弹塑性力学课件第三章.
合集下载
岩土弹塑性力学教学课件(共13章)第3章_应变状态

§3.1 应变状态11
• 三个刚性转动分量及6个应变分量合在一起,才全 面反映了物体变形
xyz x y z xy yz zx
B
B’’ 刚性转动
B’’’
B’
变形
A 刚性平动 A`
§3.1 应变状态12
• 工程应变: ln l0
l0
变形后长度 原始长度
不适用于大变形
• 自然应变/对数应变:
在塑性变形较大时,用-曲线不能真正代表加载和变形的状态。
x y z
• ——弹性体一点的体积改变量
• 引入体积应变有助于简化公式。
• 大于零表示体积膨胀,小于零体积压缩。
• 注意:土力学中塑性体应变符号约定相反。
§3.2 主应变与应变主方向8
应变Lode参数: 为表征偏量应变张量的形式,引入应变Lode参数:
22 3 1 3
1
(1.66)
如果两种应变状态με 相等,表明它们所对应的应变莫尔圆 相似,也即偏应变张量的形式相同。
Vz y
;
zx
Vz x
Vx z
;
§3.3 应变率张量 2
小变形情况下,应变速率分量与应变分量间存在如下关系:
x
Vx x
du x dt
d dt
u x
x
u x
y
Vy y
dv y dt
d v
dt
y
y
v y
z
Vz z
z
dw dt
d w dt z
z
w z
线应变速率
j
Vj,i )
(1.56)
§3.3 主应变与应变主方向 4
由于时间度量的绝对值对塑性规律没有影响,因
弹塑性力学课件第三章

zx C61x C62 y C63z C64 xy C65 yz C66 zx
C ij
ijkl kl
Cijkl Cijlk
2021/1/10
4
第三章 本构关系
一、线性弹性体的本构方程——具有一个弹性对称面的线
性弹性体
x
y
C11
C12 C22
C13 C23
C14 C24
2021/1/10
10
第三章 本构关系
一、线性弹性体的本构方程——各向同性弹性体
x
1 E
x
( y
z ) ,
xy
1 G
xy
y
1 E
y
( x
z ) ,
yz
1 G
yz
z
1 E
z
( x
y ) ,
zx
1 G
zx
ij 1Eij Ekkij
2021/1/10
11
第三章 本构关系 一、线性弹性体的本构方程——各向同性弹性体
0 x
0
y
z xy
C33 0 0
对
C44 0
0 z
0
xy
yz
zx
称
C55
0 C66
yz zx
2021/1/10
6
第三章 本构关系 一、线性弹性体的本构方程——正交各向异性弹性体
x y z xy
1 Ex
xy
1 Ey
对
xz
yz
弹塑性力学课件第三章
第三章 本构关系
本章学习要点:
掌握各项同性材料的广义Hooke定律 掌握弹性应变能密度函数的概念及计算 理解初始屈服、后继屈服以及加卸载的概 念 掌握几个常用的屈服条件 理解弹塑性材料的增量和全量本构关系的 基本概念
工程弹塑性力学-第三章_应力-应变关系

11 C1 C2 11 C2 22 C1 C2 22 C2 33 C1 C2 33 C2 23 2C3 23 31 2C3 31 12 2C312
JUST
C33 C44 C55
弹性矩阵
C11 C 22 D
则广义胡克定律又可写为:
C33 C44 C55
D
由于弹性举证为对称矩阵, 即使各向异性材料其常数 也为21个。
JUST
3.2 广义胡克定律 Jiangsu University of Science and Technology 江苏科技大学
C11 C11 C33 C1 C12 C23 C31 C2 C C C C 55 66 3 44
应力与应变关系
C1 C2 C 1 D
C2 C2 C1
0 0 0 C3
0 0 0 0 0 0 0 C3 0 C3 0
dA dK ij dV ij V dt dt
绝热过程
du dA dK dQ ij ij dV , 0 V dt dt dt dt
对于单位体积的内能: 存在势函数:
dui* ij ij dt
dW ij d ij
dW
W d ij ij
得: ij 由
ij 1i j , ij 0i j
1 ij 11 22 33 ij E 1
1 1 11 22 33 11 11 11 22 33 E 1 E 1 22 22 11 33 12 1 12 , 13 1 13 , 23 1 23 E 2G 2G 2G 1 33 33 11 22 E
第三章 屈服准则

• 这一章研究材料的屈服. 我们已经知道,对于单向拉伸情况比 较简单,只有一个应力,实验可以得到应力应变的曲线, 应力应 变关系是一目了然. 但对于复杂应力状态, 材料在什么情况下 屈服这就不太好说了.这章的Tresca屈服条件和Mises屈服条件 就是解决这个问题的.
• 下一章来解决材料屈服后的应力应变的本构关系.
弹塑性力学基础---主讲:韩志仁
1. 屈服
物体受到荷载作用后,
随着荷载增大,由弹性状
态到塑性状态的这种过渡,
叫做屈服。
加载路径
2. 屈服条件
屈服点
物体内某一点开始产 生塑性应变时,应力或应 变所必需满足的条件,叫 做屈服条件。
only twist
Twist and extension
著名的Taylor和Quinney铜管拉扭 屈服试验(1931)
弹塑性力学基础---主讲:韩志仁
3. 屈服函数
一般情况下,屈服条件 与应力、应变、时间、温度 等有关,而且是它们的函数, 这个函数F称为屈服函数。
在不考虑时间效应(如应 变率)和温度的条件下:
在不考虑应力主轴旋转 情况下,可以用三个主应力 分量或应力不变量表示:
F( ij ,ij ,t,T ) 0
弹塑性力学基础---主讲:韩志仁
第三章 屈服准则
(yield criteria)
弹塑性力学基础---主讲:韩志仁
塑性模型三要素
屈服条件 流动法则
硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
弹塑性计算分 析的首要条件
弹塑性力学基础---主讲:韩志仁
这条曲线如图所示的红色曲线. 如果一个应力状态在这条曲线
• 下一章来解决材料屈服后的应力应变的本构关系.
弹塑性力学基础---主讲:韩志仁
1. 屈服
物体受到荷载作用后,
随着荷载增大,由弹性状
态到塑性状态的这种过渡,
叫做屈服。
加载路径
2. 屈服条件
屈服点
物体内某一点开始产 生塑性应变时,应力或应 变所必需满足的条件,叫 做屈服条件。
only twist
Twist and extension
著名的Taylor和Quinney铜管拉扭 屈服试验(1931)
弹塑性力学基础---主讲:韩志仁
3. 屈服函数
一般情况下,屈服条件 与应力、应变、时间、温度 等有关,而且是它们的函数, 这个函数F称为屈服函数。
在不考虑时间效应(如应 变率)和温度的条件下:
在不考虑应力主轴旋转 情况下,可以用三个主应力 分量或应力不变量表示:
F( ij ,ij ,t,T ) 0
弹塑性力学基础---主讲:韩志仁
第三章 屈服准则
(yield criteria)
弹塑性力学基础---主讲:韩志仁
塑性模型三要素
屈服条件 流动法则
硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
弹塑性计算分 析的首要条件
弹塑性力学基础---主讲:韩志仁
这条曲线如图所示的红色曲线. 如果一个应力状态在这条曲线
第三章-弹塑性断裂力学PPT课件

(20)
对弹塑性情况, δ可由弹性的δe和塑性的δp两部分
组成,即:
.
27
e P
(21)
式中, δe为对应于载荷P的裂纹尖端弹性张开位移,
(1)D-B模型假设:裂纹尖端的塑性区沿裂纹线两边 延伸呈尖劈带状;塑性区的材料为理想塑性状态,整 个裂纹和塑性区周围仍为广大的弹性区所包围;塑性
区与弹性区交界面上作用有均匀分布的屈服应力σs 。
.
9
于是,可以认为模型在远场均匀拉应力σ作用下
裂纹长度从2a延长到2c,塑性区尺寸R=c-a,当以带 状塑性区尖端点c为“裂尖”点时,原裂纹(2a)的 端点的张开量就是裂纹尖端张开位移。
按等效原则,令非贯穿裂纹的等于无限大板中心穿透裂纹
的,则等效穿透裂纹长度为:. a*= α2 a
(17)
22
(c)材料加工硬化修正
考虑材料的加工硬化修正,可用流变应力σf代替 屈服点,对于σs =200~400MPa的低碳钢,一般取:
σf =0.5( σs + σb)
(18)
式中σb为材料的抗拉强度。
δ与应变e、裂纹几何和材料性能之间的关系,即引入 应变这一物理量。
由含中心穿透裂纹的宽板拉伸试验,可绘出无量 钢COD即/2esa 与标称应变 e / e s 之间的关系曲线 。
.
16
其中es是相应于材料屈服点σs的屈服应变,a是裂 纹尺寸,标称应变e是指一标长下的平均应变,通常 两个标点取在通过裂纹中心而与裂纹垂直的线上。
R
a
sec
2
s
1
若将 s e c 按级数展开,则 2 s
12 54 sec2s 122s242s
2
当
塑性力学03-塑性本构关系ppt课件

的应力和应变的改变量, 即B点的应
B
%
力和应变为
% , %
o
p e
因为卸载要服从弹性本构关系,
即 E. 这就是说,我们可以
由因为卸载引起的荷载的改变
%
量 P P% P 按弹性计算得到.
• 推广到复杂应力的卸载情况(即应力强度 i 减小)得到:
卸载定律 . 即: 卸载后的应力或应变等于卸载前的应力或应变 减去卸载时的荷载改变量 P P% P 为假想荷载按弹性计算所
是某一非零的参考应力状态,
t 是单调增加的参数.
这样定义的简单加载说明, 在加载时物体内应变和应力的主方
向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
应变增量强度
d
p i
的公式得到
d
p i
d
2 3
Sij Sij
2 3
d
i
所以 d 3dip 3d i 2 i 2H 14i
• 将上面得到的 d代入Levy-Mises流动法则就得到弹塑性硬化
材料的增量型本构方程:
dii
1 2
E
d ii
deij
1 2G
dSij
3d i 2H i
Sij
或写成:
dij
z
2
S
1 E
1 F
1
4
1
z
S
3
1 G
3 F
ln
2
z
屈服曲线
B
%
力和应变为
% , %
o
p e
因为卸载要服从弹性本构关系,
即 E. 这就是说,我们可以
由因为卸载引起的荷载的改变
%
量 P P% P 按弹性计算得到.
• 推广到复杂应力的卸载情况(即应力强度 i 减小)得到:
卸载定律 . 即: 卸载后的应力或应变等于卸载前的应力或应变 减去卸载时的荷载改变量 P P% P 为假想荷载按弹性计算所
是某一非零的参考应力状态,
t 是单调增加的参数.
这样定义的简单加载说明, 在加载时物体内应变和应力的主方
向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
应变增量强度
d
p i
的公式得到
d
p i
d
2 3
Sij Sij
2 3
d
i
所以 d 3dip 3d i 2 i 2H 14i
• 将上面得到的 d代入Levy-Mises流动法则就得到弹塑性硬化
材料的增量型本构方程:
dii
1 2
E
d ii
deij
1 2G
dSij
3d i 2H i
Sij
或写成:
dij
z
2
S
1 E
1 F
1
4
1
z
S
3
1 G
3 F
ln
2
z
屈服曲线
考博弹塑性力学,第三章
M
h/2 h/2
M
x
y
l ( l >>h)
第三章
平面问题的直角坐标解答
本题属于平面应力问题,且为单连体, Φ 若按 Φ 求解, 应满足相容方程及 S = Sσ 上的应力边界条件。 求解步骤: ⑴ 由逆解法得出,可取 Φ = ay ,且满足 4 ∇ Φ=0 ⑵ 求出应力分量 σ x = 6ay, σ y = τ xy = 0 (a)
3Ah 3Ah
o
3Ah
h/2 h/2 l 3Ah (a)
x
y
第三章
平面问题的直角坐标解答
(2)对于坐标轴不同,可以解决不同的问 题。对于图(b)所示的坐标系,可解决矩形截 面梁的偏心受拉问题;对于图(c)所示的坐标 系,则可解决偏心受压问题。
o h 6Ah y l (b) 6Ah y x 6Ah o h l (c) x 6Ah
3
第三章
平面问题的直角坐标解答
⑶ 检验应力边界条件,原则是: a.先校核主要边界(大边界),必须 精确满足应力边界条件。 b.后校核次要边界(小边界),若不 能精确满足应力边界条件,则应用圣维南 原理,用积分的应力边界条件代替。
第三章
平面问题的直角坐标解答
对于主要边界 y = ± h / 2
(σ y ) y=± h/2 = 0, (τ xy ) y =± h / 2 = 0
(a)
( lσ
x
+ mτ xy ) = f x ,
S
( lτ
xy
+ mσ y ) = f y
S
(b )
⑶ 多连体中的位移单值条件。
(c)
第三章
平面问题的直角坐标解答
对于单连体,(c)是自动满足的。只 须满足条件(a)和(b)。 由 Φ 求应力分量的公式:
h/2 h/2
M
x
y
l ( l >>h)
第三章
平面问题的直角坐标解答
本题属于平面应力问题,且为单连体, Φ 若按 Φ 求解, 应满足相容方程及 S = Sσ 上的应力边界条件。 求解步骤: ⑴ 由逆解法得出,可取 Φ = ay ,且满足 4 ∇ Φ=0 ⑵ 求出应力分量 σ x = 6ay, σ y = τ xy = 0 (a)
3Ah 3Ah
o
3Ah
h/2 h/2 l 3Ah (a)
x
y
第三章
平面问题的直角坐标解答
(2)对于坐标轴不同,可以解决不同的问 题。对于图(b)所示的坐标系,可解决矩形截 面梁的偏心受拉问题;对于图(c)所示的坐标 系,则可解决偏心受压问题。
o h 6Ah y l (b) 6Ah y x 6Ah o h l (c) x 6Ah
3
第三章
平面问题的直角坐标解答
⑶ 检验应力边界条件,原则是: a.先校核主要边界(大边界),必须 精确满足应力边界条件。 b.后校核次要边界(小边界),若不 能精确满足应力边界条件,则应用圣维南 原理,用积分的应力边界条件代替。
第三章
平面问题的直角坐标解答
对于主要边界 y = ± h / 2
(σ y ) y=± h/2 = 0, (τ xy ) y =± h / 2 = 0
(a)
( lσ
x
+ mτ xy ) = f x ,
S
( lτ
xy
+ mσ y ) = f y
S
(b )
⑶ 多连体中的位移单值条件。
(c)
第三章
平面问题的直角坐标解答
对于单连体,(c)是自动满足的。只 须满足条件(a)和(b)。 由 Φ 求应力分量的公式:
弹塑性力学第三章
左右两边: f x 0, f y b 上下两边: f x b, f y 0 可见,应力函数 bxy 能解决矩形板受均布剪 力的问题。
b
y
b
x
图 3-1b
§ 3-1
多项式解答
♦ 同理,应力函数
cy 2
c 0
O
能解决矩形板在 x 方向受 均布拉力(设 c> 0 )或均 布压力 (设 c < 0 ) 的问 题,图3-1c 。
2
2 2Φ 12kxy Φ x 2 3 y 2 0 y h x 2Φ 6ky 2 3k 3 xy xy h 2h
O l y
h x
(2)边界条件:
上下边界
y y h 2
0
2
xy y h 2
h 6k 3k 2 0 3 h 2h
y
图 3-1 a
§ 3-1
多项式解答
可见,应力函数 ax 能
2
2a
O
解决矩形板在y方向受均布 拉力(设a > 0)或均布压 力(设a < 0)的问题。
2a
y 图 3-1a
x
§ 3-1
多项式解答
(2) bxy
b 0
b b
O
x 0, y 0, xy yx b
12 M x 3 y, y 0, xy yx 0 代入式(a),得: h
M x y, y 0, xy yx 0 I 结果与材料力学中完全相同。 对于长度l 远大于深度h 的梁,上面答案 是有实用价值的;对于长度l与深度h 同等大 小的所谓深梁,这个解答是不准确的。
b
y
b
x
图 3-1b
§ 3-1
多项式解答
♦ 同理,应力函数
cy 2
c 0
O
能解决矩形板在 x 方向受 均布拉力(设 c> 0 )或均 布压力 (设 c < 0 ) 的问 题,图3-1c 。
2
2 2Φ 12kxy Φ x 2 3 y 2 0 y h x 2Φ 6ky 2 3k 3 xy xy h 2h
O l y
h x
(2)边界条件:
上下边界
y y h 2
0
2
xy y h 2
h 6k 3k 2 0 3 h 2h
y
图 3-1 a
§ 3-1
多项式解答
可见,应力函数 ax 能
2
2a
O
解决矩形板在y方向受均布 拉力(设a > 0)或均布压 力(设a < 0)的问题。
2a
y 图 3-1a
x
§ 3-1
多项式解答
(2) bxy
b 0
b b
O
x 0, y 0, xy yx b
12 M x 3 y, y 0, xy yx 0 代入式(a),得: h
M x y, y 0, xy yx 0 I 结果与材料力学中完全相同。 对于长度l 远大于深度h 的梁,上面答案 是有实用价值的;对于长度l与深度h 同等大 小的所谓深梁,这个解答是不准确的。
塑性力学课件 第三章 屈服条件
理想塑性材料:进入塑性阶段以后,在应 力空间中代表应力状态的点均位于屈服曲面 f(σij)= C上。由于没有强化现象,应力状态 变化时,尽管塑性变形还可以不断增长,而屈 服函数的值却不再增长。即不可能有df>0的情 况出现。代表应力状态的点只能在屈服面上移 动,这时有df = 0,属于加载;当代表应力状态 的点移向屈服面以内时,df<0,属于卸载。即 df<0,卸载 (3—34) df = 0,加载 由实验结果得知,加载及中性变载时产生 新的塑性变形,卸载及时不产生新的塑性变形, 其各应力分量与各应变分量的改变服从弹性规 律。
§3.5 Mises屈服条件
Tresca屈服条件完全忽视了居于中间大 小的主应力对材料屈服的影响,这是和实际 有出入的。 Mises用Tresca屈服条件的屈服轨迹正六 边形ABCDEF的外接园作为屈服轨迹。 2 由(3—23)式知圆的半径为 σs,
3
2 2 圆的方程为: R2 = s 3
(3—25)
简单加载定理:对小变形的受力物体,满足 下列三个条件即可保证物体内所有各点都处于简 单加载(充分条件): (1)物体上所有外加荷载(包括表面力和体 积力)成比例增长。如有位移边界条件,只能是 零位移边界条件; (2)应力强度和应变强度呈幂关系 i A in ; 1 (3)材料不可压缩,即泊松比μ= 。
S
s
2
二、各主应力不按大小顺序排列时的 Tresca屈服条件 (3—16)可改写为: σmax-σmin =σs (3—19) (3—19)等价于下式中至少有一个式子成立: 1 3 s 0 0 3 s 1 1 2 s 0 (3—20) 1 2 s 0 2 3 s 0 2 3 s 0
弹塑性力学课件之三 应变
1 u v 0 ( ) 2 y x 1 u v ij ( ) 0 2 y x 1 u w 1 v w ( ) ( ) 2 z y 2 z x
对于纯变形来说
Si ij S j
下面说明应变张量的物 理意义。
2
2 y
2
2 xy
2 y z 2
z 2 y yz
2 yz
2 z 2 x 2 zx 2 2 x z zx yz xz xy 2 x 2 ( ) yz x x y z yz xz xy 2 ( ) xz y x y z 2 z yz xz xy 2 ( ) xy z x y z 2 y
xy
1 yx 2
注意到(工程)剪应变 的定义: xy 即
xy
3.2 主应变与应变偏量及其不变量 剪应变为零的面称为主平面,主平面的法线称为主方向, 主平面上的正应变称为主应变。
设ABC面为主平面。 S n沿法线。 因无剪应变 , S n与S n同方向,故 S n n S n 或S ni n S ni
e1e2 e3 J3
3.3 应变率的概念
1 ij (ui , j u j ,i ) 2 1 ij (u i , j u j ,i ) 2
高应变率时,材料的力学性质会发生变化。一般来说, 强度极限会有所提高,塑性变形能力会下降。
3.4 应变协调方程 1 ij (ui , j u j ,i ) 2 u v u v 平面时: x , y , xy 2 xy x y y x
当6个应变满足6个 应变协调方程时, 能保证位移函数的 单值连续性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017/10/13
10
第三章 本构关系
一、线性弹性体的本构方程——各向同性弹性体
1 1 x x ( y z ) , xy xy E G 1 1 y y ( x z ) , yz yz E G 1 1 z z ( x y ) , zx zx E G
0 0 0 0 C44
x 0 y 0 z 0 xy 0 yz 1 (C11 C13 ) zx 2 0
2017/10/13
8
第三章 本构关系
一、线性弹性体的本构方程——各向同性弹性体
xy
1 Ey
xz yz
1 Ez
0 0 0
1 Gxy
0 0 0 0
1 G yz
对 称
0 x 0 y 0 z 0 xy yz 0 1 zx Gzx
2017/10/13
一、线性弹性体的本构方程——正交各向异性弹性体
x C11 C12 C22 y z 对 xy yz zx
C13 C23 C33 称
0 0 0 C44
0 0 0 0 C55
2017/0/13
2
第三章 本构关系
引言
平衡关系仅建立了力学参数(应力、内力和外力等)之间
的联系,而几何关系仅建立了运动学参数(位移、应变等)之间
的联系,所以,平衡关系与几何关系是完全相互独立的,它们之 间还缺乏必要的联系。 为了求解具体的力学问题,还必须引进一些关系式,这些 关系式即所谓的本构关系。本构关系反映可变形体材料的固有特
、
1 2 1 2 2 2 3 2 3
由上式可见,在主应力空间里,各向同性弹性体独立的弹性 常数只有两个。其中,λ、μ分别称为Lamé 弹性常数。
2017/10/13
9
第三章 本构关系
一、线性弹性体的本构方程——各向同性弹性体 在任意的坐标系里,各向同性弹性体的本构方程
C13 C23 C33 称
C14 C24 C34 C44
0 0 0 0 C55
0 x 0 y 0 z 0 xy C56 yz C66 zx
2017/10/13
5
第三章 本构关系
弹塑性力学
(土木工程学院硕士生学位课程)
第三章 本构关系 华侨大学文化古建筑保护研究中心
第三章 本构关系
本章学习要点:
掌握各项同性材料的广义Hooke定律
掌握弹性应变能密度函数的概念及计算 理解初始屈服、后继屈服以及加卸载的概 念 掌握几个常用的屈服条件 理解弹塑性材料的增量和全量本构关系的 基本概念
z C31 x C32 y C33 z C34 xy C35 yz C36 zx
ij Cijkl kl
2017/10/13
Cijkl Cijlk
4
第三章 本构关系
一、线性弹性体的本构方程 ——具有一个弹性对称面的线
性弹性体
x C11 C12 C22 y z 对 xy yz zx
可以表示为如下的一般形式:
x 2 x , xy xy
y 2 y , yz yz z 2 z , zx zx
ij kkij 2ij ij 2ij
xy C41 x C42 y C43 z C44 xy C45 yz C46 zx yz C51 x C52 y C53 z C54 xy C55 yz C56 zx zx C61 x C62 y C63 z C64 xy C65 yz C66 zx
7
第三章 本构关系
一、线性弹性体的本构方程——横贯各向同性弹性体
C12 C x 11 C22 y z 对 xy yz zx
C13 C12 C11 称
0 0 0 C44
0 x 0 y 0 z 0 xy 0 yz C66 zx
2017/10/13
6
第三章 本构关系
一、线性弹性体的本构方程——正交各向异性弹性体
1 x Ex y z xy yz zx
性,故也称为物理关系,它实际上是一组联系力学参数和运动学
参数的方程式,即所谓的本构方程。
2017/10/13
3
第三章 本构关系
一、线性弹性体的本构方程——一般线弹性体
x C11 x C12 y C13 z C14 xy C15 yz C16 zx y C21 x C22 y C23 z C24 xy C25 yz C26 zx