第6章 线性回归与曲线拟合

合集下载

线性回归与拟合

线性回归与拟合

线性回归与拟合在统计学和机器学习领域中,线性回归是一种常见的数据分析方法,用于建立自变量和因变量之间的线性关系模型。

通过该模型,我们可以预测和分析数据的变化趋势,从而对未来的数据进行预测和决策。

一、线性回归的基本原理线性回归的基本原理是基于最小二乘法,它通过寻找最佳的参数估计值来拟合数据。

最小二乘法的目标是使所有数据点到拟合线的距离平方和最小化。

通过最小化残差平方和,我们可以得到最优的拟合线。

线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ϵ其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示模型的系数,ϵ表示误差项。

线性回归的目标是找到最佳的系数估计值β0、β1、β2、...、βn,使得预测值与实际值之间的误差最小。

二、线性回归的应用线性回归广泛应用于各个领域,例如经济学、金融学、社会科学、医学等。

以下是一些线性回归的应用实例:1. 经济学:通过分析GDP与人口增长率的线性关系,可以预测未来的经济发展趋势。

2. 金融学:通过分析股票价格与市盈率的线性关系,可以预测股票的价值。

3. 社会科学:通过分析教育水平与收入之间的线性关系,可以研究教育对收入的影响。

4. 医学:通过分析吸烟与肺癌发病率的线性关系,可以评估吸烟对健康的影响。

三、线性回归的拟合优度线性回归的拟合优度是衡量拟合程度的指标,常用的拟合优度指标是R方值(R-squared)。

R方值表示拟合线能够解释因变量变异程度的比例,取值范围在0到1之间。

R方值越接近1,说明模型对数据的拟合程度越好。

然而,R方值并不是唯一的评估指标,我们还需要结合其他统计指标和领域知识来评价模型的可信度和预测能力。

四、线性回归的局限性线性回归模型假设自变量和因变量之间存在线性关系,但实际情况并不总是如此。

当数据存在非线性关系或者误差项不满足正态分布时,线性回归模型可能会失效。

此外,线性回归模型还对异常值和多重共线性敏感。

第6章线性回归与曲线拟合

第6章线性回归与曲线拟合
求回归方程的方法,通常是用最小二乘法,其基本思想 就是从并不完全成一条直线的各点中用数理统计的方法 找出一条直线,使各数据点到该直线的距离的总和相对 其他任何线来说最小,即各点到回归线的差分和为最小, 简称最小二乘法。
2
6.1 散点图
要研究两个变量之间是否存在相关
关系,自然要先作实验,拥有一批实验
y=lncA 算得:
x=lnt
lncA ~lnt 的数表
Lnt
0.693 1.61
2.08
2.84
2.64
lncA -0.053 -1.09 -2.07 -0.289 -0.375
2.83 -0.446
3.296 -0.707
3.434 -0.821
3.555 -0.939
lnc
0 -0.2 0 -0.4 -0.6 -0.8
15
10
拉伸倍数x
15
7
6.2 回归方程的相关系数
因变量y与自变量x之间是否存在相关关系,在 求回归方程的过程中并不能回答,因为对任何 无规律的试验点,均可配出一条线,使该线离 各点的误差最小。为检查所配出的回归方程有 无实际意义,可以用相关关系,或称相关系数 检验法。
8
6.3 曲线拟合
在化工实验数据处理中,我们经常会遇到 这样的问题,即已知两个变量之间存在着函数 关系,但是,不能从理论上推出公式的形式, 要我们建立一个经验公式来表达这两个变量之 间的函数关系。
10
20
30
40
t
系列1
作 t ~lncA 的图, 作出图来,是一条很好的直线,说明这组实验数据,服从
cA=aebt 型经验方程。
对照一级反应动力学的积分式:
c=cA0e-kt

计算方法课件第六章最小二乘法与曲线拟合

计算方法课件第六章最小二乘法与曲线拟合
接根据矛盾方程组得到正则方程组而求解。当待定常 数不是线性形式时,则应该先将待定常数线性化,再 根据矛盾方程组写出正则方程组而求解。
例1: y aebx
ln y ln a bx
u ln y, A ln a, B b
u A Bx
例2: y
a
1 bx
u 1 y
1 a bx y u a bx
3.写出矛盾方程组。 4.写出正则方程组。(可由多项式模型直接得到)
5.求解正则方程组,得到拟合曲线的待定系数。 6.将正则方程组的解带回到数学模型中,得到拟 合曲线。
Remark
1.同一问题可以有不同的拟合曲线,通常根据均方误
差 N [ (xi 和) 最yi大]2 偏差
max
1i N
( xi
t cos 0.669131 0.390731 0.121869 -0.309017 -0.587785
记 a 1 , b e ,得拟合模型:a bt y
p
p
则矛盾方程组为:
1 0.669131
0.370370
1
1 1
0.390731 0.121869 0.309017
a b
0.500000
一、曲线拟合模型
定义:依据某种标准选择一条“最好”的简单
曲线作为一组离散数据(
xi
,
yi
)
N i0
的连续模型。
确定曲线的类型:一般选取简单的低次多项式。
求一个次数不高于N-1次的多项式:
y (x) a0 a1x a2x2 amxm
(m N 1)
(其中a0,a1,…,am待定),使其“最好”的拟合
j 1
j 1
n a1 j x j b1

回归分析曲线拟合通用课件

回归分析曲线拟合通用课件
生物医学研究
研究生物标志物与疾病之间的 关系,预测疾病的发生风险。
金融市场分析
分析股票价格、利率等金融变 量的相关性,进行市场预测和 风险管理。
社会科学研究
研究社会现象之间的相关关系 ,如教育程度与收入的关系、 人口增长与经济发展的线性回归模型
线性回归模型是一种预测模型,用于描 述因变量和自变量之间的线性关系。
SPSS实现
SPSS实现步骤 1. 打开SPSS软件; 2. 导入数据;
SPSS实现
01
3. 选择回归分析命令;
02
4. 设置回归分析的变量和选项;
03
5. 运行回归分析;
04
6. 查看并解释结果。
THANKS
感谢观看
回归分析曲线拟合通用课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 曲线拟合方法 • 回归分析的实践应用 • 回归分析的软件实现
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变异关系, 找出影响因变量的主要因素,并 建立回归方程,用于预测和控制 因变量的取值。
线性回归模型的假设包括:误差项的独立性、误差项的同方差性、误差 项的无偏性和误差项的正态性。
对假设的检验可以通过一些统计量进行,如残差图、Q-Q图、Durbin Watson检验等。如果模型的假设不满足,可能需要重新考虑模型的建立 或对数据进行适当的变换。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
回归分析的分类
01
02
03
一元线性回归

回归拟合曲线

回归拟合曲线

回归拟合曲线回归拟合曲线是一种数据分析方法,用于确定数据之间的关系模式。

它可以帮助我们预测未来的趋势和变化。

本文将介绍回归拟合曲线的基本概念、常见的回归方法以及如何使用这些方法进行曲线拟合。

回归拟合曲线是通过找到最佳拟合线来描述两个或多个变量之间的关系。

拟合曲线可以是线性的,也可以是非线性的。

线性回归使用一条直线来拟合数据,而非线性回归使用其他类型的函数来拟合数据。

回归分析通常用于预测一个变量的值,基于已知的自变量值。

在回归拟合曲线中,有两个主要的变量:自变量和因变量。

自变量是我们用来预测因变量的变量,而因变量是我们想要预测的变量。

我们假设自变量能够解释因变量的变化。

回归分析的目标是找到自变量和因变量之间的关系,并使用这种关系来预测未来的因变量。

回归分析有很多不同的方法,包括线性回归、多项式回归、指数回归等。

线性回归是最简单的回归方法之一,它使用一条直线来拟合数据。

线性回归的基本原理是找到一条直线,使得这条直线与数据点的距离最小。

这种方法被广泛应用于各种领域,例如经济学、统计学和工程学等。

多项式回归是一种非线性回归方法,它使用多项式函数来拟合数据。

它可以适应各种曲线形态,并能更好地拟合非线性数据。

多项式回归的原理是在数据中添加多项式项,使得拟合曲线能够更好地适应数据点。

通过选择合适的多项式次数,我们可以调整曲线的形状和适应性。

指数回归是一种应用较广泛的非线性回归方法,它使用指数函数来拟合数据。

指数回归在研究生长速度、衰变速度等方面非常有用。

指数回归的原理是将因变量和自变量取对数,使拟合曲线变为线性形式。

然后使用线性回归分析来获得最佳拟合直线。

在进行回归拟合曲线之前,我们需要明确两个事项:回归分析的目标和回归模型的选择。

回归分析的目标是什么,决定了我们要解决什么问题。

回归模型的选择取决于我们的数据类型和问题需求。

回归分析在实际应用中非常有价值。

例如,在销售预测中,我们可以使用历史销售数据来预测未来销售额。

拟合曲线算法

拟合曲线算法

拟合曲线算法
拟合曲线算法是一种统计学的方法,用于找到一条曲线(或函数)来最好地描述给定数据集的趋势。

拟合曲线算法的目标是通过找到最合适的函数参数,使得拟合曲线与数据点的差距最小化。

常见的拟合曲线算法包括线性回归、多项式回归、指数拟合、对数拟合、幂函数拟合等。

1. 线性回归:首先假设数据之间存在线性关系,通过最小化残差平方和来找到最佳拟合直线。

使用最小二乘法来求解回归系数,使得拟合直线与数据点的残差平方和最小。

2. 多项式回归:假设数据之间存在多项式关系,通过增加多项式的次数来找到最佳拟合曲线。

多项式回归可以通过最小二乘法来求解拟合参数。

3. 指数拟合:假设数据呈指数上升或下降的趋势,通过拟合指数函数来找到最佳拟合曲线。

指数拟合可以通过线性化处理来求解参数。

4. 对数拟合:假设数据呈对数增长或减少的趋势,通过拟合对数函数来找到最佳拟合曲线。

对数拟合可以通过线性化处理来求解参数。

5. 幂函数拟合:假设数据呈幂函数关系,通过拟合幂函数来找到最佳拟合曲线。

幂函数拟合可以通过线性化处理来求解参数。

拟合曲线算法的选择取决于给定数据的特点和需求。

不同的算法可能会有不同的适用性和精度。

纤维绳索强度分析中线性回归与曲线拟合法的比较

纤维绳索强度分析中线性回归与曲线拟合法的比较
i t g f rr lto s i ewe n t r a i g sr n t n h i mee ff e o e ft n o e ai n h p b t e he b e k n te gh a d t e d a tro b r r p s c mp r s t r e f n t n i i o ae h e u ci o

c a t a d t er d va in i tn a d i d x v l e n n lz s t e df r n e ba n d f m h h e h rs n h i e i t s w t s d r n e au s a d a ay e h i e e c s o ti e r o h a f o te tre meh d . T e r tr a u s o au a l g rt mi f n t n mo t a p o i td t h o e sa d r n e to s h u n v le fn tr o ai e l h c u c i s p r x ma e o t e r p tn a d i d x o
rp s B s g mah maia sait a m to o e . y u i te t l tt n t e d tr n t n o he n c sc t l b r e ua t i h eemiai f t l i o
标准指标值 最为接近。以 自然对数 函数对聚丙烯 、 聚乙烯和聚酰胺绳索产 品国际标准建立 了断裂强度 与直径
关系的数学模 型。采用这 种数 据分析方法 , 制定 系列规格 的产 品标 准中确定技术指标 , 在 比较具有规律性 。 关键词 :纤 维绳 索 ; 断裂强度 ;拟合法 中图分 类号 :¥ 7 . 9 13 文献标识码 :A

线性回归模型的拟合及其预测性

线性回归模型的拟合及其预测性

线性回归模型的拟合及其预测性线性回归模型是一种广泛使用的统计分析方法,经常用于建立因变量与自变量之间的关系。

在实际应用中,线性回归模型被广泛应用于数据分析、预测和建模等领域。

本文将详细探讨线性回归模型的拟合及其预测性。

一. 线性回归模型的构建线性回归模型是一种基于统计学原理的模型,通常由两个变量组成:因变量和自变量。

因变量是需要预测的量,自变量是影响因变量的因素。

具体而言,我们可以将线性回归模型表示为:y = a + bx + e其中,y为因变量,x为自变量,a和b是常数项和自变量系数,e为误差项,描述了模型对实际数据的预测不准确之处。

二. 线性回归模型的拟合线性回归模型的拟合是通过寻找最佳拟合线来实现的。

最佳拟合线是使所有观测值与模型估计的值之间的误差最小的拟合线。

一般来说,我们可以通过最小二乘法来确定最佳拟合线。

最小二乘法是一种基于平方误差的方法,它的目的是最小化观测值与估计值之间的平方误差。

为了用最小二乘法估计线性回归模型,我们需要通过样本数据估计出a和b,然后根据估计的常数项和系数构建线性方程。

估计常数项和系数的公式如下:b = Σ(x- xbar)*(y- ybar)/ Σ(x- xbar)^2其中,xbar和ybar是x和y的样本平均数。

拓展公式可以使用:a = ybar - bxbar通过这个公式,我们可以得到一个具有优良拟合优度的线性回归模型。

线性回归模型的拟合程度可以通过R^2来衡量。

R^2是由估计的线性回归模型中解释的总方差与实际总方差之比。

三. 线性回归模型的预测性线性回归模型的预测性可以使用两种方法来评估:内部比较和外部比较。

内部比较测试是通过比较模型拟合的数据和新收集的数据的结果来评估模型预测的能力。

如果模型表现出足够的精确度和可靠性,则我们可以使用它来预测未来数据的变化。

外部比较测试是通过将模型应用于不同的数据集来评估模型的结果。

如果模型在使用不同的数据时表现的一致性和可靠性,则我们可以将其用于实际应用中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,因此,相应于 x1,x2,…,xn 就有实际测定值 y1,y2…,yn,y1,y2…,yn 与 Y1,Y2,…,Yn 是不等同的, 即实验点(x1,y1),(x2,y2),…,(xn,yn)
并不一定落在回归直线上。
每个实验点(xi,yi)相对于回归直线存在着误差 yi Yi yi (a bxi ) ,
而增加;若 r<0,则称 x 与 y 负相关,y 随 x 的增加而减小。R 的绝对值越接近于 1,x 与 y
的线性关系越好,当 x 与 y 之间没有任何依赖关系时,r=0。
相关关系的检验标准
在实际应用中,判断r值与1接近到何程度 时,才认为x与y是相关的,或者说,所配出的 回归方程才是有意义的,需要对照相关系数临 界值表来判断,当计算的相关系数r的绝对值 大于表中显著性水平为0.05 和相应的自由度 f=n-2下的临界值r0.05,f时,则表示y与x是显著相 关的。如显著性水平取0.01,r计算>r0.01,f时, 则表示y与x有非常显著的相关关系。
12
由于 Yi a bxi , y a bx ,
则 y Yi b(x xi ) ,
yi Yi ( yi y) b(xi x) ,
n
n
2
( yi Yi )2 ( yi y) b(xi x) ,
i 1
i 1
经变换、化简,
n
n
n
( yi Yi )2 ( yi y)2 b2 (xi x)2 ,
Ⅰ、首先将实验数据 t~cA 作图,图像表明,这是一条曲线,不是 y=a+bx 型直线,因此,对照样板曲线重新选型。
18
c(mol/L)
1 0.8 0.6 0.4 0.2
0 0
c, t关系图
10
20
30
40
t(min)
系列1
19
Ⅱ、选 y 1 型试探,将曲线变直,这时
ax b
y=1/cA x=t 算得 1/cA 为:
x=lnt
lncA ~lnt 的数表
Lnt
0.693 1.61
2.08
2.84
2.64
lncA -0.053 -1.09 -2.07 -0.289 -0.375
2.83 -0.446
3.296 -0.707
3.434 -0.821
3.555 -0.939
lnc
0 -0.2 0 -0.4 -0.6 -0.8
将上二式求解并简化即可求出 a,b。
n
( xi x)( yi y)
b i1 n

(xi x)2
i 1
a y bx 。
若以 L 代表离差,
n
Lxx (xi x)2 , i 1
n
Lyy ( yi y)2 , i 1
n
Lxy (xi x)( yi y) 。 i 1
b Lxy , Lxx
i 1
i 1
i 1
n
n
( yi Yi )2
(xi x)2
i 1
1 b 2 i1

n
n
(yi y)2
(yi y)2
i 1
i 1
令相关系数 r 等于下式,
n
n
(xi x)2
( yi Yi )2
r 2 b 2 i1
1 i1
L2xy

n
(yi y)2
n
(yi y)2
Lxx Lyy
编号 拉伸倍数
x
13
5
14
5.2
15
6
16
6.3
17
6.5
18
7.1
19
8
20
8
21
8.9
22
9
23
9.5
24
10
强度 y
kgf/cm2 5.5 5 5.5 6.4 6 5.3 6.5 7 8.5 8 8.1 8.1
4
强度y
10 8 6 4 2 0 0
5
10
拉伸倍数x
15
5
从散点图中看出,这些点虽然散乱,但大体上散布 在某直线的周围,也就是说,拉伸倍数与强度之间 大致成线性关系。其关系可用下式表示:
10
拉伸倍数x
15
7
6.2 一元回归方程的求法和配线过程
Y=a+bx; a--截距,b--斜率。
8
求计算值与实验值的误差
当 x 为 x1,x2,…,xn 时,则相应有 Y1=a+bx1, Y2=a+bx2,

Yn=a+bxn。 这些 Y1,Y2,…,Yn 是回归方程计算值,
由于在实际测定过程中存在着实验误差
数据,然后,作散点图,以便直观地观
察两个变量之间的关系。
合成纤维强度与拉伸倍数的关系, 24组实验。
3
某合成纤维拉伸倍数和强度的关系
编号 拉伸倍数
x
1
1.9
2
2
3
2.1
4
2.5
5
2.7
6
2.7
7
3.5
8
3.5
9
4
10
4
11
4.5
12
4.6
强度 y
kgf/cm2 1.4 1.3 1.8 2.5 2.8 2.5 3 2.7 4 3.5 4.2 3.5
i 1
i 1
由上式可知,当 y 与 x 之间存在严格的线性关系时,所有的数据点应落在回归线上,则有
yi=Yi,r2=1,当 y 与 x 之间存在相关关系时,r 值在 0 与 1 之间,r 是表示 y 与 x 相关程度的
一个系数,它的符号取决于回归系数 b 的符号,若 r>0,则称 x 与 y 正相关,y 随着 x 的增加
第6章 线性回归与曲线拟合
1
线性回归
y与x之间是一种相关关系,即当自变量x变化时,因变 量y大体按某规律变化,两者之间的关系不能直观地看出 来,需要用统计学的办法加以确定,回归分析就是研究 随机现象中变量间关系的一种数理统计方法,相关关系 存在着某种程度的不确定性。 身高与体重;矿物中A组 分含量与B组分含量间的关系;分析化学制备标准工作曲 线,浓度与吸光度间的关系。
系数对比,求出常数
17
在某液相反应中,不同时间下测的某组成的浓度见下表,
试作出其经验方程。
浓度随时间的变化关系
时间
2
5
8 11 14 17 27 31
t(min)
浓度 cA 0.948 0.879 0.813 0.749 0.687 0.640 0.493 0.440 (mol/L)
35 0.391
Y=a+bx Y 是 y 的计算值,与实际值不完全相同。 Y 与 x 之间不具有确定的函数关系,而是相关关系。 确定回归方程 Y=a+bx 中的回归系数 a、b。 y 随 x 增大,称为正相关; y 随 x 减小,称为负相关。
肉眼判断,杂乱无章,不存在直线关系。
6
强度y
10 8 6 4 2 0
0
5
-1
lnc, lnt 关系图
1
2
3
4
lnt
系列1
作 lnc ~lnt 的图,发现原来的曲线不但没变直,反而更加弯曲了。说明这 个类型的经验公式更不适合了。
21
Ⅳ、又重新选型,选用 y=aebx 型,再试探
y=lncA
x=t
lnc, t 关系图
lnc
0 -0.2 0 -0.4 -0.6 -0.8
-1
a y bx 。
Y=a+bx
这就是说回归直线一定通过(x, y )这一点,
即由各数据的平均值组成的点,这一点对作图是很重要的。
6.3 回归方程的相关系数
因变量y与自变量x之间是否存在相关关系,在 求回归方程的过程中并不能回答,因为对任何 无规律的试验点,均可配出一条线,使该线离 各点的误差最小。为检查所配出的回归方程有 无实际意义,可以用相关关系,或称相关系数 检验法。
求回归方程的方法,通常是用最小二乘法,其基本思想 就是从并不完全成一条直线的各点中用数理统计的方法 找出一条直线,使各数据点到该直线的距离的总和相对 其他任何线来说最小,即各点到回归线的差分和为最小, 简称最小二乘法。
2
6.1 散点图
要研究两个变量之间是否存在相关
关系,自然要先作实验,拥有一批实验
22
1/cA~ t 数表
T
2
5
8
11
14
1/cA
1.005 1.018
1.28
1.335 1.445
17 1.568
27 2.028
31 2.273
35 2.507
1/c
3 2.5
2 1.5
1 0.5
0
0
1/c, t 关系图
10
20
30
40
t
系列1
20
Ⅲ、再选用 y=axb 型作试探,将此曲线变直
y=lncA 算得:
求误差平方和的最小值
令 Q 代表各实验点误差的平方和,则有:
n
n
Q ( yi Yi2 ) = ( yi a bxi )2 ,
i 1
i 1
使 Q 值最小,只需将上式对 a,b 求偏微分,并令其为零,
Q a
n
2 ( yi
ቤተ መጻሕፍቲ ባይዱi 1
a
bxi )
0

Q b
n
2 ( yi
i 1
a
bxi )xi
0

10
20
30
40
t
系列1
作 t ~lncA 的图, 作出图来,是一条很好的直线,说明这组实验数据,服从
相关文档
最新文档