复合材料-第八章仿生复合材料
【复合材料概论】复习重点应试宝典

【复合材料概论】复习重点应试宝典第⼀章总论1、名词:复合材料基体增强体结构复合材料功能复合材料复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的⽅法,在宏观上组成具有新性能的材料。
包围增强相并且相对较软和韧的贯连材料,称为基体相。
细丝(连续的或短切的)、薄⽚或颗粒状,具有较⾼的强度、模量、硬度和脆性,在复合材料承受外加载荷时是主要承载相,称为增强相或增强体。
它们在复合材料中呈分散形式,被基体相隔离包围,因此也称作分散相。
结构复合材料:⽤于制造受⼒构件的复合材料。
功能复合材料:具有各种特殊性能(如阻尼,导电,导磁,换能,摩擦,屏蔽等)的复合材料。
2、在材料发展过程中,作为⼀名材料⼯作者的主要任务是什么?(1)发现新的物质,测试其结构和性能;(2)由已知的物质,通过新的制备⼯艺,改变其显微结构,改善材料的性能;(3)由已知的物质进⾏复合,制备出具有优良性能的复合材料。
3、简述现代复合材料发展的四个阶段。
第⼀代:1940-1960 玻璃纤维增强塑料第⼆代:1960-1980 先进复合材料的发展时期第三代:1980-2000 纤维增强⾦属基复合材料第四代:2000年⾄今多功能复合材料(功能梯度复合材料、智能复合材料)4、简述复合材料的命名和分类⽅法。
增强材料+(/)基体+复合材料按增强材料形态分:连续纤维复合材料,短纤维复合材料,粒状填料复合材料,编织复合材料;按增强纤维种类分类:玻璃纤维复合材料,碳纤维复合材料,有机纤维复合材料,⾦属纤维复合材料,陶瓷纤维复合材料,混杂复合材料(复合材料的“复合材料”);按基体材料分类:聚合物基复合材料,⾦属基复合材料,⽆机⾮⾦属基复合材料;按材料作⽤分类:结构复合材料,功能复合材料。
5、简述复合材料的共同性能特点。
(1)、综合发挥各组成材料的优点,⼀种材料具有多种性能;(2)、复合材料性能的可设计性;(3)、制成任意形状产品,避免多次加⼯⼯序。
仿生复合材料

力学性能 的方向性
截面宏观 非均质
如木、竹
显微组元 具有复杂 的、多层 次的精细 结构。
复合材料的仿生设计
1
2 3
复合材料最差界面的仿生设计
分形树状纤维和晶须的增强与增韧效应
仿生螺旋的增韧作用
4
5
仿生愈合与自愈合抗氧化
仿生叠层复合材料的研究
一、复合材料最差界面的仿生设计
• 复合材料的界面强结合可以实现力的理想传递,从而提高 材料强度,但降低韧性。弱结合与之相反。 • 最佳界面结合状态不稳定,在载荷作用下会偏离最佳点而 变坏。 • 仿生界面设计采用仿骨的哑铃型增强体和仿树根的分形树 型增强体,通过基体和增大了的端头之间的压缩传递应力 而对界面状态不提出特殊的要求。 • 应力传递对界面状态不敏感,即使界面设计很差,也能满 足要求而得到优良的性能。
五、 仿生叠层复合材料研究
• 天然复合材料很好的强度和韧性与其特殊的微观 结构关系密切。 • 叠层结构是许多材料高断裂韧性的根源。 • 叠层结构在断裂过程中的变化: a 对裂纹的断裂起到偏转作用 b裂纹的频繁偏转延长了裂纹的扩展路径 c导致裂纹从应力状态有利方向转为不利方向 d有机质发生塑性变形,降低裂纹尖端的应力强 度因子,增大了裂纹的扩展阻力。
仿生复合材料的应用
• 人造骨骼 • 叠层状陶瓷、纤维增强铝合金胶结层板、 钢板叠层复合材料 • 薄层陶瓷材料 • 水泥
十大仿生技术
1. 塑料涂层(学习对象:鲨鱼)
• 细菌感染恐怕是最令医院头疼的一件事,无论医生和护士洗手的频率有 多高,他们仍不断将细菌和病毒从一个患者传到另一个患者身上。事实 上,美国每年有多达10万人死于他们在医院感染的细菌疾病。但是,鲨 鱼却可以让自己的身体长久保持清洁——长达一亿多年。 • 与其他大型海洋动物不同,鲨鱼身体不会积聚黏液、水藻和藤壶。这一 现象给工程师托尼· 布伦南带来了无穷灵感,在2003年最早了解到鲨鱼的 特性以后,他多年来一直在尝试为美国海军舰艇设计更能有效预防藤壶 的涂层。鲨鱼整个身体覆盖着一层层凹凸不平的小鳞甲,就像是一层由 小牙织成的毯子。黏液、水藻在鲨鱼身上失去了立足之地,而这样一来, 大肠杆菌和金黄色葡萄球菌这样的细菌也就没有了栖身之所。 • 一家叫Sharklet的公司对布伦南的研究很感兴趣,开始探索如何用鲨鱼 皮开发一种排斥细菌的涂层材料。
仿生智能生物质复合材料制备关键技术

仿生智能生物质复合材料制备关键技术仿生智能生物质复合材料是一种新型的复合材料,具有很好的机械性能、生物相容性和可持续性。
其制备过程需要掌握以下关键技术:
1. 生物质材料的选择和预处理:选择具有一定力学性能和结构特点的生物质材料,并进行适当的预处理,如去除杂质、水分和结构参数的调整等。
2. 仿生智能材料的设计:根据仿生学原理和材料力学的基本原理,设计出具有良好力学性能和智能响应的复合材料结构。
3. 生物质复合材料的制备技术:采用合理的制备工艺,将生物质材料与功能材料进行复合,形成具有特定性能的复合材料。
4. 复合材料的表征和性能测试:对制备出的仿生智能生物质复合材料进行表征和性能测试,如力学性能、热学性能和智能响应特性等。
以上关键技术的掌握对于仿生智能生物质复合材料的制备十分重要,可以为其在生物医学、环境保护等领域的应用奠定坚实的基础。
- 1 -。
复合材料课件第八章 仿生复合材料

46
一、复合材料最差界面的仿生设计
二、分形树状纤维和晶须的增强与构(Fibrous monolithic structure)
Matrix fiber
Interfacial layer
Structure of Bamboo and tree
Fibrous monolithic ceramics
❖1988年Coblenz提出了纤维独石结构设计的思想 ❖1993年Baskaran率先完成了这种陶瓷材料的制备,制备了SiC/C纤维
材料仿生 力学仿生
是使人造的机械能够部分地实现诸 如思维、感知、运动和操作等高级 动物功能的仿生技术。功能仿生必 须以结构仿生为基础,在智能机器 人的研究中具有重大意义。
45
分类
结构仿生
功能仿生
材料仿生 力学仿生
指模拟生物的各种特点或特性而 进行各种材料开发的仿生技术。它 的研究内容以阐明生物体的材料构 造与形成过程为目标,用生物材料 的观点来考虑材料的设计与制作。
贝壳珍珠层的层状结构
鲍鱼壳(abalone shell)断面显微结构
层状结构(Laminated or layered structure)
matrix layer
Interfacial layer
matrix layer
Structure of Nacre
Laminated structure ceramics
❖1994年,清华大学黄勇教授课题组研究了Si3N4/BN层状结构陶瓷复合材料,其表观断裂 韧性高达28MPam1/2,断裂功高达4000J/m2,比常规的Si3N4材料分别提高了数倍和数十 倍。
仿生复合材料PPT课件

通纤维高50%。 仿双螺旋韧皮纤维增强复合材料 拟态
.
8.2.2.2. 分子尺度的化学仿生
✓复合相界面的化学仿生和复合材料单体结 构化学仿生。
✓a界面化学键仿生 ✓b单体化学分子结构仿生
.
8.2.2.3. 微观晶体结构仿生
连续纤维的脆性和界面设计的困难 纤维易由基体拔出导致增强失效 晶须的长径比不易选择 寻求陶瓷基复合材料增韧方法时遇到困难 需求复合材料损伤性能的恢复方法和内部 裂纹的愈合方法
.
生物材料最显著的特点是具有自我调节功能,再 者具有一些自适应和自愈合能力,而研究的重要 课题如下:
.
例如断骨的自愈合
.
8.2 复合材料的仿生 设计和制备
– 多层涂层、梯度涂层虽然可以做到消除热应力引起的裂纹, 但涂层受到外力损伤,容易失去抗氧化的功能。
– 陶瓷/碳复合材料处于高温氧化性环境,表面首先碳化,形 成陶瓷颗粒组成的脱碳层。
– 脱碳层的陶瓷颗粒氧化增大体积或熔融浸润整个材料表面, 氧气的扩散系数研究
.
8.2.3复合材料仿生制备的可行性途径
仿骨哑铃状碳化硅晶须的制备和增塑效应 用气相生长法制备树根状仿生碳纤维 用分形树状氧化锌晶须的制备 碳纤维螺旋束的增韧效应和反向非对称仿生碳纤 维螺旋的制备新方法 自愈合抗氧化陶瓷/碳复合材料的制备 制备内生复合材料的熔铸-原位反应技术 仿生叠层复合材料的制备
.
北京工商材料科学与工程学 院
.
8.2.2复合材料的仿生设计方法分类
.
8.2.2.1界面宏观拟态仿生设计
复合材料界面的作用:是增强物和基体连接的桥梁, 同时也是应力及其它信息的传递者,界面的 性质 直接影响着复合材料的各项力学性能。
仿生复合材料

仿生材料研究进展(讲义)Research Progress of biomimetic materials 仿生学(Bionics)诞生于二十世纪60年代,是Bi(o)+(electr)onics的组合词,重点着眼于电子系统,研究如何模仿生物机体和感官结构及工作原理,而材料的仿生研究则由来已久。
80年代后期,日本复合材料学会志发表了一系列关于材料仿生设计的论文[1],分析了部分生物材料的复合结构和性能,我国学者也开展了卓有成效的探索[2-6]。
美、英等国合作在1992年创办了材料仿生学杂志(Biomimetics),Biomimetics意为模仿生物,着重力学结构和性质方面的仿生研究。
但人们往往狭义地理解“mimetic”含义,认为材料仿生应尽可能接近模仿材料的结构和性质,而出现一些不必要的争议。
近年来国外出现“Bio-inspired”一词,意为受生物启发而研制的材料或进行的过程。
其含义较广,争议较少,似更贴切,因而渐为材料界所接受。
通常把仿照生命系统的运行模式和生物体材料的结构规律而设计制造的人工材料称为仿生材料(Biomimetic Materials)。
这是材料科学与生命科学相结合的产物,这一结合衍生出三大研究领域:天然生物材料,生物医学材料(狭义仿生)和仿生工程材料(广义仿生—即受生物启发而进行的材料仿生设计、制备与处理等)。
一、天然生物材料与生物医学材料天然生物材料经过亿万年物竞天择的进化,具有独特的结构和优异的性能。
通过天然生物材料的研究,人类得到了很多启示,开发出许多生物医学材料和新型工程材料。
天然生物材料的主要组成为蛋白质,蛋白质分子的基本结构是由各种氨基酸〈己知有20种〉组成的长链,改变氨基酸的种类及排列次序,便可以合成千差万别、性能各异的蛋白质。
蛋白质的合成决定于遗传基因,即RNA〈核糖核酸〉中每三个碱基对构成一个密码子,决定一种氨基酸[7]。
在现代遗传工程研究中采用“基因定位突变技术”,可以改变某些碱基对的顺序和种类,以合成所需要的蛋白质,利用DNA技术直接“克隆”出天然生物材料己有报导。
复合材料课件第八章 仿生复合材料-二

300
Displacement (m)
Load-displacement curve
层状结构陶瓷复合材料的结构和性能
(1)显微结构
(2)力学性能
Sample 1 2 3 4
Secondary reinforcement -Si3N4 seeds
(3 wt%) SiC whiskers
(20 wt%) -Si3N4 seeds
11.370.75 75072.17
Cold press
Compact rolling
Compact rolling
8.10.8 820.6799.7 15.121.14 498.3722.72 28.111.00 651.4774.94
2、块体材料(自学)
1)纤维和层状陶瓷 2)聚合物—陶瓷复合材料 3)聚合物的原位矿化 4)可控矿化
❖ 制备技术和工艺参数的确定
根据仿生结构陶瓷的结构特点,选择合适的制备工 艺(成型、涂覆、烧结等),优化工艺参数。如纤维独 石结构陶瓷复合材料可采用挤制成型的方法成型基体纤 维,而层状结构陶瓷可采用轧膜成型或流延法成型制备 基体陶瓷片层。界面层的涂覆工艺、排胶和烧结工艺都 根据具体材料体系的不同而定。
仿生复合材料
层状结构
螺旋纤维结构
分形树状纤维结构
仿骨哑铃状纤维结构
骨替代材料的化学仿生
骨替代材料必须具有细胞载体框架结构,可控制的非 均质多微孔连通结构以及具有结构梯度和材料分布梯 度。其中最具有代表性的是羟基磷灰石(HA)和磷 酸三钙(α-TCP和β-TCP)。用磷酸钙生物陶瓷制备CaP防骨的合成路线:
❖ 界面分隔层要与结构单元具有适中的结合,既要保证它们之 间不发生反应,可以很好地分隔结构单元,使材料具有宏观 的结构,又要保证可以将结构单元适当地“粘接”而不发生 分离。
仿生复合装甲材料结构的设计

仿生复合装甲材料结构的设计简介:仿生学是一门研究自然界中生物体结构和功能的学科,通过学习和模仿生物体的特点和结构,可以获得创新的设计和技术。
在装甲材料领域,仿生学的应用也越来越广泛。
通过借鉴生物体的特点,设计出仿生复合装甲材料结构,能够提高装甲的防护能力和降低质量,具有重要的应用价值。
设计原则:1.结构优化:仿生复合装甲材料的设计应当充分利用材料的优势,通过合理的结构设计来提高装甲的防护能力。
生物体中的一些结构具有很高的韧性和耐冲击能力,这些特点可以借鉴到装甲材料的设计中。
2.复合材料:仿生复合装甲材料主要由多种材料组成,通过合理的组合和层叠,可以充分发挥各种材料的优势。
不同材料在吸能、分散冲击能力等方面具有不同的特点,合理地设计复合结构可以提高装甲的整体性能。
3.轻量化:在保证装甲防护能力的基础上,尽量降低装甲的质量。
仿生学的设计原则中,轻量化是非常重要的一个方面。
通过模仿生物体的结构和特点,设计出轻量化的装甲材料结构,可以有效减轻装甲对车辆或士兵的负担。
设计方法:1.鱼鳞结构:鱼类的鳞片具有非常高的防护能力,可以适应各种复杂环境。
将鱼鳞结构借鉴到装甲材料中,可以增加装甲的抗弯曲和抗压能力。
使用金属、陶瓷或复合材料制作鱼鳞状的小片,然后将这些小片通过特定方法连接在一起,形成一个整体的装甲结构。
2.蜂窝结构:蜂窝结构是一种具有轻质化特点的结构,常见于许多生物体中,如鸟类骨骼、植物茎等。
仿生复合装甲材料可以采用仿制蜂窝结构,通过填充空心结构降低整体质量,同时提高了耐冲击和耐折性能。
3.密集排列结构:一些昆虫腿部具有非常高的弯曲和抗压能力,这部分归功于它们特殊的结构。
仿生复合装甲材料可以采用密集排列的小柱状结构,将这些小柱进行分层、交错排列,形成一种高强度、耐压的结构。
4.壳结构:一些动物如龟、螃蟹等具有坚固的外壳保护身体。
仿生复合装甲材料可以借鉴这种壳结构,采用多层次的材料组合,形成类似于坚硬壳的结构,提高装甲的防护能力。