防反接保护电路
一些常用的电源极性防接反保护电路

一些常用的电源极性防接反保护电路:串接二极管在电源输入接口处串接整流二极管是最为简单有效的解决方案,其优点是电路简单和成本低廉,只需要一枚二极管。
但缺点是二极管有一定的压降(一般整流二极管的压降为0.8V),不适合输入电压比较低的应用场合,而且电流很大时损耗也很大(发热),另外,输入电压反接时,由于二极管是截止的,电路系统是不工作的。
当然,我们也可以采用肖特基二极管,肖特基二极管具有较低的电压降(通常约为0.6V)。
但是使用肖特基时存在一个潜在的问题。
它们具有更多的反向电流泄漏,因此它们可能无法提供足够的保护,尽量避免使用肖特基二极管进行反向保护。
为了简化保护电路并降低二极管的损耗,可以直接在电路系统的输入直流供电电源两端反向并联一个二极管,如下图所示:这样当外接电源反接时,二极管就被击穿了,从而保护电路模块中更为贵重的元器件,而二极管的成本还不到一毛钱,维修的时候直接更换一个就可以,当然,这样依然会造成电路板需要维修问题,为了提高可靠性,可以在二极管前面再串一个自恢复保险,当输入电压极性反向时,自恢复保险流过的电流过大将会熔断,避免了保护二极管的烧毁,当然,自恢复保险熔断需要一定的响应实现,大概100ms左右,这时候二极管本身存在过电流损坏的风险,所有这里最好选择功率二极管。
桥式整流器既然串接二极管在电源极性接反时,由于二极管是截止的,电路系统是不工作的,可以采用桥式整流器,这样不论什么极性都可以正常工作,但是有两个二极管导通,功耗是单一整流二极管的两倍.增强型NMOS管保护电路该方法利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在 MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。
极性反接保护将保护用场效应管与被保护电路串联连接。
保护用场效应管为PMOS场效应管或NMOS场效应管。
mos管防反接保护电路讲解

mos管防反接保护电路讲解
1. 电路结构
mos管防反接保护电路是一种常见的电路结构,通常被使用于单片机和其他电子设备中,能够有效地保护设备免受反向电压的损坏。
该
电路包含多个元件,如二极管、大电容、保险丝和mos管等。
其中mos 管是该电路的核心元件。
2. 反向电压损坏
在使用电子设备时,有时会不小心把电源接反,造成设备受损,
甚至被烧坏。
这种损坏是由于反向电压超过了元件的承受范围,导致
元件损坏而发生的。
因此,在设备的设计中,反向电压保护非常重要。
3. mos管的工作原理
mos管,在正向电压下,可以将电流从源端流到漏端,从而使设备正常工作。
而在反向电压下,其栅极和源端之间的pn结将被反向偏置,此时mos管将被关断,从而防止电流从漏端回流到源端,保护装置。
4. 整个电路的工作流程
当设备的电源连接正确时,mos管导通,正常工作。
当电源反接时,mos管被关断,电流无法流通,反向电压得到保护。
如果mos管发生故障,二极管将起到保护作用,避免电流从漏端
回流到源端,造成设备损坏。
电容的作用是为电路提供额外的电流。
保险丝起着保护电源和其他元件的作用,如果电流超过设定值,将被自动切断。
5. 总结
mos管防反接保护电路是一种重要的电路结构,能够有效地保护电子设备免受反向电压的损坏。
该电路使用简单、成本低廉,也易于维护。
因此,在电子设备的设计中,mos管防反接保护电路值得设计师们深入研究和应用。
基于mos管的防反接电路

基于mos管的防反接电路
(最新版)
目录
1.介绍 MOS 管
2.防反接电路的背景和需求
3.基于 MOS 管的防反接电路设计
4.优点和应用范围
正文
一、介绍 MOS 管
MOS 管,全称为金属 - 氧化物 - 半导体场效应晶体管,是一种广泛应用于模拟和数字电路的半导体器件。
它具有高输入阻抗、低噪声和低功耗等特点,在电路设计中有着极大的灵活性。
二、防反接电路的背景和需求
在电子设备中,电源反接会导致设备损坏或者工作异常。
因此,防止电源反接是电路设计中的重要环节。
防反接电路可以在电源接反时,防止电流流过设备,保护设备正常工作。
三、基于 MOS 管的防反接电路设计
基于 MOS 管的防反接电路设计,主要是利用 MOS 管的导通特性,设计出一个能够在电源正反接转换时,自动切断电源的电路。
当电源正反接时,MOS 管的导通状态会发生改变,从而使得电源被切断,防止设备受到损坏。
四、优点和应用范围
基于 MOS 管的防反接电路具有响应速度快、工作稳定性好、结构简单等优点,广泛应用于各种电源保护电路中。
几种直流供电防反接保护电路的分析

电力电子 • Power Electronics216 •电子技术与软件工程 Electronic Technology & Software Engineering 【关键词】防反接 二极管 MOS 管 继电器直流供电设备的输入反接保护有很多方式可以实现,比如选择具备防插错功能的接插件可以在结构设计层面避免反接,但在很多场合中还是在电路设计中加入防反接电路的更具有可行性。
防反接电路必须具备电路简单可靠性高,成本低廉,本文对目前常用的几种防反接电路进行对比分析,对每种电路适用的场合作出了说明。
1 串联二极管防反接在电路中串联二极管是最为简单可行的方法之一,此方法利用二极管的单相导通性实现电路的防反接,当输入接反时,电路不导通。
在实际应用中,根据输入电压范围和额定电流选择合适的二极管,需要注意在电流较大的情况下二极管的功率和散热。
例如,当电路额定电流为5A 时,二极管的功耗为P=0.7*5=3.5瓦,就算选用压降为0.3V 的肖特基二极管功耗也有1.5瓦。
2 并联二极管防反接此防反接电路采用了一个保险丝和一个反向并联的二极管,电源极性正确,电路正常工作时,由于负载的存在电流较小,二极管处于反向阻断状态,保险丝不会被熔断,如图1 所示。
当电源接反时,二极管导通,此时的电流比较大,就会将保险丝熔断,从而切断电源的供给,起到保护负载的作用。
在选择二极管时需要注意选择合适的反向耐压值。
其优点是保险丝的压降很小,不存在发热问题,成本不高。
但是一旦接反需要更换保险丝,操作比较麻烦。
3 整流桥防反接在直流供电输入端加整流桥,输入的正负端接整流桥的两个AC 端,整流桥的输出端再接入电路的输入端。
在这种情况下,不论直几种直流供电防反接保护电路的分析文/王勤流输入的正负如何接,经过整流桥后输出的电压极性都是正确的,电路都可以正常工作。
但是电路中就会有两个二极管同时在工作,功耗为方案1的2倍,所以在选择整流桥时要注意电压和电流参数。
nmos防反接_原理_概述说明以及解释

nmos防反接原理概述说明以及解释1. 引言1.1 概述引言部分旨在介绍本篇长文的主题,即NMOS防反接。
本文将详细说明NMOS 防反接的原理、方法和解释。
NMOS防反接是一种必要的电路设计策略,用于保护NMOS(MOSFET的一种形式)不被反向电压损坏。
1.2 文章结构为了展现逻辑性和层次清晰性,本文按照以下结构进行组织:引言部分提供了一个总体概述,紧接着是NMOS防反接原理、概述说明和解释三个主要部分。
每个部分都进一步细分为几个小节,以便更全面地探讨该主题。
1.3 目的文章的目标是向读者介绍和解释NMOS防反接的原理,并提供各种常见的防反接电路方案及其优缺点。
同时,我们还将详细解释如何保护NMOS不受到反向电压损坏,并对电流流向、开关特性以及直流偏置和交流耦合解决方法进行分析和说明。
通过这篇长文,读者将能够全面了解NMOS防反接,并且可以根据自身需求选择合适的设计方案。
以上是“1. 引言”部分的详细内容。
2. NMOS防反接原理:2.1 NMOS工作原理:NMOS(Negative-channel Metal-oxide-semiconductor)是一种常见的场效应晶体管。
它由金属电极、绝缘层和半导体材料构成。
当在栅极施加正电压时,形成电子气,使得通道内的N型半导体导电。
当源极施加正电压,漏极为负电压时,NMOS开启并允许电流通过。
2.2 反接的危害与问题:反接指的是在驱动NMOS过程中,源极与漏极之间的电压方向与NMOS设计要求相反。
如果源极为负电压且漏极为正电压,就会出现反接状况。
这样会导致两个主要问题:首先,会产生大量倒偏击穿电流损坏器件;其次,在大功率情况下可能引起温度升高,并使晶体管失效。
2.3 防止NMOS反接的方法:有几种常见的方法可以防止NMOS发生反接现象:- 使用二级保护回路:可以通过添加二级保护来控制源漏电路方向,以避免外部条件导致的误操作。
- 添加反向并联二极管:在NMOS的漏极和源极之间添加一个并联的反向二极管,这样当出现反接时,电流会通过二极管流回。
mos管防反接软启动电路

mos管防反接软启动电路
首先,我们需要了解什么是MOS管防反接软启动电路。
MOS管防反接软启动电路是一种电路设计,主要用于保护电路中的MOS管不受反向电压的损坏,并且能够实现软启动,避免电路启动时瞬间电流过大,对电路元件造成损坏。
回答这个问题,我们可以将回答分为以下几个章节:
一、MOS管防反接电路的原理
MOS管防反接电路的原理是通过使用二极管和电阻器来形成一个反向保护回路,当输入电压反向时,二极管会导通,将反向电流引导到地,从而保护MOS管不受反向电压的损坏。
二、软启动电路的原理
软启动电路的原理是通过使用电容器和电阻器来控制电路启动时的电流,从而避免电路启动时瞬间电流过大,对电路元件造成损坏。
在电路启动时,电容器会逐渐充电,从而控制电路的启动电流。
三、MOS管防反接软启动电路的设计
MOS管防反接软启动电路的设计需要考虑电路的输入电压、输出电流、MOS 管的额定电压和电流等因素。
通常,设计时需要选择合适的二极管、电容器和电阻器,以及合适的电路拓扑结构,从而实现MOS管防反接和软启动的功能。
四、MOS管防反接软启动电路的应用
MOS管防反接软启动电路广泛应用于各种电子设备中,如电源、逆变器、电机驱动器等。
通过使用MOS管防反接软启动电路,可以保护电路元件不受损坏,从而提高设备的可靠性和稳定性。
总结:
MOS管防反接软启动电路是一种常用的电路设计,可以保护电路元件不受反向电压和瞬间电流过大的损坏。
设计时需要考虑电路的输入电压、输出电流、MOS 管的额定电压和电流等因素,选择合适的二极管、电容器和电阻器,以及合适的电路拓扑结构。
逆变电源中的三种保护电路讲解

逆变电源中的三种保护电路讲解【大比特导读】电路中经常会通过较大的电流,这就造成了电路中存在很多不确定的因素。
为了避免这些因素对电路或者重要器件的损伤,保护电路应运而生。
保护电路在逆变电源这种经常需要进行电流转换的器件中显得尤为重要。
电路中经常会通过较大的电流,这就造成了电路中存在很多不确定的因素。
为了避免这些因素对电路或者重要器件的损伤,保护电路应运而生。
保护电路在逆变电源这种经常需要进行电流转换的器件中显得尤为重要。
本篇文章就将为大家介绍逆变电源中的几种重要的保护电路设计,并针对其原理进行较为详细的分析和讲解。
防反接保护电路如果逆变器没有防反接电路,在输入电池接反的情况下往往会造成灾难性的后果,轻则烧毁保险丝,重则烧毁大部分电路。
在逆变器中防反接保护电路主要有三种:反并肖特基二极管组成的防反接保护电路,如图1所示。
图1由图1可以看出,当电池接反时,肖特基二极管D导通,F被烧毁。
如果后面是推挽结构的主变换电路,两推挽开关MOS管的寄生二极管的也相当于和D并联,但压降比肖特基大得多,耐瞬间电流的冲击能力也低于肖特基二极管D,这样就避免了大电流通过MOS管的寄生二极管,从而保护了两推挽开关MOS管。
这种防反接保护电路结构简单,不会影响效率,但保护后会烧毁保险丝F,需要重新更换才能恢复正常工作。
采用继电器的防反接保护电路,基本电路如图2:图2由图中可以看出,如果电池接反,D反偏,继电器K的线圈没有电流通过,触点不能吸合,逆变器供电被切断。
这种防反接保护电路效果比较好,不会烧毁保险丝F,但体积比较大,继电器的触点的寿命有限。
采用MOS管的防反接保护电路,基本电路如下图3:图3图3中D为防反接MOS的寄生二极管,便于分析原理画出来了。
当电池极性未接反时,D正偏导通,Q的GS极由电池正极经过F、R1、D回到电池负极得到正偏而导通。
Q导通后的压降比D的压降小得多,所以Q导通后会使D得不到足够的正向电压而截至;当电池极性接反时,D会由于反偏而截至,Q也会由于GS反偏而截至,逆变器不能启动。
mos管加二极管防反接电路

mos管加二极管防反接电路
MOS管加上二极管可以构成防反接电路,保护电路不受电源反接的损害。
以下是一些常见的实现方式:
1. NMOS防反接电路:在电源正确连接时,电流流过NMOS的体二极管(寄生二极管),由于体二极管压降很小,可以忽略不计。
此时,通过电阻分压网络使得NMOS的栅极电压足以使其导通,从而允许电流通过。
如果电源反接,NMOS则不会导通,从而防止了电流流向负载。
2. PMOS防反接电路:与NMOS类似,PMOS管也可以用于防反接,但连接方式不同。
当电源正确连接时,PMOS的寄生二极管导通,而PMOS管本身也会导通,允许电流流通。
电源接反时,PMOS管不导通,防止了电流流向负载。
3. 二极管防反接:这是最简单的防反接方法,利用二极管的单向导通特性。
但二极管会有一定的压降,例如硅管约0.7V,锗管约0.2-0.3V,这在电压较低的应用中可能不太合适。
此外,在大电流应用中,二极管上的功耗和发热可能会较大。
4. 整流桥防反接:使用四个二极管构成整流桥,无论电源正接还是反接,电路都能正常工作。
但这种方法的缺点与单一二极管防反接相同,且压降是两个二极管的总和。
在选择防反接电路时,需要根据具体的应用场景和要求来决定使用哪种方式。
例如,对于低压或大电流的应用,可能需要考虑压降和功耗的问题。
而对于一些小功率或者对成本敏感的应用,简单的二极管防反接可能就足够了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
防反接保护电路
防反接保护电路
1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。
如下图1示:
这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。
以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。
2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。
这些方案的缺点是,二极管上的压降会消耗能量。
输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。
图1,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降
图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍MOS管型防反接保护电路
图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。
极性反接保护将保护用场效应管与被保护电路串联连接。
保护用场效应管为PMOS场效应管或NMOS场效应管。
若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。
若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。
一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。
具体N沟道MOS管防反接保护电路电路如图3示
图3. NMOS管型防反接保护电路
N沟道MOS管通过S管脚和D管脚串接于电源和负载之间,电阻R1为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负载带来损坏。
正接时候,R1提供VGS电压,MOS饱和导通。
反接的时候MOS不能导通,所以起到防反接作用。
功率MOS管的R ds(on)只有20mΩ实际损耗很小,2A的电流,功耗为
(2×2)×0.02=0.08W根本不用外加散热片。
解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。
VZ1为稳压管防止栅源电压过高击穿mos管。
NMOS管的导通电阻比PMOS的小,最好选NMOS。
NMOS管接在电源的负极,栅极高电平导通。
PMOS管接在电源的正极,栅极低电平导通。
用MOS管防止电源反接的原理
电源反接,会给电路造成损坏,不过,电源反接是不可避免的。
所以,我么就需要给电路中加入保护电路,达到即使接反电源,也不会损坏的目的。
一般可以使用在电源的正极串入一个二极管解决,不过,由于二极管有压降,会给电路造成不必要的损耗,尤其是电池供电场合,本来电池电压就3.7V,你就用二极管降了0.6V,使得电池使用时间大减。
MOS管防反接,好处就是压降小,小到几乎可以忽略不计。
现在的MOS管可以做到几个毫欧的内阻,假设是6.5毫欧,通过的电流为1A(这个电流已经很大了),在他上面的压降只有6.5毫伏。
由于MOS管越来越便宜,所以人们逐渐开始使用MOS管防电源反接了。
NMOS管防止电源反接电路:
正确连接时:刚上电,MOS管的寄生二极管导通,所以S的电位大概就是0.6V,而G极的电位,是VBAT,VBAT-0.6V大于UGS的阀值开启电压,MOS管的DS就会导通,由于内阻很小,所以就把寄生二极管短路了,压降几乎为0。
电源接反时:UGS=0,MOS管不会导通,和负载的回路就是断的,从而保证电路安全。
PMOS管防止电源反接电路:
正确连接时:刚上电,MOS管的寄生二极管导通,电源与负载形成回路,所以S 极电位就是VBAT-0.6V,而G极电位是0V,PMOS管导通,从D流向S的电流把二极管短路。
电源接反时:G极是高电平,PMOS管不导通。
保护电路安全。
连接技巧
NMOS管DS串到负极,PMOS管DS串到正极,让寄生二极管方向朝向正确连接的电流方向。
感觉DS流向是“反”的?
仔细的朋友会发现,防反接电路中,DS的电流流向,和我们平时使用的电流方向是反的。
为什么要接成反的?
利用寄生二极管的导通作用,在刚上电时,使得UGS满足阀值要求。
为什么可以接成反的?
如果是三极管,NPN的电流方向只能是C到E,PNP的电流方向只能是E到C。
不过,MOS管的D和S是可以互换的。
这也是三极管和MOS管的区别之一。
(关于这个问题,咱们另开一篇文章讨论,这篇只讨论MOS管的防反接作用)。
上面是示意图,实际应用时,G极前面要加个电阻。