az91d 镁合金压铸件之表面缺陷分析nb 上盖
压铸件缺陷分析

产生原因
防止方法
名称
沿开模具方向
1. 型腔表面有损伤。
1. 修理模具表面损伤处, 修正
铸件表面呈线条
2. 出模方向斜度太小或倒斜。
斜度,提高光洁度。
状的拉伤痕迹, 有 3. 顶出时偏斜。
2. 调整顶杆,使顶出力平衡。
一定深度, 严重时 4. 浇注温度过高或过低、模温
3. 更换脱模剂。
压铸机性能,所提供的能量能否满足所需要的压射条件:压射力、压射速度、锁模力是 否足够。压铸工艺参数选择及调控是否合适,包括压力、速度、时间、冲头行程等。 2) 压铸模引起
模具设计:模具结构、浇注系统尺寸及位置、顶杆及布局、冷却系统。 模具加工;模具表面粗糙度、加工精度、硬度。
模具使用:温度控制、表面清理、保养。 3) 压铸件设计引起
压铸件缺陷分析
一、 缺陷分类及影响因素 1.缺陷分类 1) 几何缺陷:压铸件形状、尺寸与技术要求有偏离;尺寸超差、挠曲、变形等。 2) 表面缺陷:压铸件外观不良,出现花纹、流痕、冷隔、斑点、缺肉、毛刺、飞边、缩痕、 拉伤等。 3) 内部缺陷:气孔、缩孔、缩松、裂纹、夹杂等,内部组织、机械性能不符合要求。 2.影响因素 1) 压铸机引起
1. 降低浇注温度,减少收缩量。
查,孔洞形状不 规则、不光滑、
收缩而得不到金属液补偿而 造成孔穴。
2. 提高压射比压及增压压力, 提高致密性。
表面呈灰色;大
2. 浇注温度过高,模温梯度分
3. 修改内浇口,使压力更好传
而集中为缩孔、
布不合理。
缩孔 小 而 分 散 为 缩 3. 压射比压低, 增压压力过低。
高熔点合金。
加而不断扩大和
4. 浇注温度过高。
AZ91D镁合金激光熔凝层的缺陷

PTCA (PAR T:A P H YS.TEST.)2009年第45卷4试验与研究AZ91D镁合金激光熔凝层的缺陷赵 宇1,2,崔振宇1,陈 莉1,赵 静1(1.长春工业大学先进结构材料省部共建教育部重点实验室,长春130012;2.吉林大学教育部汽车材料重点实验室,长春130025)摘 要:以A Z91D镁合金为研究对象,研究激光熔凝镁合金的工艺特点,分析熔凝层中出现的常见缺陷,并探讨其产生的主要原因。
结果表明:气孔、裂纹和夹杂是A Z91D镁合金激光熔凝层中存在的主要缺陷。
但只要熔凝过程中工艺参数选择合适,这些缺陷是可以避免或减少的。
关键词:镁合金;激光熔凝;缺陷中图分类号:T G166.4 文献标志码:A 文章编号:100124012(2009)0420202203Defects in Laser R emelting Layer of AZ91D Magnesium AlloyZHAO Yu1,2,CUI Zhen2yu1,CHEN Li1,ZHAO Jing1(1.Key Laboratory of Advanced Structural Materials,Ministry of Education,Changchun University of Technology,Changchun130012,China;2.The Key Lab of Automobile Materials,The Ministry of Education,Jilin University,Changchun130025,China)Abstract:The technology characteristic of magnesium alloy after laser remelting and the common defects in the solidifying layer were studied.The prime reasons which bring microstructure defection were discussed also.The results show that the primary defects in solidifying layer of AZ91D magnesium alloy are gas cavity,crack and inclusion.These defects can be avoided or decreased if only the technology parameters are selected in reason during remelting process.K eyw ords:magnesium alloy;laser remelting;defect 镁合金在近代工程金属材料应用中的增长率已远远高于铝、铜、锌、镍以及钢铁。
压铸产品质量缺陷分析及解决对策

龚春2011-09-30 龚春
压铸产品质量缺陷分析及解 决对策
分类: 分类: 冷隔、拉伤、裂纹、变形、花纹、 冷隔、拉伤、裂纹、变形、花纹、 斑点、网状毛刺、凹陷、欠铸、 斑点、网状毛刺、凹陷、欠铸、夹 外观类) 皮(外观类) 气孔、缩孔、气泡、夹杂( 气孔、缩孔、气泡、夹杂(内在组 织缺陷) 织缺陷)等
TU5JP4进排气浇口直冲型芯有被冲凹陷的立即进行更换以减少变形
上模时压铸机上的4根推杆一定要长度一样, 公差在0.5mm内,以保证顶出平稳
开模后静模弹簧推杆没有出来,说明已经卡死不 起作用了,需修模
DUG:977机框下抽芯
变形:
1. 铸件几何形状与图纸不符 2. 整体变形或局部变形 产生的原因: 产生的原因: 1. 铸件结构设计不良,引起不均匀收缩 铸件结构设计不良, 2. 开模过早,铸件刚性不够 开模过早, 3. 顶杆设置不当,顶出时受力不均匀 顶杆设置不当, 4. 切除浇口方法不当 5. 由于模具表面粗糙造成举报阻力大而引起顶出时变形 改进措施 (检查分析判断是开模变形还是顶出变形\收缩变形) 检查分析判断是开模变形还是顶出变形\收缩变形) 1. 改进铸件结构,比如机体人为增加倒拔,倒钩平衡包紧力, 改进铸件结构,比如机体人为增加倒拔,倒钩平衡包紧力,人为增 加渣包等。 加渣包等。 2. 调整开模时间 3. 合理设置顶杆位置及数量,有必要加6 合理设置顶杆位置及数量,有必要加6根推杆 4. 选择合适的切除浇口方法比如热切边 选择合适的切除浇口方法比如热切边 5. 加强模具型腔表面抛光0.4 减少脱 加强模具型腔表面抛光0.4,减少脱模阻力 0.4, 6、上模时推杆配平 7、更换断推杆 8、检查有无倒拔,及时消除 检查有无倒拔,
镁合金压铸常见缺陷及对策

镁合金压铸常见缺陷及对 策
欠陷現象 氣泡 縮陷
续 页 (3)
原因 方法 開模太快
鑄物中含氣量太多
模內溶湯壓力增加 局部冷卻(厚肉部)
對策 手段 1.制品模內時間加強; 1.溶湯的除氣加強; 2.進料管的充填率增多; 3.射出速度放慢; 4.逃氣改善; 5.離型劑柱塞,油減量. 上升鑄造壓力. 鑄入重量增加. 改善模溫的分佈,加強熱點的冷卻.
镁合金压铸常见缺陷及对 策
C.烧 付
模具局部的遇热现象引起,模具与熔汤发生 了溶着现象,特别易发生在成形的小孔; 还有汤口的正冲部也常发生,或是模具倒勾处; 对策有: 降低局部模温,加强离型剂喷涂,抛光模具.
镁合金压铸常见缺陷及对 策
D.麻 面
三种可能:
1.模具腐蚀发生龟裂纹路,造成制品表面如哈密瓜 细纹的外观缺陷;
表面造成冷却而凝固,在充填完之前,后续熔汤所带来的热
量无法把先前所凝固部份再溶解而引起,或者,汤在流动的
途中即已经引起凝固现象,汤痕的深度很浅的话,对于机械
的强度是不至于发生问题,但是若制品要再经过电镀或涂装
的话,会引发表面抛光工时太多,甚至烤漆后表面起泡等等
问题,是不可不防的.
镁合金压铸常见缺陷及对 策
镁合金压铸常见缺陷及对 策
欠陷現象 鑄造裂紋
续 页 (2)
原因
對策
方法
手段
1.制品的模肉時間加長;
頂出條件改善
2.冷卻速度加快;
3.加長循環時間;
1.確認脫模角;
2.制品模內時間縮短;
模具修正或鑄造條件改善 (拉模、頂出力)
3.循環時間縮短; 4.模具表面拋光;
5.冷卻減少;
6.離型劑確認或加長.
航空镁合金铸件常见铸造缺陷的分析及克服方法

航空镁合金铸件常见铸造缺陷的分析及克服方法摘要:总的来说,航空镁合金铸件生产工艺和传统铝合金铸件生产工艺之间存在很大区别,实际铸件废品类型以及形成原因也存在很大不同,人们可以根据航空镁合金铸造理论,以及生产事件,对铸造过程中容易出现缺陷的地方进行研究。
本文以某型航空机匣壳体铸件为研究对象,对其缺陷产生机理以及克服方式进行总结,希望能够对相关工作起到一定帮助作用。
关键词:航空;镁合金铸件;铸造缺陷本文所研究的铸件是国内浇铸重量较大的镁合金铸件,在浇铸过程中,准备了很多模具和数套测具,这其中还包括冷铁。
更为重要的是,该铸件从制芯到浇铸的整个周期为几天,但由于准备周期很长,砂芯吸湿严重,为后续浇铸操作带来了极大难度,熔化量也能达到几吨。
在该铸件铸造过程中,常见缺陷基本上均能体现出来,代表性极强,如氧化夹杂、缩孔以及憋气等等。
1.缩孔的克服1.1缩孔产生机理当合金液浇入铸型之后,会吸收很多热量,此时,合金液温度大幅下降,进而出现液态收缩问题。
一般来说,液态收缩以及凝固收缩产生的体积缩减,与外壳尺寸缩小所造成的体积缩减相近,便不会出现缩孔问题。
如果合金液态收缩以及凝固收缩全部超过硬壳固态收缩,会出现缩孔问题,具体产生的条件是铸件凝固,该种凝固顺序是由表及里,缩孔出现地点为最终凝固位置。
1.2产生部位和克服手段具体铸件示意图为图1所示,缩孔产生部位主要集中在1号和2号位置,具体克服手段如下:第一,在有缩孔缺陷的部位,工作人员可以选择在2号部位增加暗冒口。
第二,在组芯合箱时,应保证铸件内部存在一定温度,最佳温度范围为40到50℃。
第三,增加冷铁,主要设计在1号位置处。
通过上述措施的应用,除了暗冒口补缩效果较差外,其他方面均满足要求。
为了将暗冒口作用全面展示出来,除了增加暗冒口之外,还要使得该冒口向保温冒口转变。
总的来说,加大暗冒口显得十分困难,所以,工作人员可以使用保温棉沿着冒口内壁,使其充分贴合,强化其保温特性,而且这种保温冒口完全能够将缩孔问题克服[1]。
AZ91D镁合金表面复合镀层局部腐蚀现象解析及化学镀Ni_P_Cu的研究

文章编号:1007-1385(2009)03-0040-05AZ91D镁合金表面复合镀层局部腐蚀现象解析及化学镀N i-P-Cu的研究沈 波1 任玉平2 杨中东2 裴文利2 王继杰1 樊占国2 秦高梧2(1.沈阳航空工业学院材料系,辽宁沈阳 110136; 2.东北大学材料与冶金学院,辽宁沈阳 110004)摘 要:采用SE M-E DX和光学显微镜等分析手段,研究了AZ91D镁合金化学镀N i-P/电镀Cu/N i/Cr复合镀层盐雾试验时局部严重腐蚀的原因。
研究发现,AZ91D镁合金基体的孔隙缺陷是由于其在化学镀和电镀过程中,缺陷处未能形成致密镀层而出现凹陷贯穿性的微孔所致。
在此基础上,探讨了加入微量Cu的化学镀N i-P工艺,Cu能显著细化镀层胞状组织尺寸,抑制表面胞状凸起;极化曲线和盐雾测试表明Cu微合金化的N i-P镀层能明显改善N i-P化学镀层的耐蚀性能。
关键词:AZ91D镁合金;盐雾试验;极化曲线;局部腐蚀;化学镀;N i-P-Cu中图分类号:T Q031.6文献标识码:A AZ91D为目前研究和应用最广的镁合金之一,该合金铸件主要在室温下使用,具有质轻、比强度和比刚度高、吸震、耐腐蚀、防电磁干扰能力强以及成型性能和热扩散能力好的特点[1-2]。
尽管AZ91D镁合金有如上的优异性能,但由于其电极电位很负,所以化学活性很高;另外, AZ91D的组织是由α-Mg和Mg17A l12金属间化合物组成,它们之间的电极电位差较大,造成其表面电化学性质极不均匀,容易形成电偶腐蚀,因而镁合金耐腐蚀性很差,这限制了其进一步推广应用[1-2]。
因此对镁合金部件必须进行表面防护处理。
一般镁合金常用的表面处理方法有化学转化膜、微弧氧化以及化学镀和电镀等。
化学转化膜主要是铬酸盐或磷酸盐转化膜,主要作为后续涂料涂层的前处理以增加漆膜的结合力,是目前镁合金最广泛应用的防腐处理方法;微弧氧化可以得到类似陶瓷的膜层,具有一定的耐蚀性和高的硬度以及较好的耐磨性,但是该类氧化膜一般粗糙多孔,所以氧化后必须进行封闭处理或有机涂覆,以进一步改善耐蚀性。
AZ91D镁合金表面真空蒸镀锌铝复合涂层的研究

关键词 : AZ91D 镁合金 ; 真空蒸镀 ; 耐蚀性 do:i 10 . 3969 /.j issn. 0258- 7076. 2010. 05. 010 中图分类号 : TG174. 444 , TG178 文献标识码 : A 文章编号 : 0258- 7076( 2010) 05- 0678- 06
表 1 AZ91D 镁合金化学成分 (%, 质量分数 )
Table 1 Ch e m ical composition of AZ 91D m agn esiu m a lloys (%, m ass fraction)
E lem en t C on ten t Al 9. 3200 Mn 0. 2000 Zn 0 . 6800 Si 0 . 0480 Cu 0 . 0010 Ni 0. 0005 Fe 0. 0031 Be 0 . 0010 Mg Ba. l
[ 1]
素 , 它的加 入不会 增加 镁合金 回收 利用 的成本。 ( 2) 铝的氧化膜致密坚硬, 且在大气中具有自修复 性。 ( 3) 铝与其他金属形成的中间化合物 ( 如铝锌 合金, 铝镁合金 ) 可以显著提高镁合金的耐蚀性 , 还可以作为一种耐磨层存在
[ 12 , 13 ]
。由于铝镁的熔
点相近 , 它们之间的扩散比较困难 , 所以本文选用 熔点较低的锌作为中间过渡层 , 通过热扩散 来提 高基体与涂层之间的结合强度。
1 实
1 . 1 材
验
料 10 mm 2 . 5 mm, 成分列于表 1 。
。
实验 采用的基 体材料是 铸造镁合 金 AZ91D, 尺寸为 10 mm 将试样分别用 600 号及 1000 号的 SiC 砂纸打磨并 抛光后 , 先用碱式除油剂除去表面油污, 再用 85 % 的 H 3 PO4 浸蚀 30~ 40 s , 去除表面氧化膜, 并用蒸 馏水清洗后浸泡在无水乙醇中备用。蒸镀所 用的 纯锌及纯铝均为铸态。 1 . 2 设 备 改进的 HUS 5GB 型真空镀膜机 ( 图 1), 自制 的热压模具 ( 图 2)。
镁合金压铸件质量缺陷控制浅析论文

镁合金压铸件质量缺陷控制浅析论文
预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制
镁合金压铸件质量缺陷控制浅析【摘要】本文简要的介绍了镁合金压铸产品的主要缺陷,主要分析了影响铸件质量的相关因素,如压铸模具、压铸工艺、压铸件结构、压铸合金及压铸作业等,提出了质量控制的相应方法和管理规程,使镁合金铸件质量得到进一步提高。
【关键词】材料;镁合金缺陷;质量控制;管理规程
我公司引进的布勒压铸机,最大锁模力3200kn,活塞动态注射力786kn,增压注射力2033kn。
从工作稳定性来说,在凝固阶段中根据系统的类型可生产非常高的最终压射压力;从控制能力来说,可以对速度和最终压力曲线进行编程以适合压铸零件的几何形状,实行控制参数量。
那如何利用设备的优良性能,压铸出高品质的铸件,清楚铸件质量控制中存在的缺陷,全过程的质量控制和多方法的质量管理将起到关键性的作用。
1.镁合金压铸件主要缺陷和形成原因
镁合金压铸产品的缺陷很多,大致可以分为两大类,一类是尺寸不良,如多料,缺料,裂纹,流痕,平面度不良等;另一类是表面状态不良,如氧化,黑点,气孔等。
前者一般属于物理性质,后者属于化学性质。
总体来讲,镁合金压铸件主要可概括为冷、裂、气、欠等几大缺陷。
1.1冷
即为冷隔,多出现在大铸件离內浇口远的区域,是镁合金液相互对接或搭接单位熔合而出现的缝隙。
由于合金液分成若干股地流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AZ91D 镁合金压铸件之表面缺陷分析— NB 上盖
由于镁合金具有优异的刚性、散热能力和良好的电磁遮蔽效果等好处,所以现在已被广泛运用在3C电子产品上。
而在众多的镁合金成形制程中又以压铸制程最被广为采用,因此本文将针对以热室机压铸法所制造NB上盖产品
(AZ91D),由现场取得具表面缺陷的不良品,如热裂模、表面氧化、热裂、顶出变形、流纹等,然后藉由外观和微观分析找出各个缺陷确切的形态,再配合上统计缺陷位置分布和成分分析,以证实缺陷发生的原因。
前言镁合金具有质轻、高比强度、耐震等优点,以此在航空器材、运输工具、信息产品上均有相当广泛的应用实例;另外,镁合金与工程塑料比较,也具有优异的刚性、散热能力和良好的电磁遮蔽效果,所以近年来在3C(计算机、通讯、消费性电子)可携式产品大展光芒。
目前镁合金零组件制造方式大多是以压铸法为主,例如:热室机压铸法或冷室机压铸法,虽然近年来还有以半固态射出成形为主的触变成形
(Thixo-molding)及流变成形(Rheo-molding)等新制程的推出,但由于技术上仍无法突破,所以一般还是以压铸法生产镁合金为主。
在各种不同镁合金种类当中,都含有相当比例的铝元素(铝含量约介于1-10%)以作为主要添加合金元素,它与镁元素会析出的β 相,使基地具有散布强化的效
果,以便提升铸造性能、抗腐蚀能力以及机械性能。
其它次要添加合金元素,例如:锌元素的添加亦会提升机械性质和铸造性能;锰元素则会和铝形成化合物,同时固溶铁、钴、镍元素,可将Fe+Ni+Co/Mn控制在一定值之下,并改善耐蚀性;添加铍元素则可以有效减少熔融时氧化物的形成,提升熔汤的清净度。
此外,控制少量重金属元素的添加,也可有效提升镁合金抗腐蚀的效果。
而目前利用镁合金作成的3C 产品(NB机壳、手机外壳、PDA等),仍以
AZ91D(Mg-9%Al-1%Zn)镁合金为主,主要是因为其机械性、铸造性、耐蚀性均能满足产品的需求,所以最常被采用。
但在以压铸法生产此类镁合金产品时,却面临了良率无法提升的重大问题,其最主要原因是表面的质量不良,必须靠后段表面研磨修整、补土等程序来补正,而耗费大量成本与时间。
因此,本文将针对AZ91D的压铸缺陷做探讨,包括成因、种类与对策等,期能对镁合金压铸产品的缺陷有所了解,并提升镁合金产品的竞争力。
表一AZ91D铸锭成分
实验方法本次压铸用镁合金AZ91D成分如表一,产品为笔记型计算机LCD上盖,采用热室机压铸法(HotChamberMa- chine)制造,压铸参数如表二所示。
压铸后收集现场各种含表面缺陷的不良品来加以统计分析。
表二压铸参数
首先以现场初步巨观判定不良品缺陷种类,再由SEM观察试片缺陷的微观形态,并使用EDS作定性分析,得知缺陷位置的元素成分。
透过SEM和EDS的观察分析再与现场判定作一比对,然后配合巨观以及微观的方式得知各个缺陷真正的形态、发生原因和最常发生位置,并提出解决表面缺陷发生的对策。
结果与讨论针对从现场所收集到的压铸镁合金产品,归纳分析后发现其常见的缺陷有:热裂模、表面氧化、热裂、顶出变形、流纹等,以下就这些铸造缺陷做分析讨论。
1.热裂模
其巨观形态如图一所示,铸件表面具有类似网状的结构,而从统计分析发现此类缺陷最常发生的位置大多集中在进
模口附近。
若从微观上观察,可以明显看出有凸起的连续网状组织形成,如图二所示。
若以EDS分析热裂模发生的区域与基地的成分,发现两者的成分几乎相同,如图三(b),(c) 所示。
推究此缺陷发生的原因,可能是因为近模口附近的金属熔液流速较快且温度高,容易造成铸模的冲蚀,或因为温度的变动,发生交替的压张应力而产生表面裂纹。
图三热裂模区域之显微结构与成分分析2.表面氧化在镁
合金的NB压铸件表面常可发现有许多小黑点,并散布在表面的任何位置,如图四所示。
藉由SEM观察表面黑色位置的组织,则呈现出许多白色的颗粒,如图五。
若再以EDS 分析这些白色小颗粒并与基地作比对分析,发现在颗粒上的
氧元素比例相对的高出许多,如图六所示,因此很有可能是一些氧化物的生成,如MgO、Al2O3等。
由于镁的活性极高,容易与氧元素键结反应,所以在镁锭熔解炉内会通入保护气体,目前通常是以SF6+CO2当作保护气氛,Mg和SF6 的反应式:SF6+ Mg(1)+ A ir→MgO(s)+MgF2(s)+SF6 ↑其中Mg和SF6 反应会产生MgO和MgF2 的氧化层在镁汤表面,以防止熔融镁液遭受氧化。
一旦保护气氛SF6浓度不够,镁汤会很容易氧化,而在浇铸过程将这些氧化物带入铸件中。
3. 热裂从巨观来看,此缺陷有着深浅不一且不规则外形的黑色裂缝(图七),有时甚至会穿透过铸件的背面(图八),因此对于铸件的质量有很大的影响。
进一步以SEM观察裂缝,则可以很明显看到裂缝是沿着晶粒界破坏,如图九,而且在裂缝边缘的组织也较为松散,有许多小的微裂缝。
依据统计分析发现,热裂大都发生在铸件断面改变处或凹
角的地方,这是因为此处在凝固收缩时容易受到模具的局限而产生应力使之变形,而若这个区域又是较晚凝固的部分,则很容易产生松缩组织,使得材料强度降低,因而产生热裂。
此外,从裂缝显微组织来看,也常发现夹杂有非镁材料基
地相的元素之颗粒存在,而其可能的来源有如:模具表面
涂模剂中的有机化合物、保护气体SF6 与镁材料反应生成
的MgS 或MgF2、氧化生成物MgO或CaO、防止镁汤液面燃烧加入的助熔剂等等,任何会与镁反应生成的不纯物。
因此其真正的原因相当复杂,仍待进一步研究。
由图十裂缝中的夹杂物及EDS 分析结果得知,其具有相当高含量的Ca存在。
综合以上论点,热裂发生位置大多都是在凝固收缩时受限于模具然后产生应力之处,而在这些位置若又是最后凝固或充填的区域,其本身就较容易形成松缩组织或夹杂物,再配合应力的促使,使铸件从晶界上开始变形生成裂缝。
4.顶出变形由于缺陷巨观型态与热裂相当类似,所以通常此类缺陷易与热裂混淆。
其巨观上与热裂最明显的不同点在于它的裂缝大部分看似白白亮亮,并不像热裂的黑色裂缝,但若顶出变形的裂缝很深,则无法第一时间判断出为何种缺陷。
此外,其发生位置多集中在顶出销附近,与热裂不同。
若从微观组织来看就可以清楚分辨出来,如图十一所示,在靠近裂缝两旁的基地有层状的迭纹,而且裂缝中也没有明显的白色颗粒;反观,在靠近热裂的裂缝两旁(图九),它的基地均沿着晶粒间破断并且向下延伸,所以才有不规则的破断面。
另外,顶出变形造成的裂缝深度一般也比热裂来得浅,甚至还可以看见裂缝底部的晶粒。
图十热裂纹中夹杂特成分分析利用EDS 分析裂缝附近成分元素,其成分也与基地相成分一致,如图十一(b)所示,所以在此也可以与热裂做一个分野。
虽然有时无法从现场直接分辨出热裂或顶出变形,但藉由观察显微组织和成分分析即可确切地辨识出为何种缺陷。
5. 流纹对于本次取样的NB
压铸薄件来说,流纹为发生机率较高的表面缺陷,通常发
生在薄件之水平表面。
从巨观照片来看,其缺陷所在位置具有不规则的折纹,痕迹犹如流线波浪一般,如图十二所示,是为镁液在模内流动所造成的纹路,有时严重的话,表面还会有凹凸不平。
从SEM观察发现,这些流纹亦会造成微小的裂缝,如图十三,虽然它的裂缝破断方式也是沿着晶界方向行进(与热裂裂缝破断方式一致),但是裂缝的深度相
当浅。
而且在裂缝中并没有发现类似热裂的夹杂氧化物存在,所以流纹所产生的裂缝成因并不是夹杂氧化物所造成。
从
现场经验得知,当喷洒离型剂不足的话,容易造成流纹产生,或是以模具设计来看,当浇道设计不良,转角太直,镁液在流动到转角时会形成乱流,亦会产生流纹的缺陷。
结论虽然至目前为止镁合金压铸品已被大量的应用在
各种3C产品上,但因受镁合金的高活性、热含量低及产品厚度极薄等因素的影响,其压铸技术仍有待改进,以提升产品的良品率。
因此我们有必要针对现场的产品缺陷做一
有系列的收集、统计,再经由研究分析找出个中的原因。
本次讨论压铸镁合金的表面缺陷包括有:热裂模、表面氧化、热裂、顶出变形以及流纹。
其中热裂模缺陷发生的可能原
因是在进模口的金属熔液流速较快且温度高,容易造成模具冲蚀,或是因温度变动发生交替的压张应力;表面氧化发生有可能是因为镁汤内含的氧化物或与铸模涂模剂的反应物;
热裂缺陷主要发生在容易形成松缩组织或夹杂物且应力集中的位置;顶出变形成因在于顶出销顶出的时间不当,才造成顶出销附近形成裂缝;流纹缺陷的成因则为喷洒离型剂不足或浇道设计不良造成转角太直,使镁液流动时会形成乱流。
经由以上分析,我们知道压铸镁合金的缺陷种类相当多,其发生原因也很复杂,常常是多项因素造成;因此如果可以配合现场制程参数、缺陷收集及学理研究,做有系列的探讨,应该对镁合金压铸技术的提升有所帮助。
本文作者:卓学渊、黄士龙、林惠娟。