运动时能量的释放和利用
有氧运动时的能量分解过程

有氧运动时的能量分解过程有氧运动是指通过氧气参与的运动,比如慢跑、游泳、骑自行车等。
在进行有氧运动时,我们的身体需要大量的能量来维持运动,这些能量是通过有氧代谢来产生的。
有氧代谢是指身体利用氧气来分解碳水化合物和脂肪,从而产生能量。
能量分解的过程可以分为以下几个步骤:1. 呼吸。
在有氧运动过程中,我们的呼吸系统起着至关重要的作用。
当我们进行有氧运动时,我们的呼吸加快,这样可以让更多的氧气进入肺部。
氧气随后被输送到肌肉组织中,用于能量的产生。
2. 糖原分解。
在有氧运动中,肌肉中的糖原是主要的能量来源之一。
糖原是碳水化合物在肌肉中的储备形式,当我们进行有氧运动时,糖原被分解成葡萄糖,然后通过氧化磷酸化的途径产生能量。
3. 脂肪氧化。
除了糖原,脂肪也是有氧运动中的重要能量来源。
在有氧运动过程中,脂肪被氧化分解成脂肪酸和甘油,然后经过一系列反应产生能量。
脂肪氧化过程相对较慢,但能够提供长时间持续的能量。
4. ATP合成。
在上述过程中,产生的葡萄糖和脂肪酸经过一系列的代谢反应最终会产生三磷酸腺苷(ATP),这是细胞内能量的主要储备形式。
ATP的分解可以释放出大量的能量,供肌肉收缩和其他生理活动使用。
综上所述,有氧运动时的能量分解过程是一个复杂而精密的生物化学过程。
通过呼吸、糖原分解、脂肪氧化和ATP合成等步骤,我们的身体能够不断地产生能量,以维持长时间的运动。
这也是为什么有氧运动被认为是一种健康的运动方式,因为它可以增强心肺功能,提高身体的代谢水平,同时也有助于减肥和保持健康的体重。
《运动生物化学》第05章 运动时骨骼肌的能量代谢调节和利用

肌肉收缩时,Ca2+可调节磷酸化酶的活性。 Ca2+是骨骼肌兴奋收缩耦联的桥梁,当动作电位沿肌膜传递至三 联体时,引起肌质网释放大量的Ca2+,从而使肌浆内Ca2+浓度上升。
Ca2+ 浓度升高
激活
肌原纤维 ATP酶
(2)线粒体内生成的柠檬酸转移到细胞质内,其浓度增大也将抑制 果糖磷酸激酶活性,使糖酵解速率降低。糖酵解过程的抑制使葡萄糖-6磷酸浓度升高,进而抑制己糖激酶和磷酸化酶,导致血糖利用和肌糖原利 用减少(图5-2-7)。
但是,任何果糖磷酸激酶的激活剂(如AMP、磷酸、6-果糖磷酸等) 浓度的升高,都会削弱柠檬酸对果糖磷酸激酶的抑制作用,使糖酵解加速。
Top
Intensity
• CP储量3%以下,ATP 储量大于安静值80% • ATP合成途径主要为CP的分解,所以CP储量下降速度比ATP快得多
75%
Vo2max
60%
Vo2max
• CP储量可降低至20%左右,ATP储量略低于安静值 • ATP合成途径主要为糖酵解和糖有氧氧化供能,所以CP没有耗尽
促进肌细胞吸收葡萄糖。 ③ 因肌细胞内代谢途径的调节,葡萄糖转移进入运动肌
的绝对量增加,且不依赖血胰岛素浓度。
肝葡萄糖生成和释放调节机制:
(1) 运 动 时
儿茶酚胺和胰高血糖素分泌增多 肝糖原分解成葡萄糖增多 加速糖异生 调节肝葡萄糖的生成速率
肝葡萄糖生成和释放调节机制:
图 5-2-4 血糖浓度对肝葡萄糖释放的调节 注:1.糖原合成酶;2.糖原磷酸化酶;3.UDPG尿苷二磷酸葡萄糖
3.三酰甘油和脂肪酸循环的反馈调节
运动生理学教案_第一章_运动的能量代谢

③小肠内消化 方式:机械消化(紧张性收缩、分节运动、小肠蠕动)和 化学消化 消化液:胰液(由胰腺分泌,显碱性)、胆汁液(由肝脏 分泌,成分复杂,其中主要是胆盐,能乳化脂肪, 加速脂肪分解)、小肠液(显弱碱性,可降低渗透 压,促进吸收的进行)、肽酶(将多肽分解为氨基 酸)和麦芽糖酶等等, 时间:3~8小时 ④大肠内消化 方式:没有复杂的消化活动,只有机械性运动(分节运动 和蠕动) 消化液:大肠液(主要是黏液蛋白),具有保护肠粘膜 和润滑粪便的作用 作用:12~24小时
糖、脂肪、蛋白质之间的关系
(三)ATP分解与再合成的关系
能量的释放、转移和利用
二、供ATP再合成的三个供能系统
1.磷酸原系统 (ATP—CP系统) 定义:——指ATP和磷酸肌酸(CP)组成的系统。 燃烧物质:ATP和CP 最大输出功率:56J/Kg· s 持续时间:7.5秒左右 特点:供能总量少、持续时间短、功率输出最快是、不需 氧、不产生乳酸类等代谢中间产物。 意义:是一切高功率输出运动项目的物质基础 项目代表:短跑、投掷、跳跃、举重 2.酵解能系统(底物:肌糖原、葡萄糖) 定义:糖原和葡萄糖在细胞浆内无氧分解生成乳酸过程中, 再合成ATP的能量系统。
第一章 运动的能量代谢
主要讲解内容:
一、能量的直接来源——ATP 二、供ATP再合成的三个供能系统 三、能量的间接来源——糖、脂肪、蛋白 质
一、能量的直接来源—ATP
能量的直接来源——ATP
1、一切生命活动来源都来自于ATP
2、ATP(三磷酸腺苷):是一种存在于细胞内(胞浆和核
浆内)、由自身合成并能迅速分解被直接利用的一种自
持续时间:理论上讲是无阻的! 特点:供能总量最大,持续时间很长,功率输出很低, 需要氧的参与,终产物是水和二氧化碳。 意义:是长时间耐力活动的物质基础 项目代表:长跑,越野赛等!
人体运动时常见的生理变化和反应

人体运动时常见的生理变化和反应人体在体育运动过程中会发生一系列规律性的生理变化,认识这些生理变化的机制将使运动者更好地适应这些生理反应,从而提高人体各器官系统的机能水平.一、人体运动时常见的生理变化(一)能量供应方式人体运动时的直接能源是肌肉中的一种特殊高能磷酸化合物――三磷酸腺苷(ATP),它在酶的催化下,迅速分解为二磷酸腺苷(ADP)与磷酸(Pi),同时释放出能量供肌肉收缩。
但是人体中的ATP 含量甚微,只能供极短时间消耗,因此肌肉要持续运动就需要及时补充ATP。
体内ATP的恢复是糖、脂肪、蛋白质等能量物质通过各种代谢途径来实现,补充的途径有磷酸肌酸(CP)分解、糖的无氧酵解及糖与脂肪的有氧代谢,生理学上称之为运动时的3个供能系统。
1、无氧代谢供能人体肌肉进行剧烈运动时,氧供应满足不了人体对氧的需求,肌肉即利用三磷酸腺苷(ATP)和磷酸肌酸(CP)的无氧分解释放能量,由于CP的分解能迅速将有量转移给ADP生成ATP且不需要氧,也不产生乳酸,因此也称这个磷酸原系统为非乳酸能系统。
但这个供能系统持续供级时间很短,全身肌肉中A TP-CP供能系统仅维持8~10s 左右的能量供应。
另一个无氧供能系统是动用肌糖元进行无氧酵解供能,由于在酵解中产生乳酸积累,故也把这个供能系统称为乳酸能供能系统.人体肌肉快速运动持续较长时间后(10s以上),磷酸原供有系统已不能及时提供能量供ATP的合成,这时就动用肌糖元进行无氧酵解供能.人体乳酸能供能系统的最长供能持续时间约为33s左右。
100m跑无氧代谢占98%以上,200m跑无氧代谢占90%~95%,有氧代谢仅占5%~10%,因此,短距离跑的项目应以提高无氧代谢能力为主。
无氧代谢练习中,发展磷酸原供能系统的供能能力最好采用每次10s以内的全速跑重复训练,中间间歇休息30s以上,如果间歇时间短于30s会使磷酸的供能系统恢复不足而产生乳酸积累。
发展乳酸能供能系统的能力最适宜的手段是全速(或接近全速)跑30~60s,间歇休息2~3min,以使血乳酸达到最高水平,来提高人体对高血乳酸的耐受力.人体安静时血乳酸浓度为4mmol/L,当运动强度加大使血乳酸上升至7。
运动燃烧脂肪的原理

运动燃烧脂肪的原理
运动燃烧脂肪的原理是通过增加身体的代谢率,使身体消耗更多的能量。
身体利用存储在脂肪细胞中的脂肪作为能量的来源,当身体需要更多能量时,就会开始分解脂肪细胞,释放脂肪酸进入血液循环。
有氧运动是最有效的燃烧脂肪的方式之一。
有氧运动,如慢跑、游泳和骑自行车,可以提高心率和呼吸率,使身体更多地使用氧气来产生能量。
这种有氧代谢过程消耗的能量来自于脂肪酸的氧化,因此有氧运动能够有效地燃烧体内的脂肪。
除了有氧运动外,高强度间歇训练(HIIT)也是一种燃烧脂肪的有效方式。
HIIT是一种交替进行高强度运动和休息的训练
方法,它可以快速提高心率并使身体处于高能量消耗状态。
研究表明,通过高强度间歇训练,身体可以在锻炼后的几个小时内继续消耗较多的脂肪。
此外,力量训练也可以帮助燃烧脂肪。
虽然力量训练主要是为了增加肌肉质量和力量,但它也可以增加身体的基础代谢率。
较高的基础代谢率表示身体在休息状态下消耗更多的能量,其中包括从脂肪中获取能量。
因此,力量训练可以帮助促进脂肪燃烧。
总而言之,通过增加身体的代谢率,有氧运动、高强度间歇训练和力量训练等运动方式可以加速脂肪的分解和氧化,从而实现燃烧脂肪的效果。
碳水化合物和运动如何提供能量

碳水化合物和运动如何提供能量碳水化合物和运动是提供身体能量的重要因素。
在进行体育锻炼或日常活动时,我们的身体需要能量来支持肌肉的运动和各种生理活动。
碳水化合物是身体获得能量的首要来源之一,而运动则能促进碳水化合物的利用和能量的释放。
本文将探讨碳水化合物和运动在能量供应中的作用。
一、碳水化合物的能量供应碳水化合物是一类由碳、氢、氧组成的有机化合物,它是人类主要的能量来源之一。
摄入的碳水化合物在经过消化和吸收后,会被身体转化为葡萄糖,并在需要能量时供给机体使用。
葡萄糖是一种简单的糖类,它可以被身体迅速吸收和利用。
身体细胞中的线粒体是能量产生的主要场所,葡萄糖在线粒体内通过有氧呼吸产生能量。
有氧呼吸是一种需要氧气的代谢过程,它将葡萄糖分解为二氧化碳和水,并释放出大量的能量。
这些能量被用于支持肌肉的收缩和其他身体功能的维持。
二、运动对碳水化合物的利用运动对于碳水化合物的利用是非常高效的。
当我们进行高强度的运动时,身体需要大量的能量来满足肌肉的需求。
碳水化合物被优先选择作为能量来源,因为它们可以更快速地被纳入能量代谢过程。
运动时,肌肉细胞中的线粒体会加速能量的产生和利用。
线粒体会将葡萄糖分解为乳酸,乳酸进一步被氧气氧化和清除。
这个过程被称为乳酸閾值,乳酸閾值可以提高身体对碳水化合物的利用效率。
运动时碳水化合物的利用还有一个重要因素是体内储存的肝糖原和肌糖原。
肝糖原是糖原在肝脏中的储存形式,肌糖原则是储存在肌肉组织中的糖原。
这些储存的糖原能够为高强度的运动提供一定时间内的能量。
当糖原储备耗尽时,身体会开始利用其他能量来源,如脂肪。
三、碳水化合物与脂肪的能量消耗比例碳水化合物和脂肪是身体两个主要的能量来源,它们在运动中的消耗比例受到多种因素的影响。
运动强度、运动时间、个体体质等都会对碳水化合物和脂肪的利用产生影响。
在低强度长时间的有氧运动中,身体更多地利用脂肪作为能量来源。
这是因为脂肪的氧化代谢过程相对较慢,需要较长的时间进行能量释放。
运动时能量代谢(第一章)

4.有氧代谢供能是运动后机能恢复的基本 代谢方式
目录
二、不同活动状态下供能系统的相互关系
• (一)安静时
肌细胞内以游离脂肪酸和葡萄糖的有氧代谢 供能。 • (二)短时间剧烈运动 在接近或超过最大摄氧量强度运动时,骨骼肌 以无氧代谢供能。在极量运动时,肌内以ATP、 CP供能为主。超过10秒钟的运动,糖酵解的 供能比例增大。血乳酸的水平一直上升,直到 运动终止。
目录
7 轮循环产物:8分子乙酰CoA 7分子NADH+H+
7分子FADH2
能量计算: 生成ATP 8×12 + 7×3 + 7×2 = 131 净生成ATP 131 – 2 = 129
目录
运动时有氧代谢的供能
• 大强度运动1~2个小时,肌糖原才接近耗尽。 • 脂肪供能随运动强度的增大而降低,随时间的 延长而增大。 • 蛋白质在长于30分钟的激烈运动中参与供能, 但最多不超过总耗能的18%。 • 该系统不能维持高强度、高功率的运动。
目录
(三)供能系统的相互关系
1.运动中基本不在一种能量物质单独供能的情况。
2.最大输出功率的顺序 磷酸原系统>糖酵解>糖的有氧氧化>脂肪酸有 氧氧化
目录பைடு நூலகம்
• 3.当以最大输出功率运动时,各系统维 持的运动时间
磷酸原系统 6~ 8秒 糖酵解 30~90秒 有氧代谢途径 3分钟以上 蛋白质 30分钟以上 运动时间越长,强度愈小,脂肪氧化供能的比 例愈大。
三、糖酵解的生理意义
1. 是机体在缺氧情况下获取能量的有效方式。 2. 是某些细胞在氧供应正常情况下的重要供能 途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞
运动的能量供应

运动的能量供应前言人体生命活动的运行需要消耗能量。
在人们参加剧烈体育运动时,肌肉长时间地收缩和舒张,脏器的活动增强,以及神经系统能量消耗增加,将使运动时总的能量消耗比静息时增加几倍到几十倍,甚至百倍以上。
从另一方面讲,长期科学训练将使人体运动时的能量供应与消耗得到改善,从而为提高人体运动能力奠定物质基础。
因此,了解与研究人体运动时的能量供应是体育教师.教练员以及运动员必备的知识。
一肌肉活动的能量及其能量的释放人体运动需要大量能量。
这些能量的来源是自食物中的六大营养素中的三大营养物质,即糖、脂肪和蛋白质。
(一)糖及其分子中能量的释放与转移糖是肌肉活动最主要的燃料。
人体糖的存在形式有两种:第一种是以葡萄糖的形式存在于血液中;第二种是存在于肝脏和肌肉中的糖原(肝糖原和肌糖原)。
人体运动所需的能量主要是由糖(或脂肪)的氧化分解过程释放出来的。
糖的氧化分解主要有两个途径:(1)在无氧条件下进行的糖酵解;(2)在有氧条件下进行的有氧氧化。
在一般条件下,糖主要以有氧氧化的途径分解供能。
表1:有氧氧化同无氧糖酵解的对比(二) 脂肪及其燃烧(氧化)脂肪是肌肉活动的另一主要原料。
机体内储备的脂肪量是势能的最大来源。
与其他营养物质比较,可作为能量的脂肪数几乎是无限的。
来自储藏脂肪的实际燃料贮存量大约相当于90000~110000千卡左右。
成年人体内贮存脂肪量的差别很大,且缺乏精确的正常值。
一般成年男子的贮存脂肪量约占体重的15~20%,女子稍高。
脂肪氧化时,.体内首先由脂肪酶催化水解为甘油和脂肪酸。
甘油随着血液循环至肝脏和其他组织进行再分解。
而释出的脂肪酸进一步氧化释放能量,共全身各组织摄取利用。
脂肪酸彻底氧化所释放的能量比糖多得多,且利用率也比糖高。
当脂肪酸大量分解时,会产生三种中间物质:乙酰乙酸、B- 羟丁酸和丙酮。
我们将这三种中间产物合称为酮体。
短时间剧烈运动后,血液中的酮体上升。
这是由于运动时的糖供能不足,脂肪酸利用量增加而又氧化不足的缘故。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动时代谢供能的输出功率取决于能源物质合成ATP 的最大速率。
能量利用
最大输出功率 可供运动时间 mmol/kg干肌X秒
ADP+CPAຫໍສະໝຸດ P+P 1.6-3.06-8秒
GnHL
1.0
30-60秒达最大 速率,可维持运 动2-3分钟
GnCO2、H2O 0.5 FFA CO2、H2O 0.25
1.5-2小时 不限时间
长时间低强度运动 有氧代谢为主(FFA、G)
• 运动开始时,ATP、CP被动用,然后糖酵解供能, 最后,糖原、脂肪酸与蛋白质也参与供能。运动 结束后的一段时间骨骼肌内的有氧代谢速率仍高 于安静时水平。
• ——储备的ATP仅能供极量运动之1秒,由于运动 开始时肌肉血流量不能及时增大,故刚启动时以 储备的CP无氧分解为ATP的主要来源,几秒后,不 需氧的糖酵解启动以弥补氧亏空,直到有氧代谢 能力充分调动起来。运动结束后的有氧代谢用于 磷酸原、糖原储备的恢复。
运动时能量的释放和利用
一、运动时供能系统的动用特点
(一)人体骨骼肌细胞的能量储备(70kg体重)
供能物质
ATP CP Gn
甘油三酯
储量 mmol/kg干肌 24.6 76.8 365
48.6
可利用能量 mmol~P/kg干肌 9.8 61.4 10609(无氧) 14200(有氧) 24520
(二)供能系统的输出功率
(三)供能系统的相互关系
1.肌肉可以利用所有能量物质,只是时间、顺序和 相对比率随运动状况而异,不是同步利用。
2.最大功率输出的顺序,由大到小依次为:磷酸原 系统>糖酵解系统>糖有氧氧化>脂肪酸有氧氧化, 且分别以近50%的速率依次递减。
3.当以最大输出功率运动时,各系统能维持的运动 时间是:磷酸原系统供极量强度运动6—8秒;糖 酵解系统供最大强度运动30—90秒,可维持2分钟 以内;3分钟以上主要依赖有氧代谢途径。运动时 间愈长、强度愈小,脂肪氧化供能的比例愈大。
4.由于运动后ATP、CP的恢复及乳酸的清除,须依 靠有氧代谢系统才能完成,因此有氧代谢供能是 运动后机能恢复的基本代谢方式。
二、不同活动状态下供能系统的相互关 系
安静 短时间激烈运动
有氧代谢为主(FFA、G)
无氧代谢(10秒内ATP、CP 为主,10秒外G为主)
大强度运动
整体有氧代谢为主、局部有无 氧代谢(G)