三角形三边关系性质的应用
任意三角形三条高的长度关系及其应用

任意三角形三条高的长度关系及其应用三角形三边之问的关系是大家是非常熟悉的性质,即“任意两边之和大于第三边,任意两边之差小于第三边”.其实任意三角形的三条高之间的长度关系也有着密切的联系.设三角形三条边分别是a 、b 、c ,对应边上的高分别为h a 、h b 、h c 不失一般性,令a ≥b ≥c ,由面积关系ah a =bh b =ch c ,知h a ≤h b ≤h c ,,c c b ah h b c a c h h ==. 再由b -c<a<b +c ,可得,c c c b a bh h h c c c c c h h h -<<+ 化简整理,得11111b c a b ch h h h h -<<+ 同理可得11111a c b a ch h h h h -<<+, 11111a b c a bh h h h h -<<+. 这就是:任意三角形两条高的倒数和大于第三条高的倒数,任意三角形两条高的倒数差小于第三条高的倒数.下面举例说明上述结论在解题中的应用.例1 试判断长度分别是1、2、3的三条线段能否作为一个三角形的三条高.解 根据三角形三条高的长度关系,如果长度为l 、2、3的三条线段可以作为一个三角形的三条高,那么必须有111123-<.但11111223-=>,所以长度分别为1、2、3的三条线段不能作为一个三角形的三条高.例2 (2011年全国初中数学联赛)已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值是( )(A)5 (B)6 (C)7 (D)8解 令第三条高线长为m ,根据三角形三条高线的长度关系,得11111520520m -<<+ 化简得4<m<203.所以第三条高的最大值是6.例3 △ABC 的三边为a 、b 、c ,且a =2,S △ABC =1,h b 、h c (h b <h c )分别为b 、c 边上的高,试证明h c -h b <h c ·h b <h c +h b .证明 因为2S △ABC =a ·h a ,将a =2,S △ABC =1代入得h a =1.由11111b c a b ch h h h h -<<+,得 11c b c b b ch h h h h h -<-<•.同理可得c b c b h h h h •<+, ∴h c -h b <h c ·h b <h c +h b .上述结论也可理解为:有一条边上的高为单位l 的三角形中,另两边上的高的乘积大于它们的差而小于它们的和.与三角形三边关系一样,为了体现“任意”,又要快捷判断,只要用较短两条线段长相加都大于第三条线段长,那么这三条线段一定能组成三角形.同样地,只要用最短的线段长的倒数减去另外一条线段长的倒数都小于第三条线段长的倒数,那么这样的三条线段便可以作为一个三角形的三条高.。
直角三角形三条边的长度关系

直角三角形三条边的长度关系直角三角形是初中数学学习中的一个重要内容,它的性质和应用广泛存在于各种数学和物理问题中。
在本文中,我们将探讨直角三角形三条边的长度关系。
一、勾股定理在直角三角形中,最著名的定理就是勾股定理。
勾股定理指出,在一个直角三角形中,斜边的平方等于两直角边的平方和。
勾股定理可以用数学公式表示为:$c^2=a^2+b^2$其中,$a$、$b$分别表示直角三角形的两条直角边的长度,$c$表示斜边的长度。
勾股定理的证明可以用多种方法,其中最著名的是毕达哥拉斯的证明。
毕达哥拉斯的证明是通过构造一个正方形,利用几何关系来证明勾股定理的。
二、三角函数除了勾股定理之外,三角函数也是直角三角形的重要内容。
三角函数是指正弦、余弦和正切三种函数,它们是角的函数,可以用来描述直角三角形中的各种关系。
正弦、余弦和正切分别定义为:$sintheta=frac{a}{c}$$costheta=frac{b}{c}$$tantheta=frac{a}{b}$其中,$theta$表示直角三角形的一个角,$a$、$b$、$c$分别表示直角三角形的三条边。
三角函数可以用来求解直角三角形的各种问题,例如已知某个角度和一个边长,可以用三角函数求出另外两个边长。
此外,三角函数还有许多重要的性质和应用,例如在物理学中的波动问题中,三角函数是不可或缺的。
三、三边关系除了勾股定理和三角函数之外,直角三角形的三条边之间还存在着一些特殊的关系。
这些关系可以用来求解一些直角三角形的问题。
1. 等腰直角三角形等腰直角三角形是指两条直角边长度相等的直角三角形。
在等腰直角三角形中,斜边的长度等于直角边的平方根乘以2。
2. 黄金比例黄金比例是指一条线段被分成两段,其中一段与整条线段的比值等于另一段与这一段的比值。
在直角三角形中,斜边与直角边的比值就是黄金比例,它的值为$frac{1+sqrt{5}}{2}$。
3. 三边比在一些特殊的直角三角形中,三条边之间存在着一些特殊的比例关系。
三角形的全部定理

三角形的全部定理三角形作为几何学中最基本的图形之一,其性质和定理的研究对于几何学的发展起着重要的作用。
本文将介绍三角形的全部定理,包括重要定理和性质,并通过推导和实际例子展示其应用。
1. 三角形的基本性质三角形是由三条边和三个角组成的封闭图形。
其基本性质有:- 三角形的内角和定理:任意三角形的三个内角之和等于180度。
- 外角和定理:三角形的一个外角等于其不相邻的两个内角之和。
2. 三角形的重要定理2.1 三边关系定理- 斜边定理:在直角三角形中,斜边的平方等于两直角边的平方和。
- 角边关系定理(余弦定理):在任意三角形ABC中,设a、b、c为边长,A、B、C为对应的内角,则有:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC- 角角关系定理(正弦定理):在任意三角形ABC中,设a、b、c为边长,A、B、C为对应的内角,则有:a/sinA = b/sinB = c/sinC = 2R(R为三角形外接圆半径)2.2 三角形的相似定理- AAA相似定理:若两个三角形的三个对应角相等,则这两个三角形相似。
- AA相似定理:若两个三角形的两个对应角相等,则这两个三角形相似。
- SAS相似定理:若两个三角形具有一个对应两边成比例且夹角相等,则这两个三角形相似。
2.3 直角三角形的性质- 勾股定理:直角三角形的两直角边平方和等于斜边平方,即a^2 + b^2 = c^2。
- 斜边上的中线定理:直角三角形斜边上的中线等于其两直角边的一半。
3. 应用示例示例1:已知一个三角形的三个内角分别为50°、60°和70°,求其三条边的长。
解:根据角角关系定理可以得到:a/sin50° = b/sin60° = c/sin70°设a=1,代入上式可得b=√3,c=√3/2。
直角三角形30度60度90度三边关系

直角三角形30度60度90度三边关系【主题】直角三角形30度60度90度三边关系1. 引言直角三角形是初中数学课程中的重要内容,而其中30度60度90度三边关系更是直角三角形中的特殊情况。
通过对这一特殊情况的深入了解,我们能够更好地理解直角三角形的性质和应用。
本文将从30度60度90度三边关系的定义、性质、应用以及个人观点论述这一主题。
2. 定义和性质在直角三角形中,若一个锐角为30度,另一个锐角为60度,则这种特殊的三角形被称为30度60度90度三角形。
在这种三角形中,相对于30度的直角边长度为a,相对于60度的直角边长度为b,斜边长度为c,那么有以下三边关系:a:b:c=1:√3:2这一关系是30度60度90度三角形的特征之一,也是我们要深入理解的重点之一。
3. 应用30度60度90度三边关系在解决直角三角形问题时有着重要的应用价值。
通过这一关系,我们可以不依赖于具体的三角函数计算,便能够求解直角三角形的各边长度。
在解决实际问题时,我们也经常会遇到与这一三边关系相关的计算。
在建筑工程中的测量、设计中的角度分析等方面,都能够用到30度60度90度三边关系。
4. 个人观点对我个人而言,30度60度90度三角形的三边关系是高中数学学习中的一大亮点。
通过深入学习和理解这一关系,我对直角三角形的理解更加全面,也能够更加灵活地运用其中的性质解决问题。
这种特殊的三边关系在我的数学学习中扮演着非常重要的角色,帮助我更好地理解了三角形和几何的知识。
5. 总结通过本文的探讨,我们对30度60度90度三边关系有了更加深入的理解。
这一特殊情况不仅在数学中有着重要的应用价值,同时也在我们的数学学习过程中具有十分重要的地位。
通过理解和熟练掌握这一关系,我们能够更好地解决直角三角形相关问题,提高数学运用能力,为今后的学习和工作打下坚实的数学基础。
6. 结语30度60度90度三边关系是数学中的一个重要概念,我们应该在学习过程中注重对这一关系的深入理解和灵活运用。
三角形三边关系定理及其推论的应用

三角形的三边关系三角形三边的关系,是在学生初步了解了三角形的定义的基础上,进一步研究三角形的特征,从中我们不仅能够了解三角形三边之间的大小关系,也提供了判断三条线段能否组成三角形的标准。
三角形的三边关系:三角形任意两边的和大于第三边,两边之差小于第三边。
常见应用类型类型一:判断三条线段能否组成三角形根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析。
判断能否组成三角形的简便方法是:看较小的两个数的和是否大于第三个数。
下列长度的三条线段能组成三角形的是()A.1,2,3 B.5,4,2 C.2,2,4 D.4,6,11【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、2+4>5,能够组成三角形;故B正确;C、2+2=4,不能组成三角形;故C错误;D、6+4<11,不能组成三角形,故D错误.故选:B。
类型二:求三角形第三边的长或取值范围根据三边关系确定某一边的取值范围,一般题目中会给出其他两边的大小,需要注意的是结合实际问题的运用,比如:人数组成三角形中的隐含条件,数字必须是正整数。
一个三角形的两边长分别为5cm和3cm,第三边的长是整数,且周长是偶数,则第三边的长是()A.2 cm或4 cm B.4 cm或6 cmC.4 cm D.2 cm或6 cm【分析】可先求出第三边的取值范围.再根据5+3为偶数,周长也为偶数,可知第三边为偶数(偶数+偶数=偶数),从而找出取值范围中的偶数,即为第三边的长.【解答】解:设第三边长为x,则5﹣3<x<5+3,即2<x<8.又x为偶数,因此x=4或6,故选:B。
类型三:解答等腰三角形相关问题考查等腰三角形的性质和三角形的三边关系,一般没有明确腰和底边的题目,一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键。
三角形三个边长的关系

三角形三个边长的关系
在数学中,三角形是一种基本的几何图形,由三条线段组成,它们相交于三个顶点。
三角形的三个边长是三条线段的长度,它们之间有着特定的关系。
三角形的三个边长可以用a、b、c表示,其中a、b、c分别表示三角形的三条边。
根据三角形的性质,任意两边之和大于第三边,即a+b>c、a+c>b、b+c>a。
这个性质被称为三角形的三边不等式。
三角形的三个边长还有一个重要的关系,即勾股定理。
勾股定理是指在一个直角三角形中,直角边的平方等于另外两条边的平方之和。
即a²+b²=c²(其中c为斜边)。
除了勾股定理,三角形的三个边长还有其他的关系。
例如,海伦公式可以用来计算三角形的面积。
海伦公式是指在已知三角形三边长的情况下,可以通过以下公式计算三角形的面积:
S = √[s(s-a)(s-b)(s-c)]
其中,S表示三角形的面积,a、b、c表示三角形的三边长,s表示半周长,即s=(a+b+c)/2。
三角形的三个边长还可以用来判断三角形的形状。
例如,当三角形的三边长相等时,这个三角形被称为等边三角形;当三角形的两边长相等时,这个三角形被称为等腰三角形;当三角形的三边长都不
相等时,这个三角形被称为不等边三角形。
三角形的三个边长之间有着密切的关系,这些关系不仅可以用来计算三角形的面积和判断三角形的形状,还可以用来解决各种数学问题。
因此,学好三角形的三个边长的关系对于数学学习和应用都非常重要。
三角形三边关系的常见应用

专题一 三角形三边关系的常见应用一. 专题目标1.了解和掌握三角形的定义和三角形的三边关系 2.通过例题学习,学会用三边关系解决“能否构成三角形”类型的题目 3.通过例题学习,学会用三边关系解决“第求三边长或可能性”类型的题目 4.通过例题学习,学会用三边关系解决“三角形中和边长之间的关系”类型的题目 5.通过例题学习,学会用三边关系解决“绝对值化简”类型的题目 二. 专题环节三角形的三边关系:1. 在一个三角形中,任意两边之和大于第三边2. 在一个三角形中,任意两边之差小于第三边三角形的定义:由不在同一直线上的三条线段首尾依次连结所组成的图形叫做三角形。
一. 能否构成三角形例1,1、若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.分析:根据线段MN 平行于Y 轴,MN=M N y y -,分别讲M 点所在二次函数解析式和N 点所在AB 直线解析式求得代入即可得到MN 关于x 的函数关系式。
详解:设直线AB 的解析式为y 2=kx +b ,由y 1=-x 2+2x +3求得B 点的坐标为(0,3).把A (3,0),B (0,3)代入y 2=kx +b ,解得k =-1 b =3.∴直线AB 的解析式为y 2=-x +3.∵MN ∥y 轴,M (x,-x 2+2x +3),N(x,-x +3)∴MN=M N y y -=-x 2+2x +3-(-x +3)=-x 2+3x=-(x-32)2 +94(0≤x ≤3)∵a=-1<0 ∴当x=32时,线段MN 最大值为94关键词:二次函数表示线段长一 图形问题:周长例2,如图,已知二次函数245y x x =--的图像与坐标轴交于点A (-1,0)和B (0,-5)对称轴存在一点P ,使得△ABP 的周长最小,请求出P 的坐标分析:二次函数中的周长最小值,往往是用利用轴对称求线段最值的办法来获得的:即:△ABP 周长为AB+BP+AP ,由于AB 是定线段,所以周长最小值转化为PA+PB 最小,所以可以做A 关于对称轴的对称点C ,连接BC,和对称轴的交点P .此时PA+PB 获得最小值BC , 此时只需要将对称轴的横坐标代入BC 所在直线解析式,就可以求出P 点坐标。
「初中数学」三角形三边关系的六种应用

三角形的三边关系为:三角形,任意两边的和大于第三边,任意两边的差小于第三边.由于是线段的不等量关系,我们在遇到求边或周长的范围以及一些不等量的习题时,就要想到利用这一性质,常见的应用如下:一.判断三条线段能否组成三角形(最直接的方法是,若两条短线段的和大于最长的线段,则此三线段可构成三角形)1.下列各组数中,不可能成为一个三角形三边长的是(____)A.2,3,4.B.5,6,7.C.5,6,12.D.6,8,10.2.下列长度的三条线段不能组成三角形的是(____)A.5,5,10.B.4,5,6.C.4,4,4.D.3,4,5.二.求三角形第三边的长或取值范围3.若a,b,c为三角形的三边长,且a,b满足|a2一9|+(b一2)2=0,则第三边长a的取值范围是______.4.若一个三角形的两边长分别为5和8,则第三边长可能是(______).A.14.B.10.C.3.D.2.5.若三角形的两边长分别为3和5,则周长L的取值范围是(_____).A.6<L<15.B.6<L<16.C.11<L<13.D.10<L<166.一个三角形的两边长分别为5㎝和3㎝,第三边的长是整数,且周长是偶数,则第三边的长是(_____).A.2㎝或4㎝.B4㎝或6㎝.C.4㎝.D.2㎝或6㎝.三.求等腰三角形的边长及周长7.已知实数x,y满足|x一4|+(y一8)2=0,则以x,y的值为两边长的等腰三角形的周长是(____).A.20或16.B.20.C.16.D.以上均不对.8.若等腰三角形的周长为10㎝,其中一边长为2㎝,则该等腰三角形的底边长为(_)A.2㎝,B.4㎝.,C.6㎝,D.8㎝.9.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.解:(1)∵AB=5,BC=2,∴3<AC<7,又∵AC的长为奇数,∴AC=5,∴△ABC的周长为5+5+2=12.(2)∵AB=AC=5,∴△ABC是等腰三角形四.化简含绝对值的式子10.已知a,b,c为三角形的三边长,化简:|b+c一a|+|b一c一a|一|c一a一b|一|a 一b+c|.【分析】化简绝对值,关键判断绝对值里边的代数式是正数、负数还是零.是正数或零,去掉绝对值,代数式保持不变;是负数,去掉绝对值后,代数式变为原来的相反数,之后,能合并的再合并同类项.本题通过三角形三边关系判断绝对值里边代数式的正、负情况.解:∵a,b,c为三角形的三边长,∴b+c>a,a+c>b,a+b>c,∴b+c一a>0,b一c一a<0,c一a一b<0,a一b+c>0,∴原式=(b+c一a)一(b一c一a)+(c一a一b)一(a一b+c)=2c 一2a.五.证明线段不等关系10.如图,已知P是△ABC内一点,求证:PA+PB+PC>(AB+BC+AC)【分析】AP,BP,CP把△ABC分为三个三角形,每个三角形两边和大于第三边,AP,BP,CP正好各用两次,也即2PA+2PB+2PC>AB+BC+AC,也即得证.证明:在△ABP中,PA+PB>AB,在△ACP中,PA+PC>AC,在△BPC中,PB+PC>BC,∴2(PA+PB+PC)>AB+BC+AC,即PA+PB+PC>(AB+BC+AC)/2.11.如图,P是正方形ABCD的边DC延长线上的一点,连结PA交BC于点E,求证:AP>AC.【分析】证明线段不等关系,想到三角形三边关系,可AC,AP,PC是在一个三角形中,但又引进了PC,那么就想到把AP折成两条线段和AC围成一个三角形,那么又怎样把AP分成两段呢?从图看∠ECP=90°,想到直角三角形斜边的中线,如图取PE的中点F,连结CF,则PF=CF,这样成功的把AP段分成AF,PF两段,CF等量代换PF,在△ACF中利用三边关系可证.证明:取PE的中点F,连接CF,∵四边形ABCD是正方形,∴BC⊥DP,∴CF=FP=PE/2,在△AFC中,有AF十FC>AC,∴AF十FP>AC,即AP>AC.12.如图,已知:D是△ABC的外角∠EAC的平分线上的一点.求证:DB+DC>AB+AC.【分析】要证DB+DC>AB+AC,可用三角形三边关系定理,但必须把BD、DC、AB+AC移到一个三角形中,可以从构造AB+AC入手,由于AD平分∠EAC,利用角平分线的对称性,将AC,AB移在一条线上,同时能将CD边进行转换,如图,在BA的延长线AE上截取AN=AC,连接DN则可构造出△DAN≌△DCA,则AC=AN,DC=DN,达到了所要的目的在△BDN中,BD+DN(DC)>AN(AB+AC).证明:在BA的延长线AE上截取AN=AC,连接DN,∵AD平分∠EAC,∴∠EAD=∠CAD,AD=AD,AN=AC,∴△ADN≌△ADC,∴DN=DC,在△BDN中,BD+DN>BN,∴BD+DC>AB+AC.13.如图,P为△ABC内一点,求证:AB+AC>PB+PC.【分析】直接运用图中的△ABC和△PBC得到的AB+AC>BC,PB+PC>BC,不能解决问题,为使PB和CP同时出现在大于号右侧,则应构造新的三角形,可延长BP交AC于点D,或过点P作一直线.证明:(一)如图,延长BP交AC于点D,在△ABD中,AB+AD>BD,即AB+AD>BP+PD,在△CDP中CD+PD>PC,∴AB+AD+CD+PD>BP+PD+PC,∴AB+AD+CD>BP+PC,即AB+AC>BP+PC.证明:(二)如图,过点P任作一直线交AB于E交AC于F在△AEF中,AE+AF>EP+PF,在△BEP中,BE+EP>PB,在△PFC中,FC+PF>PC,∴(AE+BE)十(AF+FC)十EP+PF>PB+PC+EP+PF,∴AB+AC>PB+PC.六.利用三角形三边关系求最值13.如图∠MON=90°,矩形ABCD的顶点A,B分别在OM,ON上,当点B在边ON上运动时,点A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,在运动过程中,点D 到点O的最大距离是多少?【分析】动点问题,总的方法是,以静制动,取AB的中点H,OH=AB/2不变,由勾股定理得AD2+AH2=DH2,∴DH=√2,也不变,在△DOH中,OH在变,有OH+DH≥DO,则点D、H、O 三点共线时取等号,所以点D到点O的最大距离为OH+DH=√2+1,如图.前八题答案如下:1.C,2.A,3.1<c<5,4.B,5.D,6.B,7.B,8.A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形三边关系性质的应用
“三角形任意两边的和总大于第三边”这个性质是三角形最基本的性质之一,它的应用十分广泛,下面举例说明.
例1 等腰三角形的两边为4,8,则它的周长为_______.
分析:从表面上看本题有两种可能,以4、4、8为边的等腰三角形和以8、8、4为边的等腰三角形,但前者不符合三角形的三边关系,所以周长为20.
例2 不等边三角形中,如果有一条边长等于另外两条边长的平均值,那么最大边上的高与最小边上的高的比k的取值范围是 [ ]
(98年江苏省初中数学竞赛题)
解:如图1,设BC=a,AC=b(a>b),高AD、BE分别为h a,
说明:利用三角形的三边关系衡量能否组成三角形或已知三角形的三边确定某边的敢值范围时,要注意性质中“大于”二字,而不是相等,“任意”两边而不是其中两边.
例3四边形ABCD中,O为对角线交点,
解:如图2,在△ABC中,由三边关系得
AB+BC>AC,①
同理可得:
BC+CD>BD,②
CD+DA>AC,③
DA+AB>BD.④
由①②③④得2(AB+BC+CD+DA)>2(BD+AC).
∴AB+BC+CD+DA>BD+AC
在△AOB中 OA+OB>AB,①
同理得OB+OC>BC,②
O C+OD>CD ③
OD+OA>AD ④
由①②③④得2(OA+OB+OC+OD)>AB+BC+CD+DA.
例4若a、b、c为△ABC的三边,求证关于x的方程b2x2+(b2+c2-a2)x+c2=0没有实数根.
证明:∵△=(b2+c2-a2)2-4b2c2=(b+c+a)(b+c-a)(b-c+a)(b-c-a)
在△ABC中,∵b+c>a,∴b+c-a>0.
同理 b-c+a>0,b-c-a<0.
∴△<0.
∴关于x的方程b2x2+(b2+c2-a2)x+c2=0没有实数根.
说明:三角形的三边关系常常用来解决一些几何或代数证明题.
例5如图3,D为△ABC的边AC上一点,分别在AB、BC上求作点E、F,使△DEF的周长最小.(96年江苏省扬州中学提前招生试题)
作法:分别以BC、AB所在的直线为对称轴,作出D点的对称点 D′、D″,连结 D′D″交AB于E、BC于F,∴△DEF为所求作的三角形.
证明:由轴对称图形的性质可知ED=ED″,FD=FD′,∴D′D″代表了△DEF的周长.
若E′点在AB上除E点外的一点,在△D″E′ D′中由三边关系的性质
可知,D″E′+E′ D′>D′ D″
同理若F′点在BC上除F点外的一点,也能说明 D′ D″最小.
说明:利用三角形的三边关系解作图题是同学们解题时常忽略的方法.原几何教科书第二册91页中的例3就是个很好的说明.。