课堂练习册答案-八年级上册C版-数学

合集下载

八年级上册数学练习册答案

八年级上册数学练习册答案
1 1 =$ 0 1 3 1 3 ! 1! *0*. 42!
变量是 7 ! !! 6 2$ 1=+ 7 6 略 ! $! ! &! 1 1=$! * 0 ! 1 1,0,!$ 1 1 42&1 ! ! (! 1 3 1 3 1 3 *0*! 42 06. $ 练习二 !" #! $" %! &" )! (" %!
" $2($ ' $* 2 "($ # &""
( $* 2$ #
! 参考答案与提示 5 #" $* $#($ # 7 % 7 ! 5"* 2#( !
$ 1! & , *0 ,!
& -! !& * (/ 0
$ & .! ! ! 1 ! 1 ! 1
第十三章 ! 实 ! 数
第 ! 节 ! 平方根
&
! 1! ! +! & $ ! + &! $ ! 1! + & $! 1! 1 + &$ ! 被开方数的小数点每向左 或向右 移 $ 动两位 算 术 平 方 根 的小数点就相应地向左 或向右移动一位 . & ( ( ! & ! 1 . 1 ! 1 ! 1( 1 ( !1 1 1 被开方数的小数点每向左 或向右 移 ( 动三位 立方根的小数点就相应地 向左或 向 右移动一位 * ( 1! , - =1! 1 ( 1, - =!1 1 1.
$ $ # -2 槡 * 1 6( 1 2槡 (! 1 1 "
*! !
#2 槡 + 1 6& 12槡 (* 1 1 "

新课堂数学八年级上册答案

新课堂数学八年级上册答案

八年级数学上册新课堂期末试题答案一、选择题1.32- 的绝对值是( ) A .32B .32- C .8D .8-2.若分式1263+-x x 的值为0,则( )A .2-=xB .2=xC .21=xD .21-=x3.如图,ABC ∆是等边三角形,点D 在AC 边上,︒=∠35DBC ,则ADBC ∠的度数为( )A .︒25B .︒60C .︒85D .︒954.下列计算正确的是( )A .632a a a =⋅B .236a a a =⋅C .632)(a a =D .2)2)(2(2-=-+a a a 5.小彤的奶奶步行去社区卫生院做理疗,从家走了15分钟到达距离家900米的社区卫生院,她用了20分钟做理疗,然后用10分钟原路返回家中,那么小彤的奶奶离家的距离S (单位:米)与时间t (单位:分)之间的函数关系图象大致是( )6.已知一个等腰三角形两边长分别为5,6,则它的周长为( ) A .16B .17C .16或 17D .10或127.根据分式的基本性质,分式x x --432可变形为( )A .432---x xB .x x ---432C .x x--423D .423---x x8.已知1=-b a ,则b b a 222--的值为( )A .0B .1C .2D .49.如图,BD 是ABC ∆的角平分线,BC DE //,DE 交AB 于E ,若BC AB =,则下列结论中错误的是( )A .AC BD ⊥B .EDA A ∠=∠C .BC AD =2D .ED BE =10.已知定点M (1x ,1y )、N (2x ,2y )(21x x >)在直线2+=x y 上,若)()(2121y y x x t -⋅-=,则下列说明正确的是( )①tx y =是比例函数;②1)1(++=x t y 是一次函数;③t x t y +-=)1(是一次函数;④函数x tx y 2--=中y 随x 的增大而减小; A .①②③ B .①②④ C .①③④ D .①②③④二、填空题11.9的平方根是_____.12.分解因式:=+-y xy y x 22_________________.13.函数5+=x xy 的自变量x 的取值范围是_______.14.如图在中,AC AB =,︒=∠40A , AB 的垂直平分线MN 交AC 于D , 则=∠DBC _______度.15.如图,直线b kx y +=与坐标轴交于A (3-,0),B (0,5)两点,则不等式0<--b kx 的解集为_________.16.观察下列式子:第1个式子:222345=-;第2个式子:22251213=-第3个式子:22272425=-;……按照上述式子的规律,第5个式子为22211(_____)(_____)=-;第n 个式子为_______________________________(n 为正整数) 三、解答题17.计算:(1)10)31()2011(4---+; (2))4)(()2(2b a b a b a -++-.18.如图,在34⨯正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形。

八年级上册华东师大版数学新课程课堂同步练习册答案

八年级上册华东师大版数学新课程课堂同步练习册答案

《新课程课堂同步练习册·数学(华东版八年级上)》参考答案 第12章 数的开方§12.1平方根与立方根(一) 一、 1.B 2.A 3.B二、1. ±7 2. ±2, 3.-1; 4.0三、1.从左至右依次为: ±3,±4,±5, ±6,±7,±8,±9,±10,±11,±12,±13,±14,±15.2.(1)±25 (2)±0.01 (3)45± (4)29± (5)±100 (6) ±23.(1)±0.2 (2)±3 (3)79±(4) 17±4.(1)a >-2 (2)a =-2 (3)a <-2. §12.1平方根与立方根(二) 一、1.D 2.A 3.C二、1. 14±,142.(1)25.53 (2)4.11 4. 0或1.三、1.(1)80 (2)1.5 (3)114 (4)3;2.(1)-9 (2) 12± (3)4 (4)-53.(1)2.83 (2)28.09(3)-5.34 (4)±0.47.4. 正方形铁皮原边长为5cm . §12.1平方根与立方根(三) 一、1.D 2.A 3.C二、,-3 2. 6,-343 3.-4 4. 0,1,-1.三、1.(1)0.4 (2)-8 (3)56( 4)112- (5)-2 (6)100;2.(1)19.09(2)2.652(3)-2.098(4)-0.9016;3. 63.0cm 2;4.计算得:0.5151,5.151,51.51,515.1,得出规律:当被开方数的小数点向左(右)每移动2位,它的平方根的小数点就向左(右)移动1位.5151.§12.2实数(一) 一、1.B 2.C二、1. 略 2. ≥12-.三、1.(1)√(2)×(3)√(4)×(5)×(6)×(7)√(8)×;2.有理数集合中的数是:13,3.1415,2-5,0,⋅⋅43.6,0.8π,0.1010010001…; 3.A 点对应的数是-3,B 点对应的数是-1.5,C D E 点对应的数是π. §12.2实数(二) 一、 1.C 2.B 3.B二、1. (11(2)2三、1.(1)(2)--(3)12.(1)7.01 (2)-1.41 (3)2.743.略4. 7第13章 整式的乘除§13.1幂的运算 (一)一、1.C 2.B 3.D 二、1.1010 2. 6 ,8 3. 9三、1.(1)10a (2)9a (3)6a (4)10()x y + (5)82x (6)51n b+2.可进行1410次运算 3. 2 §13.1幂的运算(二) 一、1.D 2.B 3.C二、1.10m ,18x 2.14x 3.62y ;4. 2三、1.(1)9a (2)21x (3)215a (4)123a (5)0 (6) 23n a + 2.b >a >c§13.1幂的运算(三) 一、1. C 2.D 3.A二、1. 4109x y ,96318a b c 2. 44m ,54a b 3. 216三、1.(1) 3327x y (2)464x y (3) 85a (4)927a2. (1) 1- (2) 3 3.x =5 4.52 §13.1幂的运算(四) 一、1.C 2.A 3.B二、1.8a ,2a 2. y ,5y 3.22x y ,5x -三、1.(1)3a (2)3m (3) 5x - (4) 4x (5)1 (6) 4y 2. 12x y == §13.2 整式的乘法(一) 一、1.B 2.D 二、1.232x y 2.-5412x y z 3.5312x y - 三、1.(1)1254a b (2)-23x y (3)-4044a b (4)-18628a b c (5)10()x y - (6)3.6⨯1710 2.2.37⨯710 3. 11,,23a b c ==-=-§13.2整式的乘法(二)一、1.B 2.C二、1.263m n mn -,4362x x -+ 2.1832a b -2723a b ,33a b +3. 3223122a b a b ab -+,32232212812x y x y x y -- 三、1.(1)2155x xy - (2)3222612a b a b -+ (3) 3223423x y x y xy -+(4) 42241827m n m n - (5)222322a b a b - (6)222x y xy + 2. 12x =-3.提示:n (2n +1)-2n (n -1)=2n ²+n -2n ²+2n =3n . §13.2整式的乘法(三) 一、1.B 2.D 3.C二、1.22124m mn n -- 2.22276x xy y -+ 3.-6三、 1.(1)221x x +- (2)249x - (3)2456x x -- (4)22672m mn n -+-(5)48x + (6)2278x y + 2. -3§13.2整式的乘法(四) 一、1.D 2.B 3.C二、1.-2 2. 2 3.2(123)x cm - ,233cm 三、1. 化简得252x x --,多项式的值为14- 2.(1)x =5 (2)6x <3.(1)①2710x x ++②2710x x -+③2310x x --④2310x x +- (2)2()x a b x ab +++ (3)①21128x x ++ ②26m m +-§13.3 乘法公式(一) 一、1.C 2.B二、1.22925a b -,229x y -; 2.2249b a -,224x y -; 3. 22()()a b a b a b +-=- 三、1.(1)229a b - (2)22161y x -(3) x 2-9y 2 (4) x 2-4 (5) 2mn (6) 5x -9 2.(1) 44a -, 8 (2)25x -, -26 §13.3乘法公式(二)一、1.A 2.D 3.C 二、1. 5 2. 1 ,89993.3x y + 三、1.(1)2125y - (2)29y (3)2121a a +- (4)81x - (5)9999 (6)8359992.1282§13.3乘法公式(三) 一、1.A 2.D 3.A二、1.2244m mn n -+,2244x xy y -+ 2.224493a ab b ++,2214a ab b -+ 3.222()2a b a ab b -=-+三、1.(1)2961m m ++ (2)21424x x -+(3)229124x xy y ++(4) 224129x xy y --- (5)9604 (6) 121042.(1) 23x -,6 (2) 22a b -,21 3.1528 §13.3乘法公式(四) 一、1.B 2.C二、1.924x -,2441a a ++;2.6±;3. 6x ±或4814x 三、1.(1)42242x x y y -+ (2)31x -+ (3)2319a a -+ (4)8xy 2(1)2 (2)3 §13.4整式的除法(一) 一、1.D 2.B 3.B二、1.42x ,5xy - 2. 34mn ,25()x y - 3. 4 ,3 三、1.(1) 2x (2)4m - (3) 224x y (4) 54ab 2.225a b -,-1 ;3. 45.410⨯倍 §13.4整式的除法(二) 一、1.C 2.C 3.C二、1.32a b - 2.24x -+ 3. 4m -2n 三、1.(1)2322x xy -(2)222m n mn - (3)2351m m -+ (4)23212ab b -+- 2.(1)2ab -,1 (2) xy -,5 3.2,4x y ==- ,-24 §13.4整式的除法(三)一、1.B 2.C二、1.27510⋅⨯ 2.221510x y xy - 3.(464)a b ab ++cm 三、1.(1) 23()x y + (2) -b (3)5463x y - (4)22x - 2.14x ≤- 3. 429156x x x -+ §13.4整式的除法(四) 一、1.C 2.B 3.A二、1.2233ab b -+- 2.-5 3.18,4 三、1.(1)422a b a b +(2)2322x x --+ (3)123y x - (4) 261a b -2.(1) 任一单项式与它前面的单项式的商都为2x - (2)10512x - §13.5因式分解(一)一、1.D 2.B二、1. ab 2.a (a -2) ,3xy (4x -1) 3.-12三、1.(1)a (a +2b ) (2)3ab(b-2a-3) (3)(x -2) (6-x ) (4)3x (a +b )(a +b -2y )(5)2x 2(x -5)(6)x (x +4) 2. (1)220 (2) 2.732 §13.5因式分解(二)一、1.A 2.A 3.D二、1.-(x -2y )2,3 (a -4)2 ;2.②③④⑤; 3.(x -3) 三、1.(1)(x +2y )(x -2y ) (2)(9+m)(9-m) (3)(m -5)2 (4)(3a+4b)2(5)3(x +4)(x -4) (6)(x +y )2(x -y )2 (7)(x -2)2 (8)(2a -3b )2 2. (1)2000 (2) 59853.∵4x 2-4x +2= 4x 2-4x +1+1=(2x-1)2+1>0, ∴ 4x 2-4x +2的值恒为正数.第14章 勾股定理§14.1 勾股定理(一)一、1.B 2.D 二、1.(1)13 (2)12 (3)24 (4)63 2. 2 3. 1三、1.30cm 2 2.28米 3.AB=§14.1 勾股定理(二) 一、1.B 2.D 3.D 二、1. a ²+c ²=b ² 2.13603.5 三、1. 略 2. 169 cm 2 3.36 §14.1 勾股定理(三)一、1.C 2.B 3.C 二、1. 6.93 2. 3.2 3. 5三、1. 1米 2. 2.2米 3.(略) §14.1 勾股定理(四)一、1.B 2.C 3.B二、1.22`1 2. 10三、1. 提示:利用勾股定理的逆定理检验2.(1)面积为12.5,周长为1851320+++ (2)∠BCD 不是直角 3.∵a 2+b 2=(n 2-1)2+(2n)2 =n 4-2n 2+1+4n 2 =n 4+2n 2+1=(n 2+1)2 ∴ a 2+b 2=c 2 ∴ △ABC 是直角三角形 §14.2 勾股定理的应用(一) 一、1.A 2.D二、三、1. BF=12,AD=13,ED=2.6 2.略; 3. 10. §14.2 勾股定理的应用(二) 一、1. 12≤a ≤13 2.8153. 150 二、1. 34海里 2. 因为小汽车的速度为72千米/时 ,所以小汽车超速 3.996.9m 2第15章 平移与旋转§15.1平移(一)一、1.D 2.C 3.B二、1.B B '的方向 线段B B '的距离(答案不唯一) 2.形状 大小 位置 3.2cm 三、1.略 2.图略 §15.1平移(二)一、1.D 2.D 3.C二、1.A , Q 2. 72° 3. 7,7三、1.CF=4cm CD=3cm DF=3 cm EF=2 cm 2.图略3.(1)图略(2)重叠部分的面积与原长方形ABCD 面积的41§15.1平移(三) 一、1.D 2.C二、1. 13㎝ 2.B B ' ,C C ',D D ';B A '',D C '' ,CD ,不能 3.相等,相等三、1.图略 ;2.(1)相等,理由如下:由题意可知,AB ∥CD ,AD ∥BC ,所以∠DAC=∠BCA ,∠BAC=∠ACD ,所以∠B=∠D 3.4个 ,9个 §15.2旋转(一) 一、1.D 2.C二、1.中心 ,方向 ,角度 2.180°3.点C,∠ACD(答案不唯一)的度数,D 、E ,EC ,∠DCE三、1.(1)点A , 60° (2)AC 边上的中点(3)等边三角形2.能 ,点A , 120°3.(1)垂直 (2)13㎝2§15.2旋转(二) 一、1.C 2.D 3.B二、1.中心,角度,距离 2.点B ,点C ,BC 边的中点3. 4,△ABO 与△CDO 、△ADO 与△CBO 、△ABC 与△CDA 、△ABD 与△CDB4.60三、1.略 2.略§15.2旋转(三)一、1.C 2.D 3.B 二、1.略 2.120 3.2π三、1.(1)点D (2)正方形 , 64 (3)30C DC '∠=,CDA '∠=60° 2.略§15.2旋转(四) 一、1.B 2.C二、1.轴对称,平移,旋转 2.B , D ,旋转3.线段的中点 , 180°,对角线的交点, 90°,180°,270°,圆心 ,任何度数4. 4.5 三、1.图略 2.CG=CE ,理由如下:由题意可知,DE=BF=BG ,∵四边形ABCD 是正方形,∴BC=CD=AD=AB ,∵CG=BC-BG ,CE=CD-DE ,∴CG=CE §15.3中心对称(一) 一、1.B 2.D二、1. A ,B 2.略 3. HINOXZ, BCHIMOUX , HIOX三、1.图略 2.能,对称中心是点C ,对应线段有:DC 与CE ,AD 与EF ,AB 与GF ,BC 与GC ;对应角有:∠D 与∠E ,∠A 与∠F ,∠B 与∠G ,∠DCB 与∠GCB 3.图略 4.图略 §15.3中心对称(二) 一、1.A 2.B二、1.OA=OD ,OB=OC 2.2㎝ , 1.5㎝ 3.关于点O 成中心对称 三、1.图略; 2.图略; 3.图略 , 成中心对称 ; 4. 图略 §15.4图形的全等 一、1.C 2.B二、1.12; 2.55; 3.120 , 4 ; 4.①②③④三、1.(1)△ADE ≌△ABC ,对应边有:AB 与AD , BC 与DE , AC 与AE ,对应角有:∠BAC 与∠DAE ,∠B与∠D ,∠C 与∠E (2)∠C=30° ∠B=110° ∠BAE=100°2.(1)AC=BD AO=OB OC=OD (2)∠D=32° (3)AC ∥BD ,∵AO=OB ,CO=OD , ∴ △AOC 与△BOD 是关于点O 成中心对称的, ∵AC ∥BD.3.CD=3㎝第16章 平行四边形§16.1平行四边形的性质(一) 一、1.D 2.B 3.B二、1.110,70,110 2.120,60 3.115°三、1. ∠A=50°,∠B=130°,∠C=50°,∠D=130°;2. ∠ADE=30°,∠EDF=60°,∠FDC=30°.3. AE⊥BE,∵∠DAB+∠ABC=180°,∴12∠DAB+12∠ABC=90°,即∠EAB+∠ABE=90,∴∠AEB=90°,即AE⊥BE§16.1平行四边形的性质(二)一、1.D 2.C二、1.2cm 2.16 3.5,7三、1. 21cm 2. 8cm;3.8cm§16.1平行四边形的性质(三)一、1.B 2.D二、1.10 2.40° 3.7.三、1. 24cm; 2. 略; 3.略§16.1平行四边形的性质(四)一、1.B 2.B二、1.55 2.3 3.100°,80°三、1.16 2. 略§16.2矩形、菱形与正方形的性质(一)一、1.C 2.A 3.B二、1.7 2.28 3.90,45三、1. 2cm; 2. 5cm 3.45°§16.2矩形、菱形与正方形的性质(二)一、1.A 2.B二、1.32 cm 2.60°,120°, 60°,120° 3.30 4.5三、1. 8cm;2. 面积24cm2,周长20cm3.60°,120°,60°,120°.§16.2矩形、菱形与正方形的性质(三)一、1.C 2.B二、1.22.5° 2.67.5三、1.15°;2. 提示:因为四边形EFOG为矩形,所以EF=OG,只要说明EG=GB即可. §16.2矩形、菱形与正方形的性质(四)一、1.D 2.B二、1.4cm 2.5cm 3.1 4.12三、1.20cm 2.150° 3.(1)提示:∠FBC=∠BCE=45°(2)AE=DF ,理由略. §16.3 梯形的性质(一) 一、1.D 2.C二、1. 60 2.10 3. 26 4.110 三、1. 60°,120°, 60°,120° ;2. 24cm §16.3 梯形的性质(二) 一、1.B 2.B二、1.6 2.9 3. 5<a <13三、1.(1)等边三角形,理由略 (2)25; 2. 108°,72°,108°,72° ; 3.(1)略 (2)∠A=108°,∠B=72°,∠C=72°,∠ADC=108°4.∵CE ∥BD ,AE ∥DC ,∴四边形BECD 是平行四边形,∴DB=CE ,又∵梯形ABCD 是等腰梯形,∴AC=BD ,∴AC=CE ,即三角形CAE 是等腰三角形5.2(10cm。

新课程课堂同步练习册八年级上册华东师大版数学答案

新课程课堂同步练习册八年级上册华东师大版数学答案

《新课程课堂同步练习册·数学(华东版八年级上)》参考答案 第12章 数的开方§12.1平方根与立方根(一) 一、 1.B 2.A 3.B二、1. ±7 2. ±2, 3.-1; 4.0三、1.从左至右依次为: ±3,±4,±5, ±6,±7,±8,±9,±10,±11,±12,±13,±14,±15.2.(1)±25 (2)±0.01 (3)45±(4)29± (5)±100 (6) ±2 3.(1)±0.2 (2)±3 (3)79± (4) 17±4.(1)a >-2 (2)a =-2 (3)a <-2. §12.1平方根与立方根(二) 一、1.D 2.A 3.C二、1. 14±,142.(1)25.53 (2)4.11 4. 0或1.三、1.(1)80 (2)1.5 (3)114 (4)3;2.(1)-9 (2) 12± (3)4 (4)-53.(1)2.83 (2)28.09(3)-5.34 (4)±0.47.4. 正方形铁皮原边长为5cm . §12.1平方根与立方根(三) 一、1.D 2.A 3.C二、-3 2. 6,-343 3.-4 4. 0,1,-1.三、1.(1)0.4 (2)-8 (3)56( 4)112- (5)-2 (6)100;2.(1)19.09(2)2.652(3)-2.098(4)-0.9016;3. 63.0cm 2;4.计算得:0.5151,5.151,51.51,515.1,得出规律:当被开方数的小数点向左(右)每移动2位,它的平方根的小数点就向左(右)移动1位.5151.§12.2实数(一) 一、1.B 2.C二、1. 略 2. ≥12-.三、1.(1)√(2)×(3)√(4)×(5)×(6)×(7)√(8)×;2.有理数集合中的数是:1,3.1415,2-5,0,⋅⋅43.6,0.8π,0.1010010001…; 3.A 点对应的数是-3,B 点对应的数是-1.5,C D E 点对应的数是π.§12.2实数(二) 一、 1.C 2.B 3.B二、1. 2.(11(2)2 3. 5 .三、1.(1)(2)--(3)1+2.(1)7.01 (2)-1.41 (3)2.743.略4. 7第13章 整式的乘除§13.1幂的运算 (一)一、1.C 2.B 3.D 二、1.1010 2. 6 ,8 3. 9三、1.(1)10a (2)9a (3)6a (4)10()x y + (5)82x (6)51n b +2.可进行1410次运算 3. 2 §13.1幂的运算(二) 一、1.D 2.B 3.C二、1.10m ,18x 2.14x 3.62y ;4. 2三、1.(1)9a (2)21x (3)215a (4)123a (5)0 (6) 23n a + 2.b >a >c§13.1幂的运算(三) 一、1. C 2.D 3.A二、1. 4109x y ,96318a b c 2. 44m ,54a b 3. 216三、1.(1) 3327x y (2)464x y (3) 85a (4)927a2. (1) 1- (2) 3 3.x =5 4.52 §13.1幂的运算(四) 一、1.C 2.A 3.B二、1.8a ,2a 2. y ,5y 3.22x y ,5x -三、1.(1)3a (2)3m (3) 5x - (4) 4x (5)1 (6) 4y 2. 12x y == §13.2 整式的乘法(一) 一、1.B 2.D 二、1.232x y 2.-5412x y z 3.5312x y - 三、1.(1)1254a b (2)-23x y (3)-4044a b (4)-18628a b c (5)10()x y - (6)3.6⨯17102. 2.37⨯710 3. 11,,23a b c ==-=- §13.2整式的乘法(二)一、1.B 2.C二、1.263m n mn -,4362x x -+ 2.1832a b -2723a b ,33a b +3. 3223122a b a b ab -+,32232212812x y x y x y -- 三、1.(1)2155x xy - (2)3222612a b a b -+ (3) 3223423x y x y xy -+(4) 42241827m n m n - (5)222322a b a b - (6)222x y xy +2. 12x =-3.提示:n (2n +1)-2n (n -1)=2n ²+n -2n ²+2n =3n . §13.2整式的乘法(三) 一、1.B 2.D 3.C二、1.22124m mn n -- 2.22276x xy y -+ 3.-6三、 1.(1)221x x +- (2)249x - (3)2456x x -- (4)22672m mn n -+-(5)48x + (6)2278x y + 2. -3§13.2整式的乘法(四) 一、1.D 2.B 3.C二、1.-2 2. 2 3.2(123)x cm - ,233cm 三、1. 化简得252x x --,多项式的值为14- 2.(1)x =5 (2)6x < 3.(1)①2710x x ++②2710x x -+③2310x x --④2310x x +-(2)2()x a b x ab +++ (3)①21128x x ++ ②26m m +-§13.3 乘法公式(一) 一、1.C 2.B二、1.22925a b -,229x y -; 2.2249b a -,224x y -; 3. 22()()a b a b a b +-=-三、1.(1)229a b - (2)22161y x -(3) x 2-9y 2 (4) x 2-4 (5) 2mn (6) 5x -9 2.(1) 44a -, 8 (2)25x -, -26 §13.3乘法公式(二) 一、1.A 2.D 3.C二、1. 5 2. 1 ,89993.3x y + 三、1.(1)2125y - (2)29y (3)2121a a +- (4)81x - (5)9999 (6)8359992.1282 §13.3乘法公式(三) 一、1.A 2.D 3.A二、1.2244m mn n -+,2244x xy y -+ 2.224493a ab b ++,2214a ab b -+ 3.222()2a b a ab b -=-+ 三、1.(1)2961m m ++ (2)21424x x -+ (3)229124x xy y ++(4) 224129x xy y --- (5)9604 (6) 121042.(1) 23x -,6 (2) 22a b -,21 3.1528 §13.3乘法公式(四) 一、1.B 2.C二、1.924x -,2441a a ++;2.6±;3. 6x ±或4814x 三、1.(1)42242x x y y -+ (2)31x -+ (3)2319a a -+ (4)8xy2(1)2 (2)3 §13.4整式的除法(一) 一、1.D 2.B 3.B二、1.42x ,5xy - 2. 34mn ,25()x y - 3. 4 ,3三、1.(1) 2x (2)4m - (3) 224x y (4) 54ab 2.225a b -,-1 ;3. 45.410⨯倍 §13.4整式的除法(二) 一、1.C 2.C 3.C二、1.32a b - 2.24x -+ 3. 4m -2n 三、1.(1)2322x xy -(2)222m n mn - (3)2351m m -+ (4)23212ab b -+- 2.(1)2ab -,1 (2) xy -,5 3.2,4x y ==- ,-24 §13.4整式的除法(三) 一、1.B 2.C二、1.27510⋅⨯ 2.221510x y xy - 3.(464)a b ab ++cm三、1.(1) 23()x y + (2) -b (3)5463x y - (4)22x - 2.14x ≤- 3. 429156x x x -+ §13.4整式的除法(四) 一、1.C 2.B 3.A二、1.2233ab b -+- 2.-5 3.18,4 三、1.(1)422a b a b +(2)2322x x --+ (3)123y x - (4) 261a b -2.(1) 任一单项式与它前面的单项式的商都为2x - (2)10512x - §13.5因式分解(一)一、1.D 2.B二、1. ab 2.a (a -2) ,3xy (4x -1) 3.-12 三、1.(1)a (a +2b ) (2)3ab(b-2a-3) (3)(x -2) (6-x ) (4)3x (a +b )(a +b -2y )(5)2x 2(x -5)(6)x (x +4) 2. (1)220 (2) 2.732 §13.5因式分解(二)一、1.A 2.A 3.D二、1.-(x -2y )2,3 (a -4)2 ;2.②③④⑤; 3.(x -3) 三、1.(1)(x +2y )(x -2y ) (2)(9+m)(9-m) (3)(m -5)2 (4)(3a+4b)2(5)3(x +4)(x -4) (6)(x +y )2(x -y )2 (7)(x -2)2 (8)(2a -3b )2 2. (1)2000 (2) 59853.∵4x 2-4x +2= 4x 2-4x +1+1=(2x-1)2+1>0, ∴ 4x 2-4x +2的值恒为正数.第14章 勾股定理§14.1 勾股定理(一)一、1.B 2.D 二、1.(1)13 (2)12 (3)24 (4)63 2. 2 3. 1三、1.30cm 2 2.28米 3.AB= §14.1 勾股定理(二) 一、1.B 2.D 3.D 二、1. a ²+c ²=b ² 2.13603.5 三、1. 略 2. 169 cm 2 3.36 §14.1 勾股定理(三)一、1.C 2.B 3.C 二、1. 6.93 2. 3.2 3. 5三、1. 1米 2. 2.2米 3.(略) §14.1 勾股定理(四)一、1.B 2.C 3.B二、1.22`1 2. 10三、1. 提示:利用勾股定理的逆定理检验2.(1)面积为12.5,周长为1851320+++ (2)∠BCD 不是直角 3.∵a 2+b 2=(n 2-1)2+(2n)2 =n 4-2n 2+1+4n 2 =n 4+2n 2+1=(n 2+1)2 ∴ a 2+b 2=c 2 ∴ △ABC 是直角三角形 §14.2 勾股定理的应用(一) 一、1.A 2.D二、三、1. BF=12,AD=13,ED=2.6 2.略; 3. 10. §14.2 勾股定理的应用(二) 一、1. 12≤a ≤13 2.8153. 150 二、1. 34海里 2. 因为小汽车的速度为72千米/时 ,所以小汽车超速 3.996.9m 2第15章 平移与旋转§15.1平移(一)一、1.D 2.C 3.B二、1.B B '的方向 线段B B '的距离(答案不唯一) 2.形状 大小 位置 3.2cm 三、1.略 2.图略 §15.1平移(二)一、1.D 2.D 3.C二、1.A , Q 2. 72° 3. 7,7三、1.CF=4cm CD=3cm DF=3 cm EF=2 cm 2.图略3.(1)图略(2)重叠部分的面积与原长方形ABCD 面积的41 §15.1平移(三) 一、1.D 2.C二、1. 13㎝ 2.B B ' ,C C ',D D ';B A '',D C '' ,CD ,不能 3.相等,相等三、1.图略 ;2.(1)相等,理由如下:由题意可知,AB ∥CD ,AD ∥BC ,所以∠DAC=∠BCA ,∠BAC=∠ACD ,所以∠B=∠D 3.4个 ,9个 §15.2旋转(一) 一、1.D 2.C二、1.中心 ,方向 ,角度 2.180°3.点C,∠ACD(答案不唯一)的度数,D 、E ,EC ,∠DCE三、1.(1)点A , 60° (2)AC 边上的中点(3)等边三角形2.能 ,点A , 120°3.(1)垂直 (2)13㎝2§15.2旋转(二) 一、1.C 2.D 3.B二、1.中心,角度,距离 2.点B ,点C ,BC 边的中点3. 4,△ABO 与△CDO 、△ADO 与△CBO 、△ABC 与△CDA 、△ABD 与△CDB4.60三、1.略 2.略§15.2旋转(三)一、1.C 2.D 3.B 二、1.略 2.120 3.2π三、1.(1)点D (2)正方形 , 64 (3)30C DC '∠=o,CDA '∠=60° 2.略§15.2旋转(四) 一、1.B 2.C二、1.轴对称,平移,旋转 2.B , D ,旋转3.线段的中点 , 180°,对角线的交点, 90°,180°,270°,圆心 ,任何度数4. 4.5 三、1.图略 2.CG=CE ,理由如下:由题意可知,DE=BF=BG ,∵四边形ABCD 是正方形,∴BC=CD=AD=AB ,∵CG=BC-BG ,CE=CD-DE ,∴CG=CE §15.3中心对称(一) 一、1.B 2.D二、1. A ,B 2.略 3. HINOXZ, BCHIMOUX , HIOX三、1.图略 2.能,对称中心是点C ,对应线段有:DC 与CE ,AD 与EF ,AB 与GF ,BC与GC ;对应角有:∠D 与∠E ,∠A 与∠F ,∠B 与∠G ,∠DCB 与∠GCB 3.图略 4.图略 §15.3中心对称(二) 一、1.A 2.B二、1.OA=OD ,OB=OC 2.2㎝ , 1.5㎝ 3.关于点O 成中心对称 三、1.图略; 2.图略; 3.图略 , 成中心对称 ; 4. 图略 §15.4图形的全等 一、1.C 2.B二、1.12; 2.55; 3.120 , 4 ; 4.①②③④三、1.(1)△ADE ≌△ABC ,对应边有:AB 与AD , BC 与DE , AC 与AE ,对应角有:∠BAC与∠DAE ,∠B 与∠D ,∠C 与∠E (2)∠C=30° ∠B=110° ∠BAE=100° 2.(1)AC=BD AO=OB OC=OD (2)∠D=32° (3)AC ∥BD ,∵AO=OB ,CO=OD , ∴ △AOC 与△BOD 是关于点O 成中心对称的, ∵AC ∥BD. 3.CD=3㎝第16章 平行四边形§16.1平行四边形的性质(一) 一、1.D 2.B 3.B二、1.110,70,110 2.120,60 3.115° 三、1. ∠A=50°,∠B=130°,∠C=50°,∠D=130°;2. ∠ADE=30°,∠EDF=60°,∠FDC=30°.3. AE ⊥BE,∵∠DAB+∠ABC=180°,∴12∠DAB+12∠ABC=90°,即∠EAB+∠ABE=90,∴∠AEB=90°,即AE⊥BE§16.1平行四边形的性质(二)一、1.D 2.C二、1.2cm 2.16 3.5,7三、1. 21cm 2. 8cm;3.8cm§16.1平行四边形的性质(三)一、1.B 2.D二、1.10 2.40° 3.7.三、1. 24cm; 2. 略; 3.略§16.1平行四边形的性质(四)一、1.B 2.B二、1.55 2.3 3.100°,80°三、1.16 2. 略§16.2矩形、菱形与正方形的性质(一)一、1.C 2.A 3.B二、1.7 2.28 3.90,45三、1. 2cm; 2. 5cm 3.45°§16.2矩形、菱形与正方形的性质(二)一、1.A 2.B二、1.32 cm 2.60°,120°, 60°,120° 3.30 4.5三、1. 8cm;2. 面积24cm2,周长20cm3.60°,120°,60°,120°.§16.2矩形、菱形与正方形的性质(三)一、1.C 2.B二、1.22.5° 2.67.5三、1.15°;2. 提示:因为四边形EFOG为矩形,所以EF=OG,只要说明EG=GB即可.§16.2矩形、菱形与正方形的性质(四)一、1.D 2.B二、1.4cm 2.5cm 3.1 4.12三、1.20cm 2.150° 3.(1)提示:∠FBC=∠BCE=45°(2)AE=DF,理由略. §16.3 梯形的性质(一)一、1.D 2.C二、1. 60 2.10 3. 26 4.110 三、1. 60°,120°, 60°,120° ;2. 24cm §16.3 梯形的性质(二) 一、1.B 2.B二、1.6 2.9 3. 5<a <13三、1.(1)等边三角形,理由略 (2)25; 2. 108°,72°,108°,72° ; 3.(1)略 (2)∠A=108°,∠B=72°,∠C=72°,∠ADC=108°4.∵CE ∥BD ,AE ∥DC ,∴四边形BECD 是平行四边形,∴DB=CE ,又∵梯形ABCD是等腰梯形,∴AC=BD ,∴AC=CE ,即三角形CAE 是等腰三角形5.2(10cm。

数学课堂练习册八年级上册答案

数学课堂练习册八年级上册答案
1B 2C 3C 4B 5B 6A 7B 8D
填空
(1)1 (2)y=2x+1 -1 (3)my1 (5)y=-2x+100 25(6)9
3.解答题
(1) ① Q=200+20t② (0≤t≤30)
(2) ①y=80 (0≤x≤50)
y=1.9x-15 (50≤x≤100)
②y=1.6x
③选择方式一(3)①在同一直线上 y=25/72x
(2)y=80-2x
20(3) ①-2≤x≤3
②当x=3,y有最小值为1/2
③当-2≤x≤0,y随x的增大而增大,当0≤x≤3,y随x的增大而减小
(4)①`v=800-50t
②0≤t≤16
③当t=8时 , v=800-50x8=400
④当v=100时,100=800-50t
T=14
第5页—第7页
选择题
租甲车更活算
第13页—第15页
1.选择题
(1)D (2)C (3)C
2.填空
(1)x=2
y=3
(2)x=2 x>2
(3)-3 -2 x= -5/8 y= -1/8
(4)1/2 0 x=2
y=3
(5)y=5/4 x
2. 解答题
3. (1)略
(2)①依题意
-k+b= -5
2k+b=1
解得
k=2 b= -3
y=2x+3
当y≥0 时
2x-3≥0, x≥3/2
②当x100
租书超过100天,会员卡比租书卡更合算
(4)设A(m,n)
1/2x4xm=6
m=3
n=2
A ( -3, -2)
y=2/3x , y= -2/3x -4 (5) ① y甲=0.8x1.5X+900=1.2x+9

八年级上册数学同步解析与测评答案人教版

八年级上册数学同步解析与测评答案人教版

人教版初中数学八年级上册课堂同步练习(答案附后)人教版初中数学八年级上册课堂同步练习第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是( )2.以下列各组线段的长为边长,能组成三角形的是( )A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有( )①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④ C.③④ D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC 中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2 三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC =________°.4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2. 7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为( )A.80° B.90° C.20° D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是( )A.30° B.40° C.50° D.60°3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为( ) A.61° B.39° C.29° D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是( )A.直角三角形 B.钝角三角形C.锐角三角形 D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是( ) A.60° B.36° C.54° D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是( ) A.1个 B.2个 C.3个 D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2 三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD 的大小为________.2.下列关于正六边形的说法错误的是( )A.边都相等 B.对角线长都相等C.内角都相等 D.外角都相等3.四边形一共有________条对角线( )A.1B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是( ) A.五边形 B.六边形 C.七边形 D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2 多边形的内角和1.五边形的内角和是( )A.180° B.360° C.540° D.720°2.已知一个多边形的内角和为900°,则这个多边形为( )A.七边形 B.八边形C.九边形 D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为( ) A.3B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是( )A.12B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?第十二章全等三角形12.1 全等三角形。

八上数学课堂精练答案

八上数学课堂精练答案八上数学课堂精练答案八上数学课堂精练答案一.仔细选一选1.下列四个数中,结果为负数的是()A.﹣(﹣)B.|﹣|C.(﹣)2D.﹣|﹣|考点:正数和负数.分析:根据相反数,可判断A,根据负数的绝对值,可判断B,根据负数的偶次幂是正数,可判断C,根据绝对值的相反数,可判断D.解答:解:A、﹣(﹣)=>0,故A错误;B、|﹣|=>0,故B错误;C、(﹣)2=>0,故C错误;D、﹣|﹣|=﹣<0,故D正确;故选:D.点评:本题考查了正数和负数,小于零的数是负数,先化简再判断负数.2.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72考点:实数的运算.分析:A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.解答:解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选B.点评:本题主要考查实数的运算能力,解决此类题目的关键是熟记二次根式、三次根式和立方、平方的运算法则.开平方和开立方分别和平方和立方互为逆运算.立方根的性质:任何数都有立方根,①正数的立方根是正数,②负数的立方根是负数,③0的立方根是0.3.用代数式表示:“a,b两数的平方和与a,b乘积的差”,正确的是()A.a2+b2﹣abB.(a+b)2﹣abC.a2b2﹣abD.(a2+b2)ab考点:列代数式.分析:先求得a,b两数的平方和为a2+b2,再减去a,b乘积列式得出答案即可.解答:解:“a,b两数的平方和与a,b乘积的差”,列示为a2+b2﹣ab.故选:A.点评:此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.4.据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A.1.394×107B.13.94×107C.1.394×106D.13.94×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13940000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若﹣2am﹣1b2与5abn可以合并成一项,则m+n的值是()A.1B.2C.3D.4考点:合并同类项.分析:根据可以合并,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据有理数的加法,可得答案.解答:解:由﹣2am﹣1b2与5abn可以合并成一项,得m﹣1=1,n=2.解得m=2,n=2.m+n=2+2=4,故选:D.点评:本题考查了合并同类项,利用了同类项得出m、n的值是解题关键.6.如图,A是直线l外一点,点B、C、E、D在直线l上,且AD⊥l,D为垂足,如果量得AC=8cm,AD=6cm,AE=7cm,AB=13cm,那么,点A到直线l的距离是()A.13cmB.8cmC.7cmD.6cm考点:点到直线的距离.分析:根据点到直线的距离是点与直线上垂足间线段的长,可得答案.解答:解:点A到直线l的距离是AD的长,故点A到直线l的距离是6cm,故选:D.点评:本题考查了点到直线的距离,点到直线的距离是点与直线上垂足间线段的长.7.下列式子变形正确的是()A.﹣(a﹣1)=﹣a﹣1B.3a﹣5a=﹣2aC.2(a+b)=2a+bD.|π﹣3|=3﹣π考点:合并同类项;绝对值;去括号与添括号.专题:常规题型.分析:根据去括号与添括号的法则以及合并同类项的定义对各选项依次进行判断即可解答.解答:解:A、﹣(a﹣1)=﹣a+1,故本选项错误;B、3a﹣5a=﹣2a,故本选项正确;C、2(a+b)=2a+2b,故本选项错误;D、|π﹣3|=π﹣3,故本选项错误.故选B.点评:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.同时要注意掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.考点:数轴;相反数;有理数大小比较.分析:根据m<1<﹣m,求出m的取值范围,进而确定M的位置即可.解答:解:∵m<1<﹣m,∴,解得:m<﹣1.故选:A.点评:此题主要考查了不等式组的解法以及利用数轴确定点的位置,根据已知得出m的取值范围是解题关键.9.下列说法:①两点确定一条直线;②射线AB和射线BA是同一条射线;③相等的角是对顶角;④三角形任意两边和大于第三边的理由是两点之间线段最短.正确的是()A.①③④B.①②④C.①④D.②③④考点:三角形三边关系;直线、射线、线段;直线的性质:两点确定一条直线;对顶角、邻补角.分析:利用确定直线的条件、射线的定义、对顶角的性质、三角形的三边关系分别判断后即可确定正确的选项.解答:解:①两点确定一条直线,正确;②射线AB和射线BA是同一条射线,错误;③相等的角是对顶角,错误;④三角形任意两边和大于第三边的理由是两点之间线段最短,正确,故选C.点评:本题考查了确定直线的条件、射线的定义、对顶角的性质、三角形的三边关系,属于基础知识,比较简单.10.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,则线段AM的长为()A.2cmB.4cmC.2cm或6cmD.4cm或6cm考点:两点间的距离.分析:分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM 的长.解答:解:当点C在线段AB上时,由线段的和差,得AC=AB﹣BC=8﹣4=4(cm),由线段中点的性质,得AM=AC=×4=2(cm);点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的性质,得AM=AC=×12=6(cm);故选:C.点评:本题考查了两点间的距离,利用了线段的和差,线段中点的性质.二.认真填一填11.若∠1=40°50′,则∠1的余角为49°10′,∠1的补角为139°10′.考点:余角和补角;度分秒的换算.分析:根据余角的定义求出90°﹣∠1°,即可得出答案,根据补角的定义求出180°﹣∠1,即可得出答案.解答:解:∵∠1=40°50′,∴∠1的余角为90°﹣∠1=49°10′,∠1的补角为180°﹣∠1=139°10′,故答案为:49°10′,139°10′.点评:本题考查了余角和补角的应用,注意:∠1是的余角是90°﹣∠1,补角是180°﹣∠1.12.在实数,,0,,,﹣1.414,0.131131113…(两个“3”之间依次多一个“1”),﹣中,其中无理数是,,0.131131113…(两个“3”之间依次多一个“1”).考点:无理数.分析:无理数是指无限不循环小数,根据无理数的定义判断即可.解答:解:无理数有,,0.131131113…(两个“3”之间依次多一个“1”),故答案为:,,0.131131113…(两个“3”之间依次多一个“1”).点评:本题考查了对无理数的定义的应用,注意:无理数包括三方面的`数:①含π的,②开方开不尽的根式,③一些有规律的数.13.x的方程3x+2a=6的解是a﹣1,则a的值是.考点:一元一次方程的解.分析:把x=a﹣1代入方程计算即可求出a的值.解答:解:把x=a﹣1代入方程得:3a﹣3+2a=6,解得:a=,故答案为:.点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.如果a﹣3b=6,那么代数式5﹣3a+9b的值是﹣13.考点:代数式求值.分析:将原式提取公因式,进而将已知代入求出即可.解答:解:∵a﹣3b=6,∴5﹣3a+9b=5﹣3(a﹣3b)=5﹣3×6=﹣13.故答案为:﹣13.点评:此题主要考查了代数式求值,正确应用已知得出是解题关键.15.若当x=3时,代数式(3x+4+m)与2﹣mx的值相等,则m=﹣.考点:解一元一次方程.专题:计算题.分析:把x=3代入两代数式,使其值相等求出m的值即可.解答:解:把x=3代入得:(13+m)=2﹣m,去分母得:4(13+m)=28﹣21m,去括号得:42+4m=28﹣21m,移项合并得:25m=﹣14,解得:m=﹣,故答案为:﹣点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为29,第n个正方形的中间数字为8n﹣3.(用含n的代数式表示)考点:规律型:图形的变化类.分析:由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一规律即可求出m的值;首先求得第n个的最小数为1+4(n﹣1)=4n﹣3,其它三个分别为4n﹣2,4n﹣1,4n,由以上规律求得答案即可.解答:解:如图,因此第4个正方形中间数字m为14+15=29,第n个正方形的中间数字为4n﹣2+4n﹣1=8n﹣3.故答案为:29,8n﹣3.点评:此题考查图形的变化规律,通过观察,分析、归纳发现数字之间的运算规律,并应用发现的规律解决问题.三.全面答一答17.计算(1)(﹣2.25)﹣(+)+(﹣)﹣(﹣0.125)(2)﹣32+5×(﹣6)﹣(﹣4)2÷(﹣2)考点:有理数的混合运算.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=(﹣2.25﹣0.75)+(﹣0.625+0.125)=﹣3﹣0.5=﹣3.5;(2)原=﹣9﹣30+8=﹣31.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程(1)4x﹣2=3x﹣(2)=﹣2.考点:解一元一次方程.专题:计算题.分析:(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:(1)方程移项合并得:x=2﹣;(2)去分母得:4x+2=1﹣2x﹣12,移项合并得:6x=﹣13,解得:x=﹣.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.19.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有OD⊥OE,试说明理由;(2)若∠BOE=∠EOC,∠DOE=72°,求∠EOC的度数.考点:角平分线的定义.分析:(1)根据角平分线的定义可以求得∠DOE=∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.解答:解:(1)如图,∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠BOD=∠AOB,∠BOE=∠BOC,∴∠DOE=(∠AOB+∠BOC)=∠AOC=90°,即OD⊥OE;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=(180°﹣3x),则∠BOE+∠BOD=∠DOE,即x+(180°﹣3x)=72°,解得x=36°,故∠EOC=2x=72°.点评:本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.20.在同一平面内有n条直线,当n=1时,如图①,一条直线将一个平面分成两个部分;当n=2时,如图②,两条直线将一个平面最多分成四个部分.(1)在作图区分别画出当n=3时,三条直线将一个平面分成最少部分和最多部分的情况;(2)当n=4时,请写出四条直线将一个平面分成最少部分的个数和最多部分的个数;(3)若n条直线将一个平面最多分成an个部分,(n+1)条直线将一个平面最多分成an+1个部分,请写出an,an+1,n之间的关系式.考点:规律型:图形的变化类.分析:(1)一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最少可以把平面分成4部分,最多可以把平面分成7部分,由此画出图形即可;(2)四条直线最少可以把平面分成5部分,最多可以把平面分成11部分;(3)可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,…,n条时比原来多了n部分..解答:解:(1)如图,(2)四条直线最少可以把平面分成5部分,最多可以把平面分成11部分;(3)当n=1时,分成2部分,当n=2时,分成4=2+2部分,当n=3时,分成7=4+3部分,当n=4时,分成11=7+4部分,…可以发现,有几条线段,则分成的部分比前一种情况多几部分,an、an+1、n之间的关系是:an+1=an+(n+1).点评:此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.21.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东500m处,商场在学校西300m处,医院在学校东600m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)请画一条数轴并在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离;(3)若小新家也位于这条马路旁,在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,试求小新家与学校的距离.考点:数轴.分析:(1)规定向东为正,单位长度是以100米为1个单位,根据青少年宫、学校、商场、医院的位置画出数轴即可,(2)根据数轴上两点之间的距离是表示这两点的数的差的绝对值求值即可.(3)由题意可得小新家到医院的距离为800m,设小新家在数轴上为xm,列出方程求出x,即可确定小新家与学校的距离.解答:解:(1)如图,(2)青少年宫与商场之间的距离|500﹣(﹣300)|=800m,(3)①∵小新家在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,∴小新家到医院的距离为800m,设小新家在数轴上为xm,则600﹣x=800,解得x=﹣200m,∴小新家与学校的距离为200m.②当小新家在商场的西边时,设小新家在数轴上为xm,则﹣300﹣x+500﹣x=600﹣x,解得x=﹣400m∴小新家与学校的距离为400m.点评:此题主要考查正负数在实际中的应用,所以学生在学这一部分时一定要联系实际,不能死学.22.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于2015,2020吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)考点:一元一次方程的应用.分析:(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.解答:解:(1)设中间的数是a,则a的上一个数为a﹣18,下一个数为a+18,前一个数为a﹣2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a﹣18=403﹣18=385,2n﹣1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.点评:本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.23.某超市在“元旦”促销期间规定:超市内所有商品按标价的75%出售,同时当顾客在消费满一定金额后,按如下方案获得相应金额的奖券:消费金额a(元)的范围100≤a<400400≤a<600600≤a<800 获得奖券金额(元)40100130根据上述促销方法知道,顾客在超市内购物可以获得双重优惠,即顾客在超市内购物获得的优惠额=商品的折扣+相应的奖券金额,例如:购买标价为440元的商品,则消费金额为:440×75%=330元,获得的优惠额为:440×(l﹣75%)+40=150元.(1)购买一件标价为800元的商品,求获得的优惠额;(2)若购买一件商品的消费金额在450≤a<800之间,请用含a 的代数式表示优惠额;(3)对于标价在600元与900元之间(含600元和900元)的商品,顾客购买标价为多少元的商品时可以得到的优惠率?(设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价)考点:一元一次方程的应用.分析:(1)先求出标价为450元的商品按80%的价格出售,消费金额为360元,再根据消费金额360元在200≤x≤400之间,即可得出优惠额;(2)分两种情况:当400<a≤600时;当600≤a<800时;讨论可求该顾客获得的优惠额;(3)设购买标价为x元时,可以得到的优惠率,根据(2)的计算方法列出方程解答即可.解答:解:(1)优惠额为800×(l﹣75%)+130=330元;(2)消费金额在400<a≤600之间时,优惠额为(a÷70%)(1﹣75%)+100=a+100;消费金额在600≤a<800之间时,优惠额为(a÷70%)(1﹣75%)+130=a+130;(3)设购买标价为x元时,由题意得0.25x+130=x,或x+130=x,解得:x=832或x=(不合题意,舍去)答:购买标价为832元的商品时可以得到的优惠率.点评:此题考查一元一次方程的实际运用,列代数式,理解题意,找出运算的方法是解决问题的关键.下载全文。

人教版八年级上册数学 八年级上册数学作业本参考答案

人教版八年级上册数学八年级上册数学作业本参考答案一、第一章实数1. 课前练习(1) 有理数的范围是整数、分数及其运算结果。

(2) 无理数是不能表示为有理数的数。

(3) 小数除了有限小数外,还有无限小数,无限小数有循环小数和非循环小数两种。

(4) √2、π、e等都是无理数。

2. 课后作业(1) 有理数是指整数、分数及其运算结果,如4、-5/6、√16等。

(2) 无理数是指不能表示为有理数的数,如√2、π、e等。

(3) 有限小数是指小数部分有限的小数,如0.5、-3.25等。

循环小数是指小数部分出现了一定规律循环的小数,如0.3(3)、0.25(25)等。

(4) 在实数轴上,0与正数、负数之间是有间隔的。

(5) 非负有理数和非负无理数都可以表示为不小于0的数,但有理数可以表示为x=a或a<x<b,而无理数不能表示为这样的形式。

3. 拓广探究(1) 设a是正整数,b是不为1的正整数,证明:如果a可整除b,则a和b的最大公约数是b的约数。

证:设d是a和b的最大公约数,因为a可整除b,所以a=k×b,其中k是正整数。

如果d≠b,那么d是b的真因数,d也是a的因数,这与d是a和b的最大公约数矛盾。

所以d=b,即a和b的最大公约数是b的约数。

(2) 设x和y都是有理数,证明:x+y和x-y都是有理数。

证:因为x和y都是有理数,所以可以表示为x=a/b,y=c/d,其中a、b、c、d都是整数。

则x+y=a/b+c/d=(ad+bc)/bd,其中ad+bc、bd都是整数,所以x+y也是有理数。

同理,x-y=a/b-c/d=(ad-bc)/bd,其中ad-bc、bd都是整数,所以x-y也是有理数。

(3) 设x和y都是无理数,是否有必要证明x+y和x-y都是无理数?答:不必要。

因为有理数和无理数的运算结果都是无理数,所以x+y和x-y一定都是无理数。

二、第二章代数式1. 课前练习(1) 代数式是由常数、变量及运算符号组成的式子。

八年级上册青岛版数学配套练习册答案

八年级上册青岛版数学配套练习册答案Prepared on 21 November 2021青岛版数学练习册八年级上册参考答案1.11.略.2.DE,∠EDB,∠E.3.略.4.B5.C6.AB=AC,BE=CD,AE=AD,∠BAE=∠CAD7.AB∥EF,BC∥∠ADB=∠AEC.4.∠1=∠25.△ABC≌△FDE(SAS)6.AB∥CD.因为△ABO≌△CDO(SAS).∠A=∠△ABE≌△ACD(SAS).第2课时∠ADE=∠ACB;(2)∠E=∠B.4.△ABD≌△BAC(AAS)5.(1)相等,因为△ABE≌△CBD(ASA);(2)DF=EF,因为△ADF≌△CEF(ASA).6.相等,因为△ABC≌△ADC(AAS).7.(1)△ADC≌△AEB;(2)AC=AB,DC=EB,BD=EC;∠ABE=∠ACD,∠BDO=∠CEO,∠BOD=∠COE.第3课时°4.BC的中点.因为△ABD≌△ACD(SSS).5.正确.因为△DEH≌△DFH(SSS).6.全等.因为△ABD≌△ACD(SSS).∠BAF=∠CAF.7.相等,因为△ABO≌△ACO(SSS).1.3第1课时1~6(略).7.作∠AOB=∠α,延长BO,在BO上取一点C,则∠AOC即为所求.8.作∠AOB=∠α,以OB为边,在∠AOB的外部作∠BOC=∠β;再以OA为边,在∠AOC的内部作∠AOD=∠γ,则∠DOC即为所求.第2课时1.略.2.(1)略;(2)全等(SAS).3.作BC=a-b;分别以点B、C为圆心,a为半径画弧,两弧交于点A;连接AB,AC,△ABC即为所求.4.分四种情况:(1)顶角为∠α,腰长为a;(2)底角为∠α,底边为a;(3)顶角为∠α,底边为a;(4)底角为∠α,腰长为a.((3),(4)暂不作).第3课时1.四种:SSS,SAS,ASA,AAS.2.作线段AB;作∠BAD=∠α,在∠BAD同侧作∠ABE=∠B;AD与BE相交于点C.△ABC即为所求.3.作∠γ=∠α+∠β;作∠γ的外角∠γ′;作△ABC,使AB=c.∠A=∠γ′,∠B=∠α.4.作∠γ=180°-∠β;作△ABC,使BC=a,∠B=∠α,∠C=∠γ.第一章综合练习∠ACB=∠DBC或∠A=∠D.5.△ACD≌△BDC,△ABC≌△BAC.6.△ABC≌△CDE(AAS)7.4分钟8.△BOC′≌△B′OC(AAS)9.略10.相等.△BCF≌△EDF(SAS).△ABF≌△AEF(SSS)检测站°4.∠BCD5.相等.△ABP≌△ACP(SSS),△PDB≌△PEC(AAS).6.略2.1°;30°.8.略2.2第1课时°7.(1)AA′∥CC′∥BB′,且AA′⊥MN,BB′⊥MN,CC′⊥MN.(2)5 cm8.(1)DE⊥AF;(2)略.第2课时1.(-2,-3),(2,3).2.3,-43.(3,2)4.B5~6.略7.(1)(-a,b);(2)当n=4k+1时,在第一象限,n=4k+2时,在第四象限,n=4k+3时,在第三象限,n=4(n+1)时,在第二象限,k 为非负整数.2.32.4第1课时∠A=∠B,∠ACD=∠BCD,∠ADC=∠BDC.5~6.略.7.连接BM,PB<PM+MB,∵MB=MA,∴PB<PA.第2课时1.作一条线段的垂直平分线2.D3~5.略.6.分别作点A关于OM,ON的对称点D,E.连接DE,分别交OM,ON于点B,C.连接AB,AC,则△ABC的周长最小.2.5∠AOB的平分线交MN于点P.则P即为所示.6.(1)DE=DC,AE=BE,BE=BC;(2)7.7.(1)△ADO≌△AEO(AAS),△BOD≌△COE(ASA),OB=OC;(2)∠1=∠2.6第1课时1.略.2.35°,35°.3.50°,80°或65°,65°.4.C5.B6.∠EBC=36°,∠C=∠BEC=72°.7.△ACD≌ABD(SSS),∠CAG=∠BAG.AG 是等腰三角ABC的顶角平分线.∴°第2课时1.略.2.△ABE,△ECD,△△DBE是等腰三角形.因为∠B=∠C=∠DEB.5.△AED是等腰三角,因为∠EAD=∠BAD=∠ADE.6~7.略.第3课时△ADE是等边三角形.因为三个角都等于60°△ADC≌△ABE(SAS).第二章综合练习1.GH,∠°;58°∠BAC=∠DAE,∠B=∠D,∠C=∠E,∠BAE=∠DAC,∠EAF=∠CAF,∠BFE=∠DFC,∠BAF=∠DAF.(2)△AEF与△ACF,△ABF与△ADF都关于直线MN成轴对称.11.△ABC与△A′B′C′关于y轴对称.12.△ACE≌△DCB(SAS).AE=BD.又∠HGE=∠CGB.∠HEG=∠CBG.∠HGE+∠HEG=∠CGB+∠CBG=90°.∠EHG=90°.AE⊥①以BC为底边的等腰三角形可作1个;②以BC为腰的等腰三角形可作3个.检测站1.60°2.AP;PC,AP;∠°,55°或70°,40°.5.AC,∠C,△10.A11.略.12.∠BAC=60°,∠C=90°,∠B=30°.13.∵△ABC≌△BAD.∠CAB=∠DBA,∴△EBA是等腰三角形.14.(1)5;(2)80°.15.∠ACD=180°-A2,∠BCE=180°-B2,∠ACB=90°.∴∠ACD+∠BCE=90°+∠DCE.∠DCE=45°.3.1第1课时1.B≠0;B=0;A=0且B≠0.2.≠≠10.a=-1.11.略.12.n+13n-2第2课时≠1且x≠07.当a≠0时,a2a=12;当m≠0,n≠≠3.28.a-b+ca+b+c9.略.3.33.49.(1)把前一个分式的分子,分母同乘-a2b即得下一个分式;(2)-a12b8a13b6.(3)(-1)na2n-2bn+1(-1)n+1a2n-1bn-1.3.5第1课时第2课时7.(1)3c3-4a2b12ab2c2;(2)6x2+xy+7y242x2y2;(3)2mn-m2n2-m2.8.-659.(1)11-a;(2)x2.10.1(x-1)(x-2),1(x-2)(x-3),1(x-3)(x-4),1x-100.第3课时6.∵ca+b<1.∴c2(a+b)2<ca+b3.6第1课时1.(1)7x4y;(2)b2a;(3)2x-y;(4)a+ba-b2.ala+b,ala+b.8.(1)xyx+y(天);(2)甲:myx+y(元),乙:mxx+y(元).9.(1)ba;(2)b-10a-10,b+10a+10;(3)b-10a-10<ba<b+10a+10.第2课时1.略.2.8∶8.a-b=-39.260 mm10.5211.-5.第3课时1.略.2.2∶33.33124.1 m5.10∶15∶∶y∶z=(a+b)2∶(a2-b2)∶3.7第1课时11.(1)x=5;(2)a=6.第5个方程;(3)1+x2x=n+1x,x=2n+1.第2课时(4)无解.7.a=-58.(1)①x=1;②x=2;③x=3;(2)方程1x-2-1x-3=1x-5-1x-6的解为x=4;方程1x+2-1x+1=1x-1-2x-2的解为x=0.第3课时1.略.2.12010-x-12010=33.16+1x=13.4.D5.(1)设去年每间屋的租金为x元,9.6x=10.2x+500;(2)8 000元.6.4 km/h7.37.5 km/h8.1.5 t9.(1)设预定工期为x天,4x+xx+5=1,x=20(天).(2)采取联合施工4天,然后由乙单独施工的方案省工程费.第三章综合练习1.a≠≠5.a∶b=b∶c,c∶b=b∶a,ac=b26.127.3∶4∶∶S2=1∶220.21821.(1)无解;(2)x=1912;(3)x=-2;(4)无解.22.应提高60km/h23.(1)x≠检测站1.x≠32,x=-23.2.x≠0且x≠4.1第1课时8.a·10%+b·15%+c·5%a+b+c (a,b,c为甲、乙、丙三种汽油原价)第2课时4.24.3第1课时第2课时4.41~2.略.3.(1)平均直径都是20 mm;(2)小明.4.乙地;甲地温差比乙地大.5.(1)平均身高都是178 cm;(2)图略.甲队整齐.6.(1)x甲=1.69 m,x乙=1.68 m;(2)图略.甲比较稳定.4.5第1课时第2课时1.乙2.D3.(1)略;(2)大刚的平均数为13.35,方差为0.004;小亮的平均数为13.3,方差为0.02.大刚成绩好.4.(1)x苹果=8,x香蕉=8,S2苹果=9,S2香蕉=1.333;(2)略;(3)9月份多进苹果.5.S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]=1n[x21+x22+…+x2n-2x(x1+x2+…+xn)+nx2]=1n[x21+x22+…+x2n-2nx(x1+x2+…+xnn+nx2)]=1n[x21+x22+…+x2n-nx2].4.6第四章综合练习℃;(2)20.8℃;(3)146天.13.乙成绩稳定检测站℃12.(1)甲班:平均分24,方差5.4;乙班中位数24,众数21,方差19.8;(2)甲班42人,乙班36人;(3)甲班.综合与实践略.5.15.21.略.2.不正确.如正方形与菱形.3.小亮不对;小莹说法正确.4.不正确.如2≠-2,但22=(-2)2.5.不正确;t=20t1+30t220+30.5.31~3.略.4.C5.直角定义;余角定义;对顶角相等;等量代换;余角定义.6.(1)C,E,F,G;(2)E;(3)K;(4)略.7.C5.4∠D;内错角相等,两直线平行;(2)∠DEC;AB∥DE.同位角相等,两直线平行.4.已知:∠CBE;两直线平行,同位角相等;已知,∠CBE;等量代换;内错角相等,两直线平行.5.略.6.(1)如果两个角相等,那么这两个角是同角或等角的补角.真命题;(2)如果三角形中有两个角是锐角,那么第三个角是钝角,假命题,如∠A=80°,∠B=70°,∠C=30°.7.(1)延长AE与CD相交于点G.∵AB∥EF.∴∠A+∠AEF=180°.∵AB∥CD,∴∠A+∠G=180°.∴∠A+∠AEF=∠A+∠G,∠AEF=∠G.∴EF∥CD;(2)360°.5.5第1课时∠B=∠C,∠AOB=∠DOC.5.∠1>∠ACB>∠26.略.7.(1)∠A逐渐减小,∠B,∠C逐渐变大;若点A向下运动,变化相反;(2)α=β+γ.5.5第2课时1.(1)∠B=∠DAC;(2)∠A=∠D;∠CGE+∠B=180°∠1=∠C+∠CDE,∠2=∠C+∠CED,∠1+∠2=180°.6.(1)∠EFD=90°-∠FED=12(∠A+∠B+∠C)-(∠B+12∠A)=12(∠C-∠B);(2)不变.5.6第1课时∠A=∠D;(3)∠C=∠F.4.(1)△ABE≌△DCF(SAS),△ABF≌△DCE(SAS),△BEF≌△CFE;(2)略.5.△AFC≌△BED(ASA)6.取EF的中点M,连接GM,并延长交FH于点N.GN分别交AD,BC于点P,Q.△PEM≌△QFM.沿GN将道路取直即可.第2课时1.平行2.90°∵∠ABD=∠ADB,∴∠CBD=∠CDB.∴BC=DC.6.△ABD与△ACD都是等腰三角形,BD=AD=DC.7.△ABD≌△ACE(SAS).∠A=∠CAE=60°.∴△ADE为等边三角形.8.∵△AEB≌△BDA(ASA).∴AE=BD,EB=DA,CE=CD,EF=DF.AF=BF.第3课时1.=2.①②③3.A4.略.5.△ABD≌△AED(SAS),∴AB=AE.DC=AB+BD=AE+DE,DC=DE+EC,∴AE=EC.∴点E在线段AC的垂直平分线上.6.(1)∠A≠∠C.因为△ABD与△CBD不全等;(2)∠A>∠C.因为AB<BC,在BC上取BA′=BA.△ABD≌△A′BD.∠A=∠BA′D.∠BA′D >∠C,∴∠A>∠C;(3)当AB=CB时.∠A=∠C;当AB<BC时,∠A>∠C;当AB>BC时,∠A<∠C.第4课时△ADE≌△ADF.AE=AD.△AEF为等腰三角形.6.△BEO≌△BFO(AAS),△BED≌△BFD(SAS).△EOD≌△FOD(SSS)或(SAS).7.DE=BD-CE.由DE∥BC.∠BOD=∠OBC=∠OBD.∴BD=OD.又∠OCE=∠OCF=∠BOC+∠OBC=∠BOC+∠BOE=∠COE.∴CE=OE.DE=OD-OE=BD-CE.第5课时△ABC即为所求.5.连接AC.Rt△ABC≌RtADC(HL).∴BC=DC.Rt△BCE≌Rt△DCF(HL).6.连接AF,BF.△AEF≌△BEF△AFC≌△BFD(SAS).7.(1)Rt△OBD≌Rt△OCE(HL);(2)Rt△OBD≌△OCE(HL);(3)相等.第五章综合练习°8.∠2=∠1.∴∠2=∠C,AB∥CD.9.延长EF交BC于点G.∵∠2=∠4,∴AB∥EF.∠3=∠B=∠EGC.∴DE∥BC.∴∠AED=∠ACB.10.∠ABE=∠FBD,∠ABE+∠AEB=90°,∠FBD+∠AFE=90°.∴∠AEB=∠AFE.∴AE=AF.11.△ACE≌△BDE(AAS),∴EC=ED.12.(1)∠D=∠AEC(同角的余角相等).△ACE≌△CBD.∴AE=CD;(2)BD=CE=12AC=6 cm.13.(1)Rt△ADE≌Rt△ADF;(2)DB=DC,Rt△DBE≌Rt△DCF(HL).14.(1)略;(2)连接BD.∠DBC=12∠B=30°.∵∠CDE=∠CED.∴∠CED=12∠ACB=30°.∴△DBE为等腰三角形.∵DM⊥BE,∴BM=EM.15.△BPD≌△BDC(SAS),△BCD≌△ACD(SSS).∠P=∠BCD=∠ACD=12∠ACB=30°.16.(1)作DF⊥AB,垂足为点E.AC=AE,DE=DC.∵∠B=∠A=45°,∴BE=DE.∴AB=AE+BE=AC+CD.(2)(1)中的等量关系仍成立.∵∠ACB>∠B,∴AB>AC.在AB上截取AG=AC.分别作DF⊥AC,DE⊥AB.△DCF≌△DGE.∵∠EGD=∠C=2∠B.∴∠B=∠BDG.BG=DG=DC.∴AB=AG+GB=AC+CD.检测站△ODG≌△OEG,△DPG≌△EPG;△ODP≌△OEP,HL或AAS.5.略.6.FA=FD,∠ADF=∠DAF=∠DAC+∠CAF.∵∠DAC=∠BAD.∴∠B=∠ADF-∠BAD=∠DAF-∠DAC=∠CAF.7.(1)略;(2)∵CA=CE,∴∠CAE=∠E.∵∠ACB=∠CAE+∠E=2∠E,∠ACB=2∠BCD,∴∠E=∠BCD.CD∥AE.8.(1)①③或②③;(2)略.9.(1)△ABQ≌△PBC;(3)∠MBN=60°,△ABM≌△PBN(ASA).BM=BN.∴△BMN为等边三角形.∠MNB=∠QBC.MN∥AC.总复习题1.(3,4),等腰2.-53.50°,60°,70°°13.-314.设每天修x m,3 600x-3 6001.8x=20.x=80 m.15.(1)中位数12℃,众数11℃⊥BC,FM⊥AD,FN⊥AE,垂足分别为点G,M,N.FM=FG=FN.17.∵∠BAD=∠BDA,∴AB=DB=CD.∵BE=DE,∴△ABE≌△ADE.AB=AD,△ABD为等边三角形.连接CF.△AEC≌△FEC.∵∠ACF=60°,∴△AFC为等边三角形.∴AF=AC,AE=12AC.18.延长BO交AC于点D.∠BOC=110°.19.作CF⊥AC,交AD延长线于点F.∵∠BAC=90°,AD⊥BM.∴∠ABM=∠MAE.∵AB=AC,∴△ABM≌△CFA.∠1=∠F.AM=CF.∵AM=CM,∴CF=CM.∠FCD=45°=∠MCD.∴△FCD≌△MCD(SAS).∠2=∠F=∠1.总检测站△ABC≌△ABD,△ACE≌△ADE,△CEB≌△12.(1)x=-2;(2)无解.13.30 m14.∵△ABE≌△ACE,∴BE=CE,BD=CD.△BDE≌△CDE(SSS).15.(1)①②③④,①③②④,①④②③,②③①④,②④①③.(2)略.≤≥<>×≠÷′△∠°αβ⊥∥∵∴△≌△S△ACC′。

人教版八年级上册数学书答案

人教版八年级上册数学书答案做八年级数学书习题一定要认真,马虎一点就容易出错。

下面小编给大家分享一些人教版八年级上册数学书答案,大家快来跟小编一起欣赏吧。

人教版八年级上册数学书答案(一)第24页1.(1)x=65;(2)x=60; (3)x=95.2.六边形3.四边形人教版八年级上册数学书答案(二)第28页1•解:因为S△ABD=1/2BD.AE=5 cm²,AE=2 cm,所以BD=5cm. 又因为AD是BC边上的中线,所以DC=BD=5 cm,BC=2BD=10 cm.2.(1)x=40;(2)x=70;(3)x=60;(4)x=100; (5)x=115.3.多边形的边数:17,25;内角和:5×180°,18×180°;外角和都是360°.4.5条,6个三角形,这些三角形内角和等于八边形的内角和.5.(900/7)°6.证明:由三角形内角和定理,可得∠A+∠1+42°=180°.又因为∠A+10°=∠1,所以∠A十∠A+10°+42°=180°.则∠A=64°.因为∠ACD=64°,所以∠A= ∠ACD.根据内错角相等,两直线平行,可得AB//CD.7.解:∵∠C+∠ABC+∠A=180°,∴∠C+∠C+1/2∠C=180°,解得∠C=72°.又∵BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°-72°=18°.8.解:∠DAC=90°-∠C= 20°,∠ABC=180°-∠C-∠BAC=60°.又∵AE,BF是角平分线,∴∠ABF=1/2∠ABC=30°,∠BAE=1/2∠BAC=25°,∴∠AOB=180°-∠ABF-∠BAE=125°.9.BD PC BD+PC BP+CP10.解:因为五边形ABCDE的内角都相等,所以∠B=∠C=((5-2)×180°)/5=108°.又因为DF⊥AB,所以∠BFD=90°,在四边形BCDF中,∠CDF+∠BFD+∠B+∠C=360°,所以∠CDF=360°-∠BFD-∠B-∠C=360°-90°-108°-108°=54°.11.证明:(1)如图11-4-6所示,因为BE和CF是∠ABC和∠ACB 的平分线,所以∠1=1/2∠ABC,∠2=1/2∠ACB.因为∠BGC+∠1+∠2 =180°,所以BGC=180°-(∠1+∠2)=180°-1/2(∠ABC+∠ACB).(2)因为∠ABC+∠ACB=180°-∠A,所以由(1)得,∠BGC=180°-1/2(180°-∠A)=90°+1/2∠A.12.证明:在四边形ABCD中,∠ABC+∠ADC+∠A+∠C=360°.因为∠A=∠C=90°,所以∠ABC+∠ADC= 360°-90°-90°=180°.又因为BE平分∠ABC,DF平分∠ADC,所以∠EBC=1/2∠ABC, ∠CDF=1/2∠ADC,所以∠EBC+∠CDF=1/2(∠ABC+∠ADC)=1/2×180°=90°.又因为∠C=90°,所以∠DFC+∠CDF =90°.所以∠EBC=∠DFC.所以BE//DF.人教版八年级上册数学书答案(三)第32页1.解:在图12.1-2(2)中,AB和DB,AC和DC,BC和BC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.在图12. 1-2(3)中,AB和AD,AC和AE,BC和DE是对应边;∠B和∠D,∠C 和∠E,∠BAC和∠DAE是对应角.2.解:相等的边有AC=DB,OC=OB,OA=OD;相等得角有∠A=∠D,∠C=∠B,∠AOC=∠DOB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档