费米分布及玻耳兹曼分布
半导体物理第3章载流子的统计分布

非热平衡状态下的载流子浓度
01
在非热平衡状态下,载流子浓度不再由费米分布函数
决定,而是受到外部因素的影响,如光照、电场等。
02
光照条件下,光子激发电子从价带跃迁到导带,产生
光生载流子,导致载流子浓度增加。
03
电场作用下,载流子将受到电场力的作用,产生漂移
运动,导致载流子浓度和分布发生变化。
温度对载流子浓度的影响
N型半导体中的载流子浓度
N型半导体中,多数载流子是电子,其 浓度远高于空穴。
电子浓度主要由掺杂浓度决定,通常通过引 入施主杂质实现。
在绝对零度以上,由于热激发,会 有少量空穴产生。
P型半导体中的载流子浓度
P型半导体中,多数载流子是空穴,其浓度远高于电子。 空穴浓度主要由掺杂浓度决定,通常通过引入受主杂质实现。 在绝对零度以上,由于热激发,会有少量电子产生。
半导体物理第3章载流子的统计分 布
目 录
• 引言 • 载流子种类 • 载流子分布函数 • 载流子浓度与温度的关系 • 载流子浓度与掺杂的关系 • 结论
01 引言
主题概述
载流子
在半导体中,载流子是指能够导电的粒子,通常为电 子和空穴。
统计分布
载流子的统计分布是指载流子在不同能态上的分布情 况,它决定了半导体的导电性能。
新材料
半导体物理的发展也促进了新材料的发现和应用,如石墨烯、氮化镓 等新型半导体材料在电子器件领域具有广阔的应用前景。
02 载流子种类
电子
01
电子是带负电的粒子,是半导体的主要载流子之一。
02
在半导体中,电子可以在价带和导带之间跃迁,形成导电电 流。
03
电子的浓度和行为受温度、掺杂等因素影响。
波色统计和费米统计

A为常数,著名的斯特藩-玻尔兹曼定律
b
11
物理意义: 单位体积的辐射能只与温度有关, 与温度的四次方成正比。
b
12
适用量子分布的理想气体称之为简并气体。
1.费米分布 (适用自旋为1/2的电子系统)
FFD
1 e( )/kT
1
常记为 f ,称为费米能级
b
2
费米分布的性质
别:
b
3
费米能级的具体表示:
其中:n N 表示单位体积的自由电子数 V
b
4
f
f
0
1
2
8
Tc
2 2
mk
(N 2.612V
)2/3
玻色子的质量和粒子数密度决定。
b
7
物理意义:
超导体的正常态转化到超导态可用玻色凝聚解释
b
8
光子气体
平衡系统特点: 高频光子和低频光子总在不停地转换,因而光子数 量也在不断变化,系统中光子数不守恒。
b
9
上式称之为普朗克辐射公式。
b
10
上式为著名的维恩位移定律。 该定律可以用于确定很多星体表面的温度。
第十一章 玻色统计和费米统计
单
粒 子
经典分布 玻尔兹曼分布
态
上
的
三
费米分布
种 分 布
量子分布 玻色分布
经典分布考虑了微观粒子的测不准关系和能量量
子化的影响。但是却没有考虑粒子的全同性以及
泡利不相容原理。
b
1
粒子全同性的微观解释: 微观粒子具有波动性,它们在运动时无轨道可言, 因而无法用编号的方法追踪它们的运动,它们是 不可分辨的。 或者说,粒子的互换不产生新的微观态。
电子工程物理作业.

第四章1. 当E-E F 分别为kT 、4kT 、7kT ,用费米分布和玻尔兹曼分布分别计算分布概率,并对结果进行讨论。
解:电子的费米分布 ()011F F D E E k Tf E e--=+,玻尔兹曼近似为()0F E E k TM B f E e---=(1)E-E F =kT 时 ()10.268941F D f E e-==+ ,()1=0.36788M B f E e --= (2)E-E F =4kT 时 ()410.018321F D f E e-=≈+ ,()40.01799M B f E e --=≈ (3)E-E F =7kT 时 ()710.000911F D f E e-=≈+ ,()70.00091M B f E e --=≈ 当0F E E k Te-远大于1时,就可以用较为简单的玻尔兹曼分布近似代替费米狄拉克分布来计算电子或空穴对能态的占据概率,从本题看出E-E F =4kT 时,两者差别已经很小。
2. 设晶格常数为a 的一维晶格,导带极小值附近的能量Ec(k)和价带极大值附近的能量En(k)分别为()()m k k m k k E c 212223-+= ,()m k m k k E v 2221236 -= 式中m 为电子惯性质量,14.3,/1==a a k πÅ,试求出:(1)禁带宽度(2)导带底电子的有效质量; (3)价带顶电子的有效质量;(4)导带底的电子跃迁到价带顶时准动量的改变量。
解: (1) 令 0)(=∂∂k k E c 即 ()023201202=-+m k k h m k h 得到导带底相应的 143k k =令 0)(=∂∂k k E v 即 0602=m kh 得到价带顶相应的 0=k故禁带宽度()0212210221021641433043m k h k m h k m hk E k k E E v c g -⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==-⎪⎭⎫ ⎝⎛==将k 1=a/2代入,得到022481m a h E g =(2)导带底电子有效质量02C 22nm 83dk E d /h m ==*(3)价带顶空穴有效质量02V 22p m 61dk E d /h m -==* (4)动量变化为a 8h30k 43p 1=⎪⎭⎫ ⎝⎛-=∆3. 一块补偿硅材料,已知掺入受主杂质浓度N A =1⨯1015cm -3, 室温下测得其费米能级位置恰好与施主能级重合,并测得热平衡时电子浓度n 0=5⨯1015cm -3。
玻尔兹曼系统、玻色子系统、费米子系统的区别及统计规律

玻尔兹曼系统、玻色子系统、费米子系统的区别及统计规律当描述粒子行为时,玻尔兹曼系统、玻色子系统和费米子系统有着不同的特点和统计规律。
下面对它们进行详细说明:玻尔兹曼系统:描述:玻尔兹曼系统适用于经典粒子,如分子和原子等。
这些粒子之间可以相互交换位置和能量,且粒子可以具有任意能量。
玻尔兹曼系统假设粒子之间是无差别可区分的。
统计规律:玻尔兹曼系统中的粒子遵循玻尔兹曼分布。
玻尔兹曼分布描述了粒子在可分辨的能级上的分布情况,其表达式为:P(E) ∝exp(-E/kT),其中P(E)表示具有能量E的粒子的概率,k是玻尔兹曼常数,T是系统的温度。
玻色子系统:描述:玻色子是具有整数自旋的粒子,如光子和声子等。
玻色子系统中的粒子可以占据相同的量子态,即多个粒子可以处于同一个量子态。
这种行为被称为玻色统计。
统计规律:玻色子系统中的粒子遵循玻色-爱因斯坦统计。
根据玻色-爱因斯坦分布,粒子的分布可以是任意整数,不受限制。
这意味着在低温条件下,大量玻色子可以集中在系统的最低能级,形成所谓的玻色-爱因斯坦凝聚。
费米子系统:描述:费米子是具有半整数自旋的粒子,如电子和中子等。
费米子系统中的粒子由于遵循泡利不相容原理,每个量子态只能被一个粒子占据。
这意味着费米子之间无法处于同一个量子态,也无法彼此交换位置。
统计规律:费米子系统中的粒子遵循费米-狄拉克统计。
根据费米-狄拉克分布,每个量子态最多只能被一个粒子占据。
在多粒子费米子系统中,由于每个量子态只能占据一个粒子,系统的能级填充依次递增,满足所谓的泡利不相容原理。
总结:玻尔兹曼系统适用于经典粒子,粒子之间无限制;玻色子系统适用于具有整数自旋的粒子,允许多个粒子占据同一个量子态;费米子系统适用于具有半整数自旋的粒子,每个量子态最多只能有一个粒子占据。
玻尔兹曼系统服从玻尔兹曼分布,玻色子系统服从玻色-爱因斯坦统计,费米子系统服从费米-狄拉克统计。
这些统计规律决定了粒子在不同系统中的分布特征和行为方式。
第九章第1讲 玻尔兹曼统计

•单原子分子:无内部结构的质点(没有转动等自由度)。
•理想气体:分子之间没有相互作用。
•考虑无外场,因此分子运动看作是在容器内的自由运动
ε=
p2 = 2m
1 2m
(
px2
+
py2
+
pz2 )
∫ ∫ = Z1 = e−βε dΩ
e−
β
1 2m
(
px2
+
p
2 y
+
pz2
)
dxdydzdpxdpydpz
h3
2kT m
方均根速率:
∫ ∫ vs=2 v=2
f (v)v2d=v
4
−
πAe
m 2kT
v2
v
4
d=v
3kT
m
= vs = v2
using: 1+ x + x2 + ... = (1− x)−1
每个单粒子态上的平均粒子数为
N
= − ∂ ln ξ ∂α
= eα +β1ε −1
= e(ε −µ )1/kT
−1
f BE
(ε
)
=
e(ε
1
−µ )/kT
-1
∈ (0,
+ ∞)
上式称为玻色分布函数,其意义是:玻色系统处于平衡态时, 各单粒子态(能量为ε)上的平均占据数无限制。
1
≈
1
exp[(ε − µ) kT ] ±1 exp[(ε − µ) kT ]
= exp[(µ − ε ) kT ] = fB (ε )
fB (ε=) exp(−α − βε=) exp[(µ − ε ) kT ] 1
玻尔兹曼分布与费米狄拉克分布的统一

Q]0 e- 2kT 4Pv2dv
4P
m 2PkT
2 m v2
v2 e- 2kT dv.
( 1)
( 1)式其实就是麦克斯韦速率分布, 所以有时将玻尔兹曼
能量分布又叫麦玻能量分布. 为了更清楚的看到玻尔兹曼
分布, 将 ( 1. 1)式中速率积分元换成能量积分元, 因为 E=
m 2
v2,
d E=
m 2
2vdv= m
进行积分, ( 3) 式变为[ 3]
*收稿日期: 2010- 05- 28 基金项目: 国家自然科学基金资助项目 ( 10778719); 四川省教育厅青 年基金资 助项目 ( 09ZB087, 07ZB089) ; 西华 师范大
学校级基金资助项目 ( 09A 004) 作者简介: 张 洁 ( 1979) ), 女, 山东人。讲师, 博士研究生, 主要从事天体物理研究。
+ exp[ (E - Le - 1) /KT ] }是费米 ) 狄拉克分布函数, p为
动量. 我们可以发现相比于波尔兹曼分布, 费米 - 狄拉克
分布中多了一个参量, 化学势 Le, 即为电子气体的化学
势, 可以理解为让电子产生或者消失所需要的能量. 图 2
是不同化学势的费米 - 狄拉克分布函数. 各向同性时 ( 5 )
28
张 洁: 玻尔兹曼分布与费米 ) 狄拉克分布的统一
2010年第 5期
f1 = fBM ( E) dE=
2 P(
e1 kT
/2
)
3/2
e-
E /kT
dE,
( 4)
这里 f1 的物理意义是: 能量从 0到无穷的粒子总几率. 由 于归一化, f1 = 1. 图 1给出了不同温度下归一化的波尔兹 曼分布函数, 可以发现温度越大, 高能粒子所占比例越大.
玻尔兹曼分布与费米—狄拉克分布的统一

如果要计算电子处在 和 之间 的几率 , 则需要
先算 出 E 到 的积分 , 出之间的粒子数密度 , 得 再除 以 ቤተ መጻሕፍቲ ባይዱ
总的 数密度 , 即
.
F
E
一1
-
— —
J Z
, I
—
-
- Ie
—
:
—
( t )k x [ E- e 1 / r] p" i ,—一 —— _ = ; —
e 璃4 一 T d r 口
统计、 玻色统计和费米一狄拉克统计. 尔兹曼统计主要 玻
研究定 域系统 和满足 经典 极 限条 件 的近 独立 粒 子 系统 的
() 1 式其实就是麦克斯韦速率分布, 以有时将玻尔兹曼 所
能 量分布 又叫麦玻 能量 分布. 了更 清楚 的看 到玻 尔兹 曼 为
玻尔兹曼根据平衡时各态概率均等原理和概率归一 化条件, 运用经典力学的观点把能量看成是可连续变化的
・
能) 是 Bhm n 常数. , oz an 如果现在我们将其在 0~∞区域 进行积分 , 3 式变为 () 。
收稿 日期 :0 0— 5—2 21 0 8
基金项 目: 国家 自 然科 学基金 资助 项 目(0779 ; 1781) 四川省教 育厅青 年基金资助 项 目(9 B8 , 7 B8 ) 西华师 范 0Z 07 0 Z09 ;
第2 0卷 5期
Vo . O No 5 12 .
四川 文理 学院学 报
Sc u n Unv ri fArs a d S in e J u n l ih a ie st o t n ce c o r a y
21 0 0 0年 9月
S p. 0 0 e 2 1
说明玻尔兹曼系统玻色子系统费米子系统的区别

说明玻尔兹曼系统玻色子系统费米子系统的区别玻尔兹曼系统和玻色子系统以及费米子系统是统计力学中的三种重要模型。
它们描述了微观粒子在宏观尺度上的行为。
本文将逐步阐述玻尔兹曼系统、玻色子系统和费米子系统的区别。
1.玻尔兹曼系统:玻尔兹曼系统是一种描述粒子统计行为的模型。
在玻尔兹曼系统中,粒子可以以任意数量存在于相同的量子态。
这意味着多个粒子可以处于相同的能量状态,也就是说,它们之间没有排斥效应。
玻尔兹曼系统中的粒子是无标识的,它们之间是可以交换的。
2.玻色子系统:玻色子系统描述了玻色子的统计行为。
玻色子是一类具有整数自旋的粒子,例如光子、声子等。
玻色子系统中,多个粒子可以同时处于相同的能量状态,它们之间没有排斥效应。
这种行为被称为玻色-爱因斯坦统计。
玻色子系统的一个重要特点是它们会聚集到基态,即粒子会尽可能地集中在能量最低的状态。
3.费米子系统:费米子系统描述了费米子的统计行为。
费米子是一类具有半整数自旋的粒子,例如电子、质子等。
费米子系统中,根据泡利不相容原理,每个能级只能有一个粒子占据,它们之间存在排斥效应。
这种行为被称为费米-狄拉克统计。
费米子系统的一个重要特点是它们填充能级从低到高,直到达到所谓的费米能级。
根据以上的描述,可以总结出玻尔兹曼系统、玻色子系统和费米子系统的区别:1.统计行为:玻尔兹曼系统中粒子之间无排斥效应,玻色子系统中多个粒子可以处于相同的能级,费米子系统中每个能级只能有一个粒子占据。
2.粒子类型:玻尔兹曼系统中的粒子是无标识的,玻色子系统中的粒子具有整数自旋,费米子系统中的粒子具有半整数自旋。
3.基态分布:玻色子系统会聚集到能量最低的状态,费米子系统填充能级从低到高。
4.波尔茨曼系统、玻色子系统和费米子系统在实际应用中有着不同的物理特性和行为模式。
综上所述,玻尔兹曼系统、玻色子系统和费米子系统在统计行为、粒子类型、基态分布等方面存在着明显的区别。
这些模型在研究微观粒子的统计性质和宏观行为时提供了重要的理论基础和工具,对于理解物质的性质和行为具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EEF5kT 时 , f(E)0.007 EEF5kT 时 , f(E)0.993
用,费米分布和波耳兹曼分布这两
种统计的结果是相同的。
26
3.2.2 玻耳兹曼分布函数
低掺杂半导体中, 载流子统计分布 通常遵顺玻耳兹 曼统计分布。这 种电子系统称为 非简并性系统。
高掺杂半导体, 载流子服从费米 统计,这样的电 子系统称为简并 性系统。
2
引言
热平衡状态: 在一定的温度下,给定的半导体中载 流子的产生和复合同时存在,最后达到一动态平 衡。
热平衡载流子浓度:当半导体处于热平衡状态时, 半导体导带电子浓度和价带空穴浓度都保持恒定 的值,这时的电子或空穴的浓度称为热平衡载流 子浓度。
3
3.1 状态密度
4
3.1.1 三维情况下的自由电子运动
先考虑导带: E E+dE内的量子态数: dZ=gc(E)dE; 电子占据能量为E的量子态的概率: f(E); 则E E+dE内的所有量子态上的电子数为: dN=f(E)gc(E)dE
29
3.2.3 导带电子浓度和价带空穴浓度
对旋转椭球形等能面:
gc(E)4V(m 2hn 3)3/2(EEc)1/20
得到导带中电子浓度为:
n022m n h k3 0T3/2ex - pE C k 0T E F
32
3.2.3 导带电子浓度和价带空穴浓度
令
Nc 22mnhk30T3/2
称NC导带的有效状态密度,Nc正比于T3/2,是温度的函数。
因此,导带电子浓度可表示为:
30
3.2.3 导带电子浓度和价带空穴浓度
假设导带底的能量为Ec ,而导带顶的能量为Ec’, 则整个导带内的电子浓度为:
n 0E E C C '42 m h n 33 /2e x - E p k 0 T E F E E c1 2 d E
引入变量x=(E-Ec)/k0T,作代换上式变为:
g c(E ) d d E Z 4V s (8 m x m * y m * z) h 1 /3 2 (E E C )1 /2
若等能面为旋转椭球面,即 m * xm * ym t; m * zm l
并令: m n *m dns2/3(m lm t2)1/3
则: gc(E)4V(m 2hn 3)3/2(EE C)1/2
exE p-E (F-) kT
即这时电子的费米分布函数转化为电子的玻耳兹曼分布函数:
fBEexpEk0TEF
23
3.2.2 玻耳兹曼分布函数
2. 空穴的玻耳兹曼分布函数
类似地,若 EFE kT 时 , ex[p(F E-E)/ kT 1] 此时,空穴的费米分布函数近似为
- 1
fF V E 1 + ex E p F kT E
费米分布函数与温度的关系
19
3.2.1 费米分布函数
温度升高,能量比EF高的量子态被电子占据的概率上升。 EEF5kT 时 , f(E)0.007 EEF5kT 时 , f(E)0.993
可见,温度主要影响费米能级附近的电子状态。
关于费米能级的几个要点: 1、一般可以认为,在温度不太高时,能量大于EF 的电子态基本 上没有被电子占据;能量小于EF 的电子态,基本上被电子所占据, 而电子占据E=EF能态的几率在各种温度下总是1/2;
2、EF 标志了电子填充能级的水平, EF位置越高,则填充在较高 能级上的电子就越多。
20
3.2.1 费米分布函数
空穴的费米分布函数:
- 1
fV(E)1- fE1+ exE pk F0 TE
fV(E)与1-f(E)是关于EF是对称的,即为电子-空穴几率对称性。
21
3.2.1 费米分布函数
费米能级在能带中的位置: 对于金属晶体,价电子只能部分填满最外的导带,费 米能级位置在导带中。
对于半导体晶体,价电子填满了价带,最外的导带是 空的,费米能级位置在禁带内,且随其中的杂质种类、杂 质浓度以及温度的不同而改变。
22
3.2.2 玻耳兹曼分布函数
1. 电子的玻耳兹曼分布函数 EEF kT 时 , ex[p (EF)-/E k T1 ]
此时,电子的费米分布函数近似为
- 1
fFE 1 + ex E p k E T F
35
3.2.3 导带电子浓度和价带空穴浓度
讨论 1. 导带中的电子浓度和价带中的空穴浓度取决于温度T和
费米能级EF的位置。 2. 温度的影响来源于两个方面,一是Nc和NV随温度变化。
二是玻耳曼分布函数中的指数随温度变化。
36
3.2.4 载流子浓度乘积
半导体中载流子浓度的乘积为:
n 0 p 0 N C N V e x - E p C k 0 T E V N C N V e x - k p E 0 T g
3.2.2 玻耳兹曼分布函数
意义:当粒子系统中的微粒子非常稀少时,粒子必须遵守的泡 利不相容原理自动失去意义。即系统中每一个量子态不存在多 于一个粒子占据的可能性。
除去在EF附近的几个kT处的量子态
外,在 EEFkT处,量子态为 电子占据的几率很小。即在 EEFkT 的条件下,泡里不相容原理失去作
34
3.2.3 导带电子浓度和价带空穴浓度
用类似的处理办法,热平衡状态下,非简并半导体的价带空
穴浓度为:
p0 NVexpEFk0TEV
式中: NV22mPhk30T3/2
称为价带的有效状态密度。
f(EV)expEFk0TEV
其物理意义是:
为空穴占据能量为EV的量子态的几率。
把价带中所有的量子态都集中在价带顶EV,而它的量子态数为NV, 则价带中的空穴浓度就是NV个量子态中包含的空穴数。
exE pF-(E)kT
这时空穴的费米分布函数转化为空穴的玻耳兹曼分布:
fBVEexpEFk0TE
24
3.2.2 玻耳兹曼分布函数
非简并系统和简并系统
通常将可以用玻尔兹曼分布描述的系统称为非简并系统,而 必须用费米分布描述的系统称为简并系统。
对于电子系统,当填充的能级的位置都能满足: E-EF>>kT 时,可以用玻尔兹曼分布来计算电子的填充几率, 此时的电子系统是非简并的; 对于空穴系统,当填充的能级的位置都能满足: EF-E>>kT 时,可以用玻尔兹曼分布来计算空穴的填充几率 ,此时的空穴系统是非简并的。
把Nc、NV的表示式代入,并代入h和k0值,再引入自由电子质量 m0,上式可以写为:
n0p02.3 3130 1m m nm 0 2 p 3/T 23ex - pkE 0T g
37
3.2.4 载流子浓度乘积
讨论 1. 电子和空穴浓度乘积与费米能级无关,也与掺杂无关,
取决于不同材料的禁带宽度及其状态密度有效质量。 2. 在特定温度下,对于确定的半导体材料,热平衡下载流
n 042 m h n 33 /2k0 T2 3ex - p E c k 0 T E F 0 x' x1 2e xdx
式中x'=(EC'-EC)/k0T 。
31
3.2.3 导带电子浓度和价带空穴浓度
对于实际半导体,导带的能量间隔为几 个eV时,x’的值在几十以上,再依据函 数x1/2e-x随x变化规律(见图3-4),积分上 限x’可用无穷大来代替。
mdn: 导带底电子状态密效 度质 有量。
对,硅 导带6底 个共 对, 有 称 d mn 状 1.0m 8 0 态 ; 对,锗 s8 ,d mn 0.5m 6 0
3.1.2 状(能)态密度的定义
3.1.3 状(能)态密度的总结
3.1.3 状(能)态密度的总结
3.2 费米能级和载流子的统计分布
热平衡状态下,电子按能量大小,具有一定的统计分布规律性。 电子是费米子,遵从费米分布。
3.2.1 费米分布函数
绝对温度T 下的物体内,电子达到热平衡状态时,一个 能量为E的独立量子态,被一个电子占据的几率f(E)为:
fnE
1
EEF
电子的费米分布函
1e k0T
K0为玻尔兹曼常数。 EF为一个类似于积分常数的一个待定常数,称为费米能级。
27
3.2.3 导带电子浓度和价带空穴浓度
电子按量子态分 布(费米或玻耳兹 曼分布)
载流子 浓度: 单位体积内的 载流子数
量子态按能量的分布 (状态密度)
处理方法:先求出E~E+dE范围内电子数,再通过整个能带积分,积分 值应等于总电子数的条件, 求出电子浓度。
28
3.2.3 导带电子浓度和价带空穴浓度
对硅、锗和砷化镓有:
; ; S:m m i* n * p 0 .55G :m m e * n * p 0 .66Ga :m m * n * p A 7 .0 s
这三种半导体材料,EF约在禁带中线附近1.5kT的范围内。
42
3.3.2 本征载流子浓度
把费米能级表示式:
k Ei= 1 2Ec+ Ev+ 1 2
第三章 半导体中载流子的统计分布
1
本章要点
理解费米分布和玻尔兹曼分布的前提条件,及费米函数的性质。 熟悉导带电子和价带空穴浓度的分析推导过程。 掌握杂质半导体费米能级随杂质浓度和温度的变化关系。 掌握本征、杂质半导体中载流子浓度的计算。 简并半导体的简并化条件及简并情况下载流子浓度的计算。 热平衡态下半导体中载流子浓度满足关系式。
3.2.1 费米分布函数
它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中 属于能量E的一个量子态被一个电子占据的概率。
T=0K: 若E<EF,则 f(E)=1; 若E>EF,则 f(E)=0。 T>0K: 若E= EF , 则f(E) =1/2 ; 若E< EF , 则f(E) >1/2 ; 若E> EF , 则f(E) <1/2 ;