AO工艺设计参数

合集下载

污水处理AO工艺主要设计参数

污水处理AO工艺主要设计参数

污水处理中A/O工艺主要设计参数经验总结加简单计算①HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3②污泥回流比:30~100%,具体根据污泥生长所处阶段确定,保证污泥浓度在设计浓度左右③混合液回流比:300~400%,混合液回流主要目的是将硝化作用下产生的氨氮送到A段进行反硝化,生成氮气,从而降低总排水氨氮浓度。

所以回流比除要调节平衡污泥浓度外,还有促进反硝化反应顺利进行的目的。

④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d⑦混合液浓度x=3000~4000mg/L(MLSS)普通生活废水取高值,部分生化性能较差工业废水,MLSS取值3000以下⑧溶解氧(重点项目):A段DO<0.2~0.5mg/L???? O段DO>2~4mg/L⑨pH值:A段pH =6.5~7.5?????O段pH =7.0~8.0⑩水温:硝化20~30℃????????????????? 反硝化20~30℃⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。

???????????????? 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计)⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。

微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。

??????????????????????? Ro=a’QSr+b’VX+4.6Nr ?????????????????????????? a’─平均转化1Kg的BOD的需氧量KgO2/KgBOD????????????????????????? b’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。

AO工艺标准设计计算参考

AO工艺标准设计计算参考

A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值7.0~7.5 水温14~25℃BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。

采用生物处理法是去除废水中有机物的最经济最有效的选择。

废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。

生活污水中氮的主要存在形态是有机氮和氨氮。

其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。

废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。

废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。

在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。

AO工艺设计计算参考

AO工艺设计计算参考

A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值7。

0~7。

5 水温14~25℃BOD5=160mg/L VSS=126mg/L (VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3—N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6—9 SS〈30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。

采用生物处理法是去除废水中有机物的最经济最有效的选择。

废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在.生活污水中氮的主要存在形态是有机氮和氨氮.其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%.废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。

废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。

在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。

AO工艺设计计算公式

AO工艺设计计算公式

AO工艺设计计算公式A/O工艺设计参数在A/O工艺的设计中,需要考虑以下参数:1.水力停留时间:硝化不少于5-6小时,反硝化不超过2小时,A段:O段=1:3.2.污泥回流比:50-100%。

3.混合液回流比:300-400%。

4.反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N。

5.硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d。

6.硝化段污泥负荷率:BOD5/MLSS<0.18KgBOD5/KgMLSS·d。

7.混合液浓度x=3000-4000mg/L(MLSS)。

8.溶解氧:A段DO2-4mg/L。

9.pH值:A段pH=6.5-7.5,O段pH=7.0-8.0.10.水温:硝化20-30℃,反硝化20-30℃。

11.碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。

反硝化反应还原1gNO3--N将放出2.6g 氧,生成3.75g碱度(以CaCO3计)。

12.需氧量Ro:单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。

微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。

Ro=a’QSr+b’VX+4.6Nr。

其中,a’为平均转化1Kg的BOD的需氧量KgO2/KgBOD,b’为微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。

13.Nr为被硝化的氨量,kd/d4.6为1kgNH3-N转化成NO3-所需的氧量(KgO2)。

对于不同类型的污水,其a’和b’值也有所不同。

最后,还需要考虑供氧量的问题。

由于充氧与水温、气压、水深等因素有关,因此氧转移系数应作修正。

ρ表示所在地区实际压力(Pa)与标准大气压下Cs值的比值。

公式为ρ=实际Cs值/(Pa)=所在地区实际压力(Pa)/(Pa)。

AO工艺设计计算参考

AO工艺设计计算参考

A1/O 生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3 废水水质如下:PH 值7.0~7.5 水温14~25℃ BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L 根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L 根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30 ℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。

采用生物处理法是去除废水中有机物的最经济最有效的选择。

废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。

生活污水中氮的主要存在形态是有机氮和氨氮。

其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。

废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。

废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。

在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。

AO法工艺设计参数

AO法工艺设计参数

AO法工艺设计参数AO法工艺设计参数是指在AO法(Advanced Oxidation Process,高级氧化工艺)中,针对不同的废水处理需求和实际情况,确定的一系列重要参数。

通过合理选择和调节这些参数,可以最大程度地提高AO法的处理效果和经济效益。

1.水质参数:水质参数是指废水的基本性质和组成。

它们包括有机物浓度、COD (化学需氧量)、BOD(生化需氧量)、氨氮浓度等。

这些参数可以进一步帮助确定AO法中氧化、还原和微生物的作用。

2.pH值:pH值是指废水的酸碱性程度。

pH调节对AO法的进行起到重要作用,因为pH的改变可以影响废水中的有机物的溶解度、离子交换、金属沉淀等。

通常情况下,废水的pH在3-10范围内能够满足AO法的处理要求。

3.温度:温度是指废水的温度。

温度对AO法的反应速率和微生物的活性有一定的影响。

较高的温度可以加快废水中有机物的降解速率,但也会增加处理系统的能耗。

4.系统氧气供给率及供氧方式:AO法是通过氧化和还原反应来处理废水的,氧气在反应中起到了重要作用。

氧气供给率和供氧方式的选择和调节可以影响废水中的溶解氧浓度和传质速率。

其中供氧方式包括通气法、压力曝气法等。

5.反应时间:反应时间是指废水在AO法中处理的时间。

根据废水的性质和要求,确定合适的反应时间可以使AO法充分发挥其降解能力,同时避免废水过度处理导致成本增加。

6.填料类型和用量:填料是指在AO法反应器中用于增加接触面积、提高反应效率的材料。

常用的填料包括活性炭、陶粒等。

填料的类型和用量的选择与反应器的设计和处理效果密切相关。

7.水力停留时间:水力停留时间是指废水在AO法中停留的时间。

废水的水力停留时间可以通过调整反应器的容积和进出水流量来控制。

合适的水力停留时间可以保证废水在AO法反应器中充分接触和反应。

8.微生物的种类和菌种:微生物在AO法中起到了重要作用,因为它们能够降解废水中的有机物。

选择适宜的微生物种类和菌种,可以提高废水的降解效率和处理效果。

AO法工艺设计参数

AO法工艺设计参数

AO法工艺设计参数首先,AO法工艺中的一个重要设计参数是温度。

温度可以影响到整个生产过程中的物理变化和化学反应。

在AO法工艺中,温度的选择必须要符合物料的特性和所需产品的性能要求。

如果温度过高或过低,都会对产品质量产生不利影响,因此需要根据实际情况进行合理选择。

其次,时间也是AO法工艺中的一个重要设计参数。

时间的长短直接影响到生产周期和产量。

在AO法工艺中,通过调整不同工序的时间,可以达到最佳的生产效果。

例如,在一些生产过程中,时间过短会导致产品质量不稳定,时间过长则会浪费资源和时间。

因此,合理控制时间是AO 法工艺设计的关键。

另外,液体比例也是AO法工艺设计中需要考虑的参数之一、液体比例在生产过程中是非常重要的,它会直接影响到产品的化学成分和物理性能。

在AO法工艺中,通过调整不同液体的比例,可以控制产品的颜色、质地、稳定性等方面的性能。

因此,液体比例的选择需要根据具体要求和实际情况进行合理调整。

此外,气体浓度也是AO法工艺设计中需要考虑的一个参数。

在一些生产过程中,需要通过气体对液体进行搅拌、混合或反应。

因此,气体浓度的选择会影响到产品的均匀性和反应效果。

在AO法工艺中,需要根据具体要求和实际情况,合理选择气体浓度,以达到最佳的生产效果。

最后,pH值也是AO法工艺设计中的一个重要参数。

pH值可以影响到溶液的酸碱性,从而影响到产品的稳定性和性能。

在AO法工艺中,通过调整pH值,可以改变液体的酸碱性,从而控制产品的性能。

因此,在AO法工艺设计中,需要根据产品的需求和实际情况,合理选择pH值,以达到最佳的生产效果。

综上所述,AO法工艺设计中的参数包括温度、时间、液体比例、气体浓度和pH值等。

这些参数的合理选择是保证产品质量和生产效率的重要因素。

在实际应用中,需要根据具体要求和实际情况,结合经验和科学的方法进行设计,以达到最佳的工艺效果。

污水处理AO工艺主要设计参数

污水处理AO工艺主要设计参数

污水处理中A/O工艺主要设计参数经验总结加简单计算①HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3②污泥回流比:30~100%,具体根据污泥生长所处阶段确定,保证污泥浓度在设计浓度左右③混合液回流比:300~400%,混合液回流主要目的是将硝化作用下产生的氨氮送到A段进行反硝化,生成氮气,从而降低总排水氨氮浓度。

所以回流比除要调节平衡污泥浓度外,还有促进反硝化反应顺利进行的目的。

④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d⑦混合液浓度x=3000~4000mg/L(MLSS)普通生活废水取高值,部分生化性能较差工业废水,MLSS取值3000以下⑧溶解氧(重点项目):A段DO<0.2~0.5mg/LO段DO>2~4mg/L⑨pH值:A段pH =6.5~7.5O段pH =7.0~8.0⑩水温:硝化20~30℃反硝化20~30℃⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。

反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g 碱度(以CaCO3计)⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。

微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。

Ro=a’QSr+b’VX+4.6Nra’─平均转化1Kg的BOD的需氧量KgO2/KgBODb’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。

上式也可变换为:Ro/VX=a’·QSr/VX+b’ 或Ro/QSr=a’+b’·VX/QSrSr─所去除BOD的量(Kg)Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO2/KgVSS·dRo/QSr─比需氧量,即去除1KgBOD的需氧量KgO2/KgBOD由此可用以上两方程运用图解法求得a’ b’Nr—被硝化的氨量kd/d 4.6—1kgNH3-N转化成NO3-所需的氧量(KgO2)几种类型污水的a’ b’值⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水处理A/O工艺设计参数1.HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3在 A/O工艺中,好氧池的作用是使有机物碳化和使氮硝化;缺氧池的作用是反硝化脱氮,故两池的容积大小对总氮的去除率极为重要。

A/O的容积比主要与该废水的曝气分数有关。

缺氧池的大小首先应满足NO3--N利用有机碳源作为电子供体,完成脱氮反应的需要,与废水的碳氮比,停留时间、回流比等因素相应存在一定的关系。

借鉴于类似的废水以及正交试验,己内酷胺生产废水的A/0容积比确定在1:6左右,较为合适。

而本设计的A/ 0容积比为亚:2,缺氧池过大,导致缺氧池中的m(BOD)/m (NO3--N)比值下降,当比值低于1.0时,脱氮速率反趋变慢。

另外,缺氧池过大,废水停留时间过长,污泥在缺氧池内沉积,造成反硝化严重,经常出现大块上浮死泥,影响后续好氧处理。

后将A/O容积比按1:6改造,缺氧池运行平稳。

1.1、A/O除磷工艺的基本原理A/O法除磷工艺是依靠聚磷菌的作用而实现的,这类细菌是指那些既能贮存聚磷(poly—p)又能以聚β—羟基丁酸(PHB)形式贮存碳源的细菌。

在厌氧、好氧交替条件下运行时,通过PHB与poly—p的转化,使其成为系统中的优势菌,并可以过量去除系统中的磷。

其中聚磷是若干个基团彼此以氧桥联结起来的五价磷化合物,亦被称为聚磷酸盐,其特点是:水解后生成溶解性正磷酸盐,可提供微生物生长繁殖所需的磷源;当积累大量聚磷酸盐的细菌处于不利环境时,聚磷酸盐可分解释放能量供细菌维持生命。

聚β—羟基丁酸是由多个β—羟基丁酸聚合而成的大分子聚合物,当环境中碳源物质缺乏时,它重新被微生物分解,产生能量和机体生长所需要的物质。

这一作用可分为两个过程:厌氧条件下的磷释放过程和好氧条件下的磷吸收过程。

厌氧条件下,通过产酸菌的作用,污水中有机物质转化为低分子有机物(如醋酸等),聚磷菌则分解体内的聚磷酸盐释放出磷酸盐及能量,同时利用水中的低分子有机物在体内合成PHB,以维持其生长繁殖的需要。

研究发现,厌氧状态时间越长,对磷的释放越彻底。

好氧条件下,聚磷菌利用体内的PHB及快速降解COD产生的能量,将污水中的磷酸盐吸收到细胞内并转变成聚磷贮存能量。

好氧状态时间越长,对磷的吸收越充分。

由于好氧状态下微生物吸收的磷远大于厌氧状态下微生物释放出的磷,随着厌氧—好氧过程的交替进行,微生物可以在污泥中形成稳定的种类并占据一定的优势,磷就可以通过系统中剩余污泥的排放而去除(见图1)。

图1 A/O除磷工艺中P、BOD降解曲线研究发现:同时进行生物脱氮除磷工艺难以达到理想效果,因而A/O除磷工艺已经在城市污水处理的生产运行中被广泛使用。

1.2、停留时间的控制污水在系统中停留的时间越长,投资越大,运行成本也越高,合理地控制污水在系统中的停留时间对实际生产应用十分重要。

A、厌氧段停留时间磷的过量摄取与磷的释放量关系很大,一般来说,释放越彻底,则好氧段磷的吸收越充分。

但是,如果要使磷的厌氧释放比较彻底,则需提高厌氧段停留时间,这样一方面要增加造价,另一方面还会发生磷的无效释放,因此,确定适当的厌氧段停留时间是很重要的。

图2是污水在厌氧状态下的磷释放曲线,图中四条曲线分别表示厌氧进水处不同TP浓度时TP随t的变化。

可以看到,污水在厌氧段停留2 h左右就可以使磷的释放达到一定程度,此后磷的释放很缓慢。

图2 厌氧释磷与停留时间关系B、好氧段停留时间好氧段停留时间对于除磷也是一个较为重要的参数。

磷在好氧段的吸收受到吸收速率与吸收量等很多因素的限制。

但一般来说,在好氧段停留2.5~3 h后总磷一般可以降到1 mg/L以下,3.0~4.0 h后降到0.5 mg/L以下(见图3)。

图中四条曲线分别表示好氧段进水处不同TP浓度时TP随t的变化。

图3 好氧吸磷与停留时间关系因此,一般情况下好氧段停留时间保持在3.0~4.0 h为宜,有时考虑到有机物的降解与去除,适当延长停留时间到4.0~5.0 h,就可以基本保证出水水质。

从以上分析中可以看出,厌氧、好氧段停留时间比在1∶2~1∶2.5比较适宜。

C、二沉池停留时间二沉池的停留时间由下式确定:t=AH/Q式中H —二沉池有效水深,mA—二沉池表面积,m2Q—污水最大日平均时进水量,m3/h但在实际运行时可适量通过污泥回流比进行调节。

加大回流则t缩短,减少回流则t延长。

在A/O除磷工艺系统中,对二沉池的停留时间应严格控制,否则将会由于停留时间过长而导致磷在二沉池及剩余污泥处理系统中过量释放,从而影响除磷效果。

为了确定合理的停留时间,在A/O池出口处对混合液磷的释放进行一段时间的释磷测试,结果见表1。

表1 A/O池出口处混合液的磷释放测试结果mg/Lt(h) 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 24.0 48.0 TP0TP0.03 0.05 0.11 0.34 1.06 1.53 4.10 5.80 7.50 8.20 4.940.02 0.03 0.04 0.38 1.77 2.49 5.01 7.20 8.00 8.60 7.770.03 0.04 0.39 0.74 2.18 2.53 5.17 6.60 7.50 8.80 5.690.02 0.03 0.21 0.52 1.74 1.90 4.82 6.20 7.30 8.56 14.8 22.2 7.860.02 0.11 0.52 1.54 4.06 6.61 8.35 11.8 21.3 5.600.03 0.23 0.53 1.75 4.37 7.86 9.00 14.5 25.6 5.98注t——混合液静沉时间 TP——上清液总磷浓度 TP0——进水总磷浓度通过测试发现,污泥在缺少营养物质条件下(简称为缺养条件)磷的释放完全不同于在营养物质丰富条件下(简称为富养条件)磷的释放。

前者进行较缓慢,同样处于厌氧状态,缺养条件下磷的释放在开始2 h内进行得特别缓慢,之后释放速度逐渐加快,至完全释放需要很长时间;后者进行比较快,在富养条件下磷的释放一开始就很快,经过2 h左右便达到最佳的完全释放状态。

可以认为:污水在二沉池的短暂停留不会造成磷的大量释放,影响除磷效果。

在A/O生物除磷工艺中,二沉池的停留时间可以控制在2 h左右2.污泥回流比:30~100%,具体根据污泥生长所处阶段确定,保证污泥浓度在设计浓度左右混合液回流比:300~400%,混合液回流主要目的是将硝化作用下产生的氨氮送到A段进行反硝化,生成氮气,从而降低总排水氨氮浓度。

所以回流比除要调节平衡污泥浓度外,还有促进反硝化反应顺利进行的目的。

回流比(R)也是A/O系统运行中的一个重要控制参数,包括混合液回流比(R)和污泥回流比(r)。

混合液回流的作用是向缺氧池提供硝态氮. 作为反硝化的电子受体;污泥回流的作用主要是保持系统的污泥平衡。

前置反硝化A/O工艺要求大部分混合液回流到缺氧池,以确保反硝化的正常进行,因此回流比的大小直接影响系统的脱氮效果。

回流比太小,则出水NO3--N偏高,大部分硝态氮随终沉池出水流出;无足够的硝态氮供反硝化,势必影响脱氮效率,且废水中有机碳源不能充分利用。

一般认为回流比越大,脱氮效率越高,其实不然,当回流比过高,则不仅多耗费动力,还会因回流量增加,导致缺氧池中m(BOD5)/m(NO3--N)比值下降,若低于1.0时,脱氮速率反趋变慢。

我们分别在回流比在2,3,4三种情况下进行运行比较,当回流比控制在4时,去降率可达到91.3%,脱氮效果好。

3.反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N4.硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d5.硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d污泥负荷:生物脱氮是在COD cr,BOD5充分去除的基础上才发生的,若污泥负荷过高,则曝气池仅产生有机物氧化反应而不产生硝化反应,因此要保持较高的脱氮效率,污泥负荷必须控制在一定范围内。

当进水的COD cr浓度高,污泥负荷超过0.25kg [BOD5]/(kg[MLSS]·d)时,好氧池中的异养菌增多,使得硝化细菌的增殖受到限制,使硝化反应不完全。

后来,在匀质池进口外增加 2根 DNO稀释水管线,保证了进水浓度的相对稳定,污泥负荷稳定控制在 0.25 kg[BOD5]/(kg[MLSS]·d)以下,脱氮效果很好,NH3-N去除率由50%上升到90%以上。

COD cr,BOD5去除率分别为 95%,99%左右。

硝化负荷:硝化负荷将影响氨氮的转化,负荷太大,硝化反应不完全,脱氮效果变差。

当硝化负荷超过0.10 kg[NH3-N]/(kg[MLSS]·d)时,出水NH3-N明显上升,去除率急剧下降,活性污泥结构松散,终沉池污泥成颗粒状随水带出。

当发现硝化负荷高时,可采取减少进水量,降低硝化负荷;适当提高匀质池 COD cr的浓度,保持 m(C):m(N)= 6:l左右,这个比例能使硝化菌较快地增长;为保持曝气池适当污泥浓度和增加供氧,可将污泥全部回流至曝气池。

根据经验,硝化负荷控制在0.04-0.06 kg[NH3-N」/(kg[MLSS]·d)范围内,脱氮效果好,NH3-N去除率在85%以上。

6.混合液浓度x=3000~4000mg/L(MLSS)普通生活废水取高值,部分生化性能较差工业废水,MLSS取值3000以下7.溶解氧(重点项目):A段DO<0.2~0.5mg/L,O段DO>2~4mg/L。

生物硝化脱氮处理,氨氮硝化需氧量很大,曝气池内必须供给足够的溶解氧,硝化反应才能正常进行。

通常当曝气池内溶解氧质量浓度在2~6mg/L时,硝化率与溶解氧质量浓度关系不大,如果在 2 mg/L以下,溶解氧浓度就成了硝化反应的抑制因素。

根据运行经验,装置要保持NH3-N有较好的去除效果,曝气池内溶解氧的质量浓度应保持在2.0-4.0 mg/L范围内。

8.PH值:A段pH =6.5~7.5,O段pH =7.0~8.0。

pH值对硝化和反硝化都有一定的影响,由于在硝化过程中有H+产生,水的pH值将下降,要使硝化过程正常稳定运行,曝气池混合液必须有足够的碱度。

以保证硝化作用完成以后,水中尚有30~50 mg/L剩余碱度为宜。

根据运行经验,pH值控制在8~8.4范围内是硝化速率的高效反应区。

9.水温:硝化20~30℃,反硝化20~30℃。

10.碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。

相关文档
最新文档