1)2=(4-1)×3=4+1×5=4×2+1(递推关系)习题:4,9,25,49,121,()A、144B、169C、196D、225第二章幂次数列基础幂次数列关于常数0和10是0的任意自然数次方(0的0次方没有意义)1是任意非零数的0次方,是1的任意次方,是-1的任意偶次方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。

其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。

第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。

1、等差数列的常规公式。

设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。

[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。

从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。

故选C。

2、二级等差数列。

是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。

3、分子分母的等差数列。

是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。

[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。

故选D。

4、混合等差数列。

是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。

[例4] 1,3,3,5,7,9,13,15,,(),()。

A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。

提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键。

第二种情形---等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。

5、等比数列的常规公式。

设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。

[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。

故选D。

6、二级等比数列。

是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。

[例6] 4,6,10,18,34,()A、50 B、64 C、66 D、68[解析] 此数列表面上看没有规律,但它们后一项与前一项的差分别为2,4,6,8,16,是一个公比为2的等比数列,故括号内的值应为34+16Ⅹ2=66 故选C。

7、等比数列的特殊变式。

[例7] 8,12,24,60,() A、90 B、120 C、180 D、240[解析] 该题有一定的难度。

题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的:3/2,4/2,5/2,因此,括号内数字应为60Ⅹ6/2=180。

故选C。

此题值得再分析一下,相邻两项的差分别为4,12,36,后一个值是前一个值的3倍,括号内的数减去60应为36的3倍,即108,括号数为168,如果选项中没有180只有168的话,就应选168了。

同时出现的话就值得争论了,这题只是一个特例。

第三种情形—混合数列式:是指一组数列中,存在两种以上的数列规律。

8、双重数列式。

即等差与等比数列混合,特点是相隔两项之间的差值或比值相等。

[例8] 26,11,31,6,36,1,41,()A、0 B、-3 C、-4 D、46 [解析] 此题是一道典型的双重数列题。

其中奇数项是公差为5的等差递增数列,偶数项是公差为5的等差递减数列。

故选C。

9、混合数列。

是两个数列交替排列在一列数中,有时是两个相同的数列(等差或等比),有时两个数列是按不同规律排列的,一个是等差数列,另一个是等比数列。

[例9] 5,3,10,6,15,12,(),()A、20 18B、18 20C、20 24D、18 32[解析] 此题是一道典型的等差、等比数列混合题。

其中奇数项是以5为首项、公差为5的等差数列,偶数项是以3为首项、公比为2的等比数列。

故选C。

第四种情形—四则混合运算:是指前两(或几)个数经过某种四则运算等到于下一个数,如前两个数之和、之差、之积、之商等于第三个数。

10、加法规律。

之一:前两个或几个数相加等于第三个数,相加的项数是固定的。

[例11] 2,4,6,10,16,()A、26 B、32 C、35 D、20 [解析] 首先分析相邻两数间数量关系进行两两比较,第一个数2与第二个数4之和是第三个数,而第二个数4与第三个数6之和是10。

依此类推,括号内的数应该是第四个数与第五个数的和26。

故选A。

之二:前面所有的数相加等到于最后一项,相加的项数为前面所有项。

[例12] 1,3,4,8,16,()A、22 B、24 C、28 D、32[解析] 这道题从表面上看认为是题目出错了,第二位数应是2,以为是等比数列。

其实不难看出,第三项等于前两项之和,第四项与等于前三项之和,括号内的数应为前五项之和为32。

故选D。

11、减法规律。

是指前一项减去第二项的差等于第三项。

[例13] 25,16,9,7,(),5 A、8 B、2 C、3 D、6[解析] 此题是典型的减法规律题,前两项之差等于第三项。

故选B。

12、加减混合:是指一组数中需要用加法规律的同时还要使用减法,才能得出所要的项。

[例14] 1,2,2,3,4,6,()A、7 B、8 C、9 D、10[解析] 即前两项之和减去1等于第三项。

故选C。

13、乘法规律。

之一:普通常规式:前两项之积等于第三项。

[例15] 3,4,12,48,() A、96 B、36 C、192 D、576 [解析] 这是一道典型的乘法规律题,仔细观察,前两项之积等于第三项。

故选D。

之二:乘法规律的变式:[例16] 2,4,12,48,() A、96 B、120 C、240 D、480[解析] 每个数都是相邻的前面的数乘以自已所排列的位数,所以第5位数应是5×48=240。

故选D。

14、除法规律。

[例17] 60,30,2,15,() A、5 B、1 C、1/5 D、2/15[解析] 本题中的数是具有典型的除法规律,前两项之商等于第三项,故第五项应是第三项与第四项的商。

故选D。

15、除法规律与等差数列混合式。

[例18] 3,3,6,18,() A、36 B、54 C、72 D、108[解析] 数列中后个数字与前一个数字之间的商形成一个等差数列,以此类推,第5个数与第4个数之间的商应该是4,所以18×4=72。

故选C。

思路引导:快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数。

如果假设被否定,立刻换一种假设,这样可以极大地提高解题速度。

第五种情形—平方规律:是指数列中包含一个完全平方数列,有的明显,有的隐含。

16、平方规律的常规式。

[例19] 49,64,91,(),121 A、98 B、100 C、108 D、116[解析] 这组数列可变形为72,82,92,(),112,不难看出这是一组具有平方规律的数列,所以括号内的数应是102。

故选B。

17、平方规律的变式。

之一、n2-n[例20] 0,3,8,15,24,() A、28 B、32 C、35 D、40[解析] 这个数列没有直接规律,经过变形后就可以看出规律。

由于所给数列各项分别加1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62-1=35,其实就是n2-n。

故选C。

之二、n2+n[例21] 2,5,10,17,26,() A、43 B、34 C、35 D、37[解析]这个数是一个二级等差数列,相邻两项的差是一个公差为2的等差数列,括号内的数是26=11=37。

如将所给的数列分别减1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62+1=37,,其实就是n2+n。

故选D。

之三、每项自身的平方减去前一项的差等于下一项。

[例22] 1,2,3,7,46,()A、2109 B、1289 C、322 D、147[解析] 本数列规律为第项自身的平方减去前一项的差等于下一项,即12-0,22-1=3,32-2=7,72-3=46,462-7=2109,故选A。

第六种情形—立方规律:是指数列中包含一个立方数列,有的明显,有的隐含。

16、立方规律的常规式:[例23] 1/343,1/216,1/125,() A、1/36 B、1/49 C、1/64 D、1/27 [解析] 仔细观察可以看出,上面的数列分别是1/73,1/63,1/53的变形,因此,括号内应该是1/43,即1/64。

故选C。

17、立方规律的变式:之一、n3-n[例24] 0,6,24,60,120,() A、280 B、320 C、729 D、336 [解析] 数列中各项可以变形为13-1,23-2,33-3,43-4,53-5,63-6,故后面的项应为73-7=336,其排列规律可概括为n3-n。

故选D。

之二、n3+n[例25] 2,10,30,68,()A、70 B、90 C、130 D、225[解析] 数列可变形为13+1,23+1,33+1,43+1,故第5项为53+=130,其排列规律可概括为n3+n。

故选C。

之三、从第二项起后项是相邻前一项的立方加1。

[例26] -1,0,1,2,9,()A、11 B、82 C、729 D、730[解析] 从第二项起后项分别是相邻前一项的立方加1,故括号内应为93+1=730。

故选D。

思路引导:做立方型变式这类题时应从前面几种排列中跳出来,想到这种新的排列思路,再通过分析比较尝试寻找,才能找到正确答案。

第七种情形—特殊类型:18、需经变形后方可看出规律的题型:[例27] 1,1/16,(),1/256,1/625 A、1/27 B、1/81 C、1/100 D、1/121 [解析] 此题数列可变形为1/12,1/42,(),1/162,1/252,可以看出分母各项分别为1,4,(),16,25的平方,而1,4,16,25,分别是1,2,4,5的平方,由此可以判断这个数列是1,2,3,4,5的平方的平方,由此可以判断括号内所缺项应为1/(32)2=1/81。

相关文档
最新文档