新能源汽车储能装置与管理系统
课程标准(新能源汽车)

新能源汽车课程标准课程名称:新能源汽车适用专业:汽车运用与维修1、前言1.1 课程性质《新能源汽车》是汽车运用与维修专业的一门专业课程,其作用是使学生初步了解新能源汽车的现状与发展,以及插电式混合动力汽车的结构与工作原理。
为其学习公交客车技术课程打下基础。
1.2 设计思路本课程总体设计思路是以国内新能源汽车的发展现状为依据设置本课程。
本课程的具体设计是以新能源汽车的发展、目前国内新能源汽车的发展为背景,共包括动力蓄电池与储能装置、能量管理系统、电动机驱动与控制系统、纯电动汽车、插电式混合动力系统等5个学习模块。
课程内容的选取紧紧围绕完成以上学习主题的需要循序递进,以满足职业能力的培养要求。
本课程建议学时数为72学时。
2、课程目标使学生了解新能源汽车的构成;掌握新能源的种类及特性;知道纯电动汽车的基本结构,掌握其的工作原理,培养学生诚实、守信、善于沟通和合作的品质,并达到以下具体职业能力培养目标:能掌握新燃料汽车发动机燃料供给系的结构工作原理能认识到燃气安全的重要性掌握它们常见故障、日常维护本课程的教学活动设计应根据课程教学目标、教学内容、学生学习情况、教学条件等综合分析进行,积极贯彻任务引领、项目驱动的基本理念,以学生为主体、教师为主导,形成5.1 教材编写(1)必须依据本课程标准编写教材,教材应充分体现任务引领、实践导向的课程设计思想。
(2)应将本专业职业活动分解成若干典型的工作项目,以任务引领型工作项目为载体,强调理论与实践相结合,按项目活动组织编写内容。
项目活动应具有较强的可操作性、实用性,加强学生实际动手能力的培养。
(3)教材应图文并茂,循序渐进,讲解清楚,以提高学生的学习兴趣,加深学生对城市燃气概况的认识。
(4)教材内容应体现先进性、通用性、实用性,要在本标准基础上有所拓展,将城市燃气的新发展、新成果及时纳入教材,使教材更贴近本专业的发展和实际需要。
(5)在教材编写中要突出培养学生正确的、科学的思维方法,以适应燃气行业发展的需^<。
新能源汽车储能装置的概念

新能源汽车储能装置的概念新能源汽车储能装置是指将电能转化为化学能或电能进行存储的装置,以实现新能源汽车的动力来源转变和能量管理。
新能源汽车储能装置的出现,旨在解决传统汽车使用化石燃料所带来的环境污染和能源枯竭问题。
下面将从储能装置的分类、工作原理、技术发展和未来发展方向等方面详细介绍新能源汽车储能装置。
一、储能装置的分类目前,新能源汽车主要使用的储能装置可以分为两类:电池储能装置和超级电容器储能装置。
1. 电池储能装置电池储能装置是最常见的一种储能装置,它根据不同的工作原理可以分为铅酸电池、镍氢电池、锂离子电池和燃料电池等几种。
其中,锂离子电池被广泛应用于新能源汽车领域,因其高能量密度、较长的循环寿命和较低的自放电率等特点。
2.超级电容器储能装置超级电容器储能装置是一种高性能的储能装置,它可以实现高速充放电,具有较大储能容量和较长的循环寿命。
超级电容器储能装置具有高功率密度、低能量密度和瞬时功率输出大等特点,适用于对动力要求较高的应用场景。
二、储能装置的工作原理1. 电池储能装置工作原理以锂离子电池为例,其工作原理是通过锂离子在正负极材料之间的扩散和迁移来实现电荷与放电的过程。
当电池充电时,正极材料通过化学反应产生锂离子,并通过电解质和隔膜迁移到负极材料上进行储存;当电池放电时,锂离子会从负极材料释放出来,经过电解质和隔膜到达正极材料,并通过化学反应释放出电能。
2. 超级电容器储能装置工作原理超级电容器储能装置是通过电荷的静电吸附和脱附来实现充放电的过程。
当电容器充电时,正极和负极之间的电荷静电吸附,吸附在电极表面形成电荷层;当电容器放电时,电荷层中的电荷经电解质传导离开电极,实现放电过程。
超级电容器具有极快的充放电速度和较长的循环寿命,适合高功率应用场景。
三、储能装置的技术发展1. 化学储能技术目前主流的锂离子电池技术在安全性和能量密度方面存在一定的限制,因此需要进一步研发新型电池材料,提高电池的能量密度和循环寿命。
新能源汽车的结构

新能源汽车的结构新能源汽车是指以新能源替换或辅助传统燃料的动力系统的汽车,它以电能为主要动力来源,具有减少排放、节能环保等优势。
在新能源汽车的结构中,包括以下几个主要部分。
一、动力系统部分新能源汽车的动力系统主要由电动机、电池组和电控系统组成。
电动机是新能源汽车的基本动力元件,它将电能转换为机械能驱动车辆行驶。
电池组则是提供电能的装置,它存储和释放能量,为电动机提供电力源。
电控系统是控制电动机和电池组工作的系统,它通过监测和控制电流、电压等参数来保证电动机和电池组的正常运行。
二、储能系统部分新能源汽车的储能系统主要用于存储电能,以满足车辆行驶的需要。
常见的储能系统包括锂离子电池、镍氢电池、燃料电池等。
锂离子电池是目前使用最广泛的储能系统,具有能量密度高、充放电效率高等优点,适用于纯电动汽车。
镍氢电池是一种相对成熟的储能系统,在混合动力汽车中得到了广泛应用。
燃料电池以氢气为燃料,通过与氧气反应产生电能,适用于燃料电池汽车。
三、能量控制部分新能源汽车的能量控制部分主要包括能量管理系统和充电系统。
能量管理系统是对新能源汽车能量流动进行管理和调度的系统,它通过控制电动机和电池组的工作状态来满足车辆行驶的需求,并实现能量的最优利用。
充电系统是新能源汽车接受外部电源充电的设备,它包括充电桩和充电接口等部分,可以通过连接外部电源将电能传输到电池组中。
四、控制系统部分新能源汽车的控制系统主要由车载电脑和相关传感器组成。
车载电脑是新能源汽车控制和管理的中枢,它通过采集和分析传感器所获取的数据来实现对车辆的控制和运行状态的监测。
传感器则是用于实时监测车辆各个部件工作状态和环境参数的装置,如温度传感器、压力传感器等。
五、车身结构部分新能源汽车的车身结构与传统汽车相似,包括车身框架、车身板材等部分。
新能源汽车在车身结构上通常采用轻量化设计,以提高能量利用率和车辆的续航能力。
同时,为了降低车辆的空气阻力,新能源汽车的车身形状通常采用流线型设计。
储能与能量管理系统设计

储能与能量管理系统设计1. 引言储能与能量管理系统是一种用于存储和管理电能的技术系统,它以储能设备为核心,通过电池、超级电容器、压缩空气或重力等方式实现电能的储存与释放。
本文将重点探讨储能与能量管理系统的设计原理、应用领域以及未来的发展趋势。
2. 储能与能量管理系统的设计原理及关键技术2.1 储能设备的选择根据不同的应用场景和需求,可以选择适合的储能设备,包括传统的铅酸蓄电池、锂离子电池、超级电容器等。
根据系统的需求,综合考虑储能成本、能量密度、循环寿命、安全性等因素,进行合理选择。
2.2 储能系统的设计储能系统设计需要考虑集成调度、能量平衡、电池管理系统(BMS)等要素。
通过合理配置储能单元的数量、容量以及调度策略等,实现能量存储与应用的平衡。
2.3 能量管理算法的优化能量管理算法在储能与能量管理系统中起到关键作用。
通过建立准确的电能预测模型,结合优化调度算法,可以最大限度地提高储能系统的能量利用率,并确保能量供需的平衡。
3. 储能与能量管理系统的应用领域3.1 新能源发电场景储能与能量管理系统可以在新能源发电场景中发挥重要作用。
通过储能系统对电能进行集中储存和控制释放,可以解决可再生能源发电的波动性和间歇性问题,提高可再生能源的利用率。
3.2 智能微电网储能与能量管理系统在智能微电网中的应用也越来越重要。
通过结合分布式能源和储能技术,可以实现对微电网内能源的有效管理和优化调度,提高能源利用效率,降低能源消耗和碳排放。
3.3 电动汽车充电与换电站储能与能量管理系统在电动汽车充电与换电站方面的应用也广泛存在。
通过储能系统对电动车辆的充电需求进行平衡调度,可以有效降低对电网的负荷冲击,提高电网运行的稳定性。
4. 储能与能量管理系统的未来发展趋势4.1 多能互补储能系统多能互补储能系统是储能与能量管理系统的新发展方向之一。
通过将多种储能装置灵活组合,实现能量的多元化管理,提高系统的安全性、可靠性和稳定性。
第5章 新能源汽车的能量管理系统

5.3.1 串联式混合动力汽车的能源管理系统 串联式混合动力汽车的发电机与汽车行驶工况没有直接关系,
系统从外界获取能量的途径主要有三条: ①由燃料化学能转换来的能量; ②由电网充入蓄电池的能量; ③回收的制动及减速能量。
新能源汽车技术,Faculty of New Energy Vehicles,May,2014
第5章新能源汽车的能源管理系统52纯电动汽车能源管理系统523电池管理系统bms表51蓄电池管理系统的主要任务任务测试方式测试装置page11防止过充电电压电流温度测试仪充电器防止过放电电压电流温度测试仪电动机控制温度控制及平衡温度测试仪加热及制冷装置温度平衡单元能源系统信息提示电压电流及温度充电状态剩余容量测试仪显示器电池状态测试及显示电压电流温度测试仪显示器pc总线分析软件第5章新能源汽车的能源管理系统52纯电动汽车能源管理系统523电池管理系统bms1
新能源汽车技术,Faculty of New Energy Vehicles,May,2014
Page 17
第5章 新能源汽车的能源管理系统
5.3 混合动力电动汽车的能源管理系统
新能源汽车技术,Faculty of New Energy Vehicles,May,2014
Page 18
第5章 新能源汽车的能源管理系统
新能源汽车技术,Faculty of New Energy Vehicles,May,2014
Page 6
第5章 新能源汽车的能源管理系统
5.1 能源管理系统的作用
4.混合动力燃料电池和混合动力电动汽车 (1)组成:发电装置(如发动机/发电机或燃料电池),能
量储存装置(蓄电池、超级电容等),功率变换模块,动 力传递装置,充放电装置等。 (2)能源传递路线:
课程标准(新能源汽车)

课程标准(新能源汽车)新能源汽车课程标准课程名称:新能源汽车适用专业:汽车运用与维修1、前言1.1 课程性质《新能源汽车》是汽车运用与维修专业的一门专业课程,其作用是使学生初步了解新能源汽车的现状与发展,以及插电式混合动力汽车的结构与工作原理。
为其学习公交客车技术课程打下基础。
1.2 设计思路本课程总体设计思路是以国内新能源汽车的发展现状为依据设置本课程。
本课程的具体设计是以新能源汽车的发展、目前国内新能源汽车的发展为背景,共包括动力蓄电池与储能装置、能量管理系统、电动机驱动与控制系统、纯电动汽车、插电式混合动力系统等5个学习模块。
课程内容的选取紧紧围绕完成以上学习主题的需要循序递进,以满足职业能力的培养要求。
本课程建议学时数为72学时。
1.新能源汽车概述1.新能源汽车的发展背景●简要说明我国的能源紧缺●说出汽车尾气排放对人类社会的影响22. 新能源汽车的发展趋势与分类●了解能源的概念与特点●掌握能源的分类23.新能源汽车的分类与结构特点●说出新能源汽车的分类●掌握纯电动汽车的基本结构特点●掌握插电式混合动力汽车结构●了解其他新能源汽车42.动力蓄电池与储能装置1.电能存储装置●说出电能储存装置的种类●了解电能储存装置的基本概念●掌握电能储存装置的性能指标42. 动力电池的分类和充电●列举动力电池的分类●掌握电动汽车的充电23.动力电池●说出三种动力电池的区别●掌握动力锂电池的特点43.新能源汽车的能量管理系统1.纯电动汽车的能量管理系统●掌握蓄电池的管理系统●掌握制动能量回收系统●了解电源转换装置22.混合动力电动汽车的能源管理系统●掌握串并式混合动力汽车的能源管理系统23.公交车能源管理系统●描述公交车能源管理系统●掌握客车的能源管理系统的分布44.新能源汽车电动机驱动与控制系统1. 电动机驱动控制系统●说明电动机的分类及各部件的名称●掌握三相交流异步电动机的特点●了解轮毂电动机42.电动机驱动模块常见故障及排除●了解普锐斯的驱动电机的检查项目复述常见故障的排除方法25.纯电动汽车1、纯电动汽车的组成与结构原理●了解纯电动汽车的基本组成●描述其电动汽车的组成部件●掌握纯电动汽车驱动系统22.纯电动汽车的核心技术●了解纯电动汽车的核心技术●掌握电动机控制技术●掌握能量管理技术46.插电式混合动力系统1.插电式混合动力汽车的分类与特点●掌握插电式混合动力汽车的分类●掌握插电式混合动力汽车的结构与工作原理42. 典型插电式混合动力汽车介绍●了解雪佛兰沃蓝达的结构与工作原理●描述比亚迪秦的结构与工作原理23. 插电式混合动力汽车的结构与工作原理●掌握串联式的结构与工作原理4●掌握并联式结构与工作原理●描述混联式结构与工作原理4.丰田普锐斯的动力组成●了解普锐斯的动力组12成●掌握普锐斯的驱动电机总课时604、教学活动参考设计本课程的教学活动设计应根据课程教学目标、教学内容、学生学习情况、教学条件等综合分析进行,积极贯彻任务引领、项目驱动的基本理念,以学生为主体、教师为主导,形成“做学一体”的课堂教学活动。
新能源车的关键部件——储能装置

{
一
1
砸 长 ;
等 发达 蛋家已 开 始 形 成新义 产 !
、
镍氢蓄 电池
镍 氢 蓄 电池是
一
种绿色
与 铅 酸 电池 相 比 具 有 能 量 密 度 j
密度高
,
循 环 寿 命 长 的特 点 (
一
但 它 也 与 铅 酸 电池
样有难 以:
记 忆效应
,
缺点
,
即记 忆效应
。
蓄 电 池 充 放 电过 程 中
会在蓄 时间
.
板 上 产 生 许 多小 气 泡
,
些 气 泡 会 减 少 蓄 电池 极 板 的 面 j
,
尉
●
一
矗
基 础 研 究 始 于 上 型 2Z 6 0 年 代
讽 10
池 昆会使 用 时 官 利 用 超 级 申一 流 充 放 呲特 点
,
年 来 取 得 突 破 生逊 展
’
,
已 成 为 动 力 [n 存 欧羊
、
负 责 车辆 起 i
.
油 领 域 重 霉 科 转 瞒栗
磐
.
、
[_ ] 爪 l
h
J
。
’
。 I 嶝伯 功 瘩和 能 量】 岭
由于 使 用 价 格 昂 贵 的
。
镍 钴 锂 离 子 蓄 电池 的成 本较 高
镍 钻 锰 锂 离 子 蓄 电池 结 合 了 钻
锂 电池
、
镍 锂 电池 和 锰 锂 电 池 的各 自
、
优点
,
合成 容 易
结构稳 定且 安全 性
,
较好 ( 介 于镍钻锂和锰 酸锂 之 间 ) 成本依 旧较高
新能源汽车中的能量管理与控制技术研究

新能源汽车中的能量管理与控制技术研究能源管理与控制技术在新能源汽车中的研究主要包括对能源的有效利用、储能系统的控制和电动机的控制等方面。
本文将详细介绍新能源汽车中的能量管理与控制技术研究。
首先,新能源汽车中的能源管理是一个关键的技术。
传统汽车主要依赖燃油进行能量转换和驱动,而新能源汽车则主要依赖电能进行能量转换和驱动。
因此,如何对电能进行合理的管理与控制,提高能源的利用效率,成为了新能源汽车研究的重点之一、能源管理技术主要包括能量的收集、储存和分配等方面。
通过对新能源汽车中的电能进行合理收集和储存,可以最大限度地提高能源的有效利用。
同时,根据车辆的行驶需求和能源状态等情况,进行能源的分配和利用,可以实现对新能源汽车能量的有效管理。
其次,新能源汽车中的储能系统的控制也是一个关键技术。
储能系统是新能源汽车能量管理的核心之一,包括电池组、超级电容器和储氢系统等。
储能系统的控制主要包括对储能装置的充放电控制,以及对储能装置的状态监测与管理。
通过优化储能系统的充放电策略,可以提高能源的利用效率,延长储能系统的使用寿命。
同时,通过对储能装置的状态监测与管理,可以及时发现和处理储能系统中的故障和异常情况,确保新能源汽车的安全和稳定运行。
另外,新能源汽车中的电动机控制也是一个重要的技术研究方向。
电动机是新能源汽车的关键动力装置,其控制性能直接影响到新能源汽车的动力性能和能源利用效率。
电动机控制技术主要包括对电动机的速度控制和扭矩控制等方面。
通过优化电动机的控制策略,可以实现对新能源汽车的动力输出的精确控制,提高车辆的动力性能和能源利用效率。
为了解决以上问题,研究者们在能量管理与控制技术研究方面进行了许多工作。
例如,通过建立能源管理系统模型和优化算法,实现对新能源汽车能源的合理配置和利用。
在储能系统的控制方面,研究者们通过建立电池等储能装置的模型和状态估计算法,实现对储能系统的充放电控制和状态监测。
在电动机控制方面,研究者们通过建立电动机的数学模型和控制算法,实现对电动机的速度和扭矩控制。