费米狄拉克分布函数解析、图像和应用

合集下载

费米狄拉克分布函数解析图像和应用

费米狄拉克分布函数解析图像和应用

费米狄拉克分布函数解析图像和应用文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]各能级被电子占据的数目服从特定的统计规律这个规律就是费米-狄拉克分布规律。

一般而言,电子占据各个能级的几率是不等的。

占据低能级的电子多而占据高能级的电子少。

统计物理学指出,电子占据能级的几率遵循费米的统计规律:在热平衡...状态下,能量为E 的能级被一个电子占据的几率为: f(E)称为电子的费米(费米-狄拉克)分布函数,k 、TE fermi 称为费米能级,它与物质的特性有关。

只要知道了费米能级E fermi 的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。

费米分布函数的一些特性:【根据f(E)公式来理解】第一,费米能级E fermi 是一种用来描述电子的能级填充水平的假想能级....,E f 越大,表示处于高能级的电子越多;E f 越小,则表示高能级的电子越少。

(E f 反映了整体平均水平)第二,假定费米能级E f 为已知,则f(E)f(E)式可画出f(E)的曲线如图所示,但要注意因变量f(E)不像普通习惯画在纵轴,而是破天荒的画在横轴。

的能级都空着。

因而费米能级E f 是在绝对零度时电子所具有的最大能量,是能级在绝对零度时能否被占据的一个界限,因而它是一个很重要的参数。

费米分布函数变化曲线T 3>T 2>T 1>T 0第五,在T≠0K时即不处于绝对零度的前提下,若E-E f>5kT,则f(E)<0.007;在T≠0K 前提下,若E-E f<-5kT,则f(E)>0.993。

(k、T分别为波耳兹曼常数和绝对温度)可见,温度T高于绝对零度的前提下,能量比E f高5kT的能态被电子占据的几率只有0.7%,几率很小,能级几乎是空的;而能级比E f低5kT的能态被电子占据的几率是99.3%,几率很大,该能级范围几乎总有电子。

一般可以认为,在T不为绝对零度但也不很高时,能量小于E f的能态基本上为电子所占据,能量大于E f的能态基本上没有被电子占据;而电子占据费米能级E f这个能级的概率是(不论任何温度下)都是1/2。

费米—狄拉克分布和玻色—爱因斯坦分布的简单推导

费米—狄拉克分布和玻色—爱因斯坦分布的简单推导

费米—狄拉克分布和玻色—爱因斯坦分布的简单推导费米-狄拉克分布和玻色-爱因斯坦分布是自然界形态分布最为基础和重要的模型。

它们都具有广泛的应用,可用于描述大量自然现象和事件的情况。

费米—狄拉克分布是早期的数学研究的结果,它是由俄国科学家费米和狄拉克合著的。

它表示大量自然现象和事件的分布是以不断变化的指数函数形式发生的,这就是“指数定律”。

当事件发生的频率并不经常发生,而其几率却很大时,便可以用费米—狄拉克分布来进行描述。

例如,地震的最大震级分布可以用费米—狄拉克分布来描述。

而玻色-爱因斯坦分布可以用来描述大量不断变化的量子物理现象,它定义为量子间的相对不确定性,它的形态是以正态分布的形式发生的。

玻色-爱因斯坦分布可以用来描述多种量子现象,例如,电子的空间分布或几率分布可以用玻色-爱因斯坦分布来表示。

总体而言,费米-狄拉克分布和玻色-爱因斯坦分布是自然界形态分布中最为重要的模型,它们各自具有不同的特点,可以用来描述大量自然现象和量子现象。

狄拉克函数

狄拉克函数


ቤተ መጻሕፍቲ ባይዱ

f ( x) ( x)dx f (0)

这个积分应理解为


f ( x) ( x)dx lim f ( x) ( x)dx
0

1 1 lim f ( x)dx lim f ( x)dx 0 0 2 2 1 要求:f 连续 由积分中值定理,得 lim f ( )2 f (0) 0 2 ( , )
10
记 n ( x)
sin nx lim n ( x) lim ( x) n n x
这可看作是 函数的另一种定义方式。

sin nx 上式可写为 x
事实上,凡是具有
性质的函数序列 n ( x) ,它们的极限都是 函数.如:
n
lim
狄拉克函数基础
本节介绍一种新的“函数”, 函数.
函数是从某些物理现象中抽象出来的数学模型,例如:力
学中瞬间作用的冲击力,原子弹、氢弹的爆炸等。 这些物理现象有个共同特点, 即作用时间极短,但作用 强度极大。(冲激函数)
函数是由物理学家狄拉克首先引进的,可用于描写物理学
中的一切点量,如:点质量、点电荷、脉冲等,在近代物理 学中有着广泛的应用. 在数学上, 函数可以当做普通函数一样进行运算,并且可以 为处理数学物理问题带来极大的便利.
F[ ( x)] 1
同理可得
狄拉克函数基础
9
利用
F[ ( x a)] eia
F[ ( x a)] eia
和傅里叶变换的线性性可得
ia ia 1 e e cos a F [ ( x a) ( x a)] 2 2 ia ia 1 e e F [ ( x a) ( x a)] sin a 2i 2i 1 从而有公式 F 1[cos a ] [ ( x a) ( x a)] 2 1 1 F [sin a ] [ ( x a) ( x a)] 2i

玻尔兹曼分布与费米狄拉克分布的统一

玻尔兹曼分布与费米狄拉克分布的统一

p 2 c2
+
m
2 e
c4.
为了简化,
把所有的能量以
m e c2
为单位, 动量以 m e c为单位, 上式化为
ne = 8KP3e Q]1
1+
E E2 - 1 exp [ (E - Le - 1)
/kT ]
dE,
( 7)
Ke = h /m e c为电子的 Com pton波长.
如果要计算电子处在 E 1和 E 2之间的几率 f2, 则需要
0. 3109 0. 1230 2. 5286 0. 5722 0. 0347 16. 4914
0. 3109 0. 1707 1. 8217 0. 5722 0. 0483 11. 8537
2
0. 3109 0. 2353 1. 3215 0. 5722 0. 0716 7. 9958
1
0. 3109 0. 2829 1. 0991 0. 5722 0. 0983 5. 8221
后左右调一点但是值不变就是它合理的上限.
3 数值结果和分析 [ 4- 8]
表 1给出了在不同温度和化学势下玻尔兹曼分布和 费米 ) 狄拉克分布的比较. 其中左列为温度 kT= 0. 5M eV, 电子动能 0. 5- 1M eV的几率; 右列为 kT = 0. 05M eV, 电子 动能 0. 05- 0. 5M eV 的几率. f1 和 f2 分别代表玻尔兹曼分 布和费米 ) 狄拉克分布的结果. 由于玻尔兹曼分布不受化 学势的影响, 故化学势变化保持恒值; 费米 ) 狄拉克分布 的值随化学势减小而变大. 当温度较高, 如左列, 在化学势 很小时, 它们的分布几率是相差不大的. 但随温度降低, 如 右列, 它们偏离会增加. 随着 kT 值的增大, 物态越接近于 理想气体, 故两种分布几率越接近.

费米-狄拉克分布实验讲义

费米-狄拉克分布实验讲义

实验六 费米—狄拉克分布实验讲义一、实验目的:(1)通过实验验证费米——狄拉克分布。

(2)学会一种实验方法及处理实验数据的技巧。

二、理论分析:近代电子理论认为金属中的电子按能量的分布是遵从费米――狄拉克的量子统计规律的,费米分布函数为[]1/)(exp 1)(+-=kT g f εεε (1)金属中的每个电子都占有一定能量的能级,这些能级相互靠得很近,形成能带。

当其温度为绝对零度时,金属中电子的平均能量并不为零。

此时金属中的电子将能量从零到能量为εf (εf 称费米能级, εf 的值随金属的不同而不同)的能级全部占据。

而高于费米能级的那些能级全部空着,没有电子去占据。

如图(1)中的实线所示,当金属的温度为1500℃,则靠近费米能级的少数电子由于热运动的加剧,其能量超过εf值,因而从低于费米能级的能带跃迁到高于费米能级的能带上去,其分布曲线如图(1)中的虚线所示。

我们的实验是在灯丝灼热(约1400℃~1500℃)的情况下进行的,因此我们实验所测的结果也只是靠近费米能级的一部分,如图(1)中矩形所包的虚线部分。

对(1)式求导可得[][]2}1/)({exp /)(exp )()(+---==kT kT kT d dg g f f εεεεεεε (2) (1)、(2)两式的理论曲线如图(1)和图(2)所示。

由于金属内部电子的能量无法测量,只能对真空中热发射电子的动能分布进行测量。

由于电子在真空中的热运动与电子在金属内部的运动情况完全不同,这是因为金属内部存在着带正电的原子核,电子不但有热运动的动能,而且还具有势能,真空中的电子就不存在势能,εf =0,不要忘记电子从金属内部逃逸到真空中时,还要消耗一部分能量用作逸出功,因此从金属内部电子的能量ε 减去逸出功A,就可得到真空中热发射电子的动能εkεf =ε-A (3)此外,在真空与金属表面附近还存在着电子气形成的偶电层,就是说逃出金属表面的电子,还要消耗一些能量穿越偶电层,根据前苏联科学院院士,Я.И符伦克尔和И.E 塔姆的理论,电子穿越偶电层所需的能量,也就是该金属的费米能级εf 。

3.2 费米能级和载流子的浓度统计分布(雨课堂课件)

3.2 费米能级和载流子的浓度统计分布(雨课堂课件)
E EF 5k0T , f ( E ) 0.993;
EF 的位置比较直观地标志了电子占据量子态的情况,标志了
电子填充能级的水平。费米能级位置较高,说明有较多的能量较
高的量子态上有电子。
热平衡,孤立系
统,近独立粒子
2、波耳兹曼(Boltzmann)分布函数
(1) 电子服从的Boltzmann分布
1
1.8%
当E-EF=4 k0T 时,f E
4
1 e
fB (E) e

E EF
k0T
f B E e4 1.83%
1
5
f
E


4.53978

10


当E-EF=10 k0T时,
1 e10
f B E e10 4.53999 105
§ 3.2 费米能级和载流子的统计分布
Fermi level and statistical distribution of carriers
知识回顾与问题提出:
第一节给出导带底和价带顶附近的状态密度,即单位能量间隔中的量子态数。
2m

dz
gc ( E )
4 V
dE
h3
* 3/ 2
n
k0T
(2) 空穴服从的Boltzmann分布
1 f (E)
EF E k0T
1
E E
1 exp F

k
T
0


1 f ( E) e
E EF
k0T
空穴服从的
Boltzmann分布
➢上式表明,当E << EF 时,空穴占据能量为E的量子态几率很

费米狄拉克分布的物理意义

费米狄拉克分布的物理意义

费米狄拉克分布的物理意义嘿,咱今儿来聊聊费米狄拉克分布,这玩意儿可有意思啦!
你看啊,这费米狄拉克分布就好像是一个超级大管家,专门管着微观世界里那些粒子的行为呢!它能告诉我们在不同的能量状态下,粒子出现的概率是多少。

就好比是一场盛大的派对,每个粒子都想找个最舒服的位置待着。

能量低的地方就像是舒适的沙发,大家都想抢着坐;而能量高的地方呢,就像是高难度的杂技舞台,只有少数勇敢的粒子才会去尝试。

费米狄拉克分布就决定了哪些粒子能坐在沙发上,哪些粒子会去挑战杂技舞台。

这多神奇呀!
而且你想想,这世界要是没有这个分布,那粒子们不就乱套啦?就像没有交通规则的马路,大家横冲直撞,那可不行!
它就像是给粒子们设定了一个规则手册,让它们知道该怎么行动才合适。

比如说电子吧,它们就得按照费米狄拉克分布来安排自己的位置。

如果不这样,那电子们可能就会到处乱跑,我们的世界不就乱了套啦?
再想想,如果没有这个分布,那些半导体器件还能正常工作吗?那肯定不行呀!
这费米狄拉克分布就像是一个幕后英雄,默默地维持着微观世界的秩序,让一切都能有条不紊地进行。

它虽然看不见摸不着,但却对我们的生活有着巨大的影响。

从电子设备到量子力学的研究,都离不开它呢!
你说这费米狄拉克分布是不是超级厉害?它就像一个神秘而又强大的魔法,掌控着微观世界的奥秘。

我们虽然不能直接看到它,但却能感受到它的力量。

所以啊,可别小看了这费米狄拉克分布,它可是微观世界里至关重要的存在呢!。

(精编资料推荐)费米-狄拉克分布函数、解析、图像和应用

(精编资料推荐)费米-狄拉克分布函数、解析、图像和应用

各能级被电子占据的数目服从特定的统计规律这个规律就是费米-狄拉克分布规律。

一般而言,电子占据各个能级的几率是不等的。

占据低能级的电子多而占据高能级的电子少。

统计物理学指出,电子占据能级的几率遵循费米的统计规律:在热平衡...状态下,能量为E 的能级被一个电子占据的几率为: ]/)exp[(11)(kT E E E f F -+=f(E) 称为电子的费米(费米-狄拉克)分布函数,k 、T 分别为波耳兹曼常数和绝对温度。

E fermi 称为费米能级,它与物质的特性有关。

只要知道了费米能级E fermi 的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。

费米分布函数的一些特性: 【根据f(E)公式来理解】第一, 费米能级E fermi 是一种用来描述电子的能级填充水平的假想能级...., E f 越大,表示处于高能级的电子越多;E f 越小,则表示高能级的电子越少。

(E f 反映了整体平均水平)第二,假定费米能级E f 为已知,则f(E)是能量E 与温度T 的函数。

根据f(E)式可画出 f(E) 的曲线如图所示,但要注意 因变量f(E)不像普通习惯画在纵轴,而是破天荒的画在横轴。

0 1/2 1 f(E) E E f T 0 T 1 T 2 T 3 在T 不为绝对零度前提下,若E <E f ,则 f(E) >1/2;若E = E f ,则 f(E)=1/2;若 E >E f ,则 f(E) <1/2。

上述结果文字描述,在系统的温度高于绝对零度前提下,如果某能级的能量比费米能级低E f ,则该能级(范围)被电子占据的几率大于50%;若能级的能量比费米能级E f 高,则该能级被电子占据的几率小于50%。

而当能级的能量恰等于费米能级E f 时,该能级被电子占有的几率费米分布规律不适用于非平衡状态随着温度的升高,能量略低于E f的量子态被电子占据的概率降低,而略高于E f的量子态被电子占据的概率增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各能级被电子占据的数目服从特定的统计规律这个规律就是费米-狄拉克分布规律。

一般而言,电子占据各个能级的几率是不等的。

占据低能级的电子多而占据高能级的电子少。

统计物理学指出,电子占据能级的几率遵循费米的统计规律:在热平衡...状态下,能量为E 的能级被一个电子占据的几率为: f(E) 称为电子的费米(费米-狄拉克)分布函数,k 、T 分别为波耳兹曼常数和绝对温度。

E fermi 称为费米能级,它与物质的特性有关。

只要知道了费米能级E fermi 的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。

费米分布函数的一些特性: 【根据f(E)公式来理解】
第一, 费米能级E fermi 是一种用来描述电子的能级填充水平的假想能级...., E f 越大,表示处于高能级的电子越多; E f 越小,则表示高能级的电子越少。

(E f 反映了整体平均水平)
第二,假定费米能级E f 为已知,则f(E)是能量E 与温度T 的函数。

根据f(E)式可画出 f(E) 的曲线如图所示,但要注意 因变量f(E)不像普通习惯画在纵轴,而是破天荒的画在横轴。

第三,费米能级E f 在能级图中的位置与材料掺杂情况有关。

对于本征半导体,E f 处于禁带E g 的中央,在绝对零度时,在导带E c 中E >E f ,f(E)=0;在价带E v 中E <E f ,f(E)= =1,表明电子全部处于价带E v 之中,因而此时
半导体是完全不导电的。

0 1/2 1 f(E) E E f T 0 T 1 T 2
T 3 费米分布函数变化曲线
T 3 >T 2 >T 1 >T 0
在T 不为绝对零度前提下,若E <E f ,则 f(E) >1/2;若E = E f ,则 f(E)=1/2;若 E >E f ,则 f(E) <1/2。

上述结果文字描述,在系统的温度高于绝对零度前提下,如果某能级的能量比费米能级低E f ,则该能级(范
围)被电子占据的几率大于50%;若能级的能量比费米能级E f 高,则该能级被电子占据的几率小于50%。

而当能级的能量恰等于费米能级E f 时,该能级被电子占随着温度的升高,能量略低于E f 的量子态被电子占据的概率降低,而略高于E f
的量子态被电子占据的概率增大。

在一定温度下(温度不变),费米能级附近的部分能量小于E f 的电子会被激发到E f 以上,温度越高,被激发的概率越大。

费米分布规律不适用于非平衡状态
第四,在T=0K处于绝对零度的前提下,若E<E f, exp→0,则f(E)=1;当T=0K时,若E>E f,则f(E)=0。

可见,在绝对零度时,能量比E f小的能级被电子占据的几率是100%,而能量比E f大的能级被电子占据的几率为零。

即所有低于E f的能级都被占满,而所有高于E f的能级都空着。

因而费米能级E f是在绝对零度时电子所具有的最大能量,是能级在绝对零度时能否被占据的一个界限,因而它是一个很重要的参数。

第五,在T≠0K时即不处于绝对零度的前提下,若E-E f>5kT,则f(E)<0.007;在T≠0K前提下,若E-E f<-5kT,则f(E)>0.993。

(k、T 分别为波耳兹曼常数和绝对温度)
可见,温度T高于绝对零度的前提下,能量比E f高5kT的能态被电子占据的几率只有0.7%,几率很小,能级几乎是空的;而能级比E f低5kT的能态被电子占据的几率是 99.3%,几率很大,该能级范围几乎总有电子。

一般可以认为,在T不为绝对零度但也不很高时,能量小于E f的能态基本上为电子所占据,能量大于E f的能态基本上没有被电子占据;而电子占据费米能级E f 这个能级的概率是(不论任何温度下)都是1/2。

所以费米能级E f的位置,比较直观地标志了电子占据能态的情况,或者说E f标志了电子填充能级的水平,费米能级E f高说明在较高的能态上有电子(反映整体平均水平)。

相关文档
最新文档