统计推断-参数估计

合集下载

统计推断-参数估计

统计推断-参数估计
利用t分布构建的总体均值的(1-α)%置信区间公式如下:
t(1-a/2,df):t的分位值, 决定于置信度和自由度,可通 过查表得到。
19
利用t分布构建总体均值的置信区间
电阻的电阻值服从正态分布,抽取了10个电阻值的观察 值如下:
电阻值 608 630 610 636 637 610 626 602 604 636
n
Z的分位值,决定于置信度 当置信度为95%时,Z的 0.975的分位值为1.96
应用以上公式的前提条件为:
总体σ已知,或者 大样本(n≥30)
16
学生t分布
定义
设x1,x2…xn是来自正态总体N (, 2 )的一个样本, x 和S为样
本均值和标准差,则:
t x ~ t(n 1)
2
(n 1)s2
2
~
2 (n 1)
2 (n 1) 表示为自由度为(n-1)的卡方分布,卡方分布有以下特
点:
非负非对称分布
21
卡方分布
利用卡方分布构建的总体方差(1-a)%置信区间公式如下:
(n 1)s2
2 (1 / 2, df
)
2
(n 1)s2
2 ( / 2, df
)
卡方的分位值可通过 查表得到.
代表性:所抽取样本能够代表所要研究的总体 随机性:总体中每一个个体都有相等的机会被选中 独立性:样本中一个个体被选中不影响另外一个个体被选中
的可能性
10
抽样分布
因为统计量从样本到样本是变化的,所以根据统计量 作出的任何推断必定带有不确定性,但这种不确定性 是有规律可循的,这种规律就体现在抽样分布中。
x
2 x
2
n
x

统计推断与参数估计的基本理论与方法

统计推断与参数估计的基本理论与方法

统计推断与参数估计的基本理论与方法统计推断是统计学中的一门重要的研究领域,它主要关注如何通过样本数据对总体特征进行推断。

参数估计则是统计推断的一个重要组成部分,它通过样本数据来估计总体参数。

本文将介绍统计推断和参数估计的基本理论和方法。

一、统计推断的基本理论统计推断的基本理论包括抽样理论、似然函数和假设检验等。

1. 抽样理论抽样理论是统计推断的基础,它研究的是如何从总体中抽取样本以便对总体进行推断。

通过合理的抽样方法,可以保证样本对总体的代表性。

2. 似然函数似然函数是参数估计的基本工具,它是样本观测值关于参数的函数。

通过最大似然估计可以得到参数的最优估计值。

3. 假设检验假设检验是统计推断的重要方法,用于检验某个关于总体参数的假设。

它包括构造检验统计量和确定拒绝域两个步骤,从而进行参数推断。

二、参数估计的基本方法参数估计是统计推断中的核心内容,它通过样本数据来估计总体参数。

参数估计的基本方法包括点估计和区间估计。

1. 点估计点估计是一种直接估计总体参数的方法,它通过样本数据来估计总体参数的具体值。

最常用的点估计方法是最大似然估计和矩估计。

2. 区间估计区间估计是一种间接估计总体参数的方法,它给出了参数的估计区间。

通过给出一个置信区间,可以对总体参数进行估计,并给出估计的精度。

三、常用的统计推断方法在实际应用中,统计学家们发展了许多常用的统计推断方法,包括假设检验、方差分析、回归分析等。

1. 假设检验假设检验是统计推断中最常用的方法之一,它用于检验某个关于总体参数的假设。

例如,检验某种药物对疾病的治疗效果是否显著。

2. 方差分析方差分析是一种用于比较多个总体均值的方法,它通过分析不同组之间的方差来判断各组均值是否有显著差异。

例如,在新产品开发中,可以通过方差分析评估不同市场的销售情况。

3. 回归分析回归分析是一种用于建立变量之间关系的方法,它可以推断自变量对因变量的影响程度。

通过回归分析可以得到回归方程,从而进行预测和解释。

统计描述与统计推断

统计描述与统计推断

统计描述与统计推断统计的主要工作就是对统计数据进行统计描述和统计推断。

统计描述是统计分析的最基本内容,是指应用统计指标、统计表、统计图等方法,对资料的数量特征及其分布规律进行测定和描述;而统计推断是指通过抽样等方式进行样本估计总体特征的过程,包括参数估计和假设检验两项内容。

(一)统计描述1.计量资料的统计描述计量资料的统计描述主要通过编制频数分布表、计算集中趋势指标和离散趁势指标以及统计图表来进行。

(1)集中趋势。

指频数表中频数分布表现为频数向某一位置集中的趋势。

集中趋势的描述指标:1)算术平均数。

直接法:x为观察值,n为个数加权法又称频数表法,适用于频数表资料,当观察例数较多时用。

f为各组段的频数。

2)几何平均数(geometric mean)。

几何平均数用符号G表示。

用于反映一组经对数转换后呈对称分布的变量值在数学上的平均水平。

直接法:加权法又称频数表法,当观察例数n较大时,可先编制频数分布表,用此法算几何平均数:3)百分位数(percentile )与中位数(median )。

百分位数是一种位置坐标,用符号x P 表示常用的百分位数有 2.5P 、5P 、50P 、75P 、95P 、97.5P 等,其中25P 、50P 、75P 又称为四分位数。

百分位数常用于描述一组观察值在某百分位置上的水平,多个百分位结合使用,可更全面地描述资料的分布特征。

中位数是一个特定的百分位数即50P ,用符号M 表示。

把一组观察值按从小到大(或从大到小)的次序排列,位置居于最中央的那个数据就是中位数。

中位数也是反映频数分布集中位置的统计指标,但它只由所处中间位置的部分变量值计算所得,不能反映所有数值的变化,故中位数缺乏敏感性。

中位数理论上可以用于任何分布类型的资料,但实践中常用于偏态分布资料和分布两端无确定值的资料。

其计算方法有直接法和频数表法两种。

直接法:当观察例数n 不大时,此法常用,先将观察值按大小次序排列,选用下列公式求M 。

统计推断与参数估计方法

统计推断与参数估计方法

统计推断与参数估计方法统计推断是统计学中的一个重要分支,它的目标是通过对样本数据进行分析和推断,从而对总体进行推断和做出统计决策。

参数估计是统计推断的核心内容之一,它涉及到对总体的参数进行估计和推断。

本文将介绍统计推断的概念、方法以及参数估计的原理和常见方法。

一、统计推断概述统计推断是通过样本信息对总体进行推断的一种方法。

在现实生活中,很难获得总体数据,因此我们通常通过抽样来获取样本数据,然后根据样本数据对总体进行推断和做出统计判断。

统计推断可以分为两大类:参数推断和非参数推断。

参数推断是基于总体分布的假设,利用样本数据对总体参数进行推断。

非参数推断则不对总体分布做出假设,通过样本数据对总体分布进行推断。

二、参数估计原理参数估计是统计推断的一种重要方法,它的目标是通过样本数据对总体参数进行估计。

参数估计的核心思想是通过样本数据得到一个估计量,使得估计量与总体参数值尽可能接近。

常用的参数估计方法有最大似然估计、矩估计和贝叶斯估计等。

最大似然估计是根据样本数据的含量,通过计算总体参数最可能出现的取值,来估计总体参数值。

矩估计是通过样本矩的函数与总体矩的函数相等来估计总体参数值。

贝叶斯估计则是利用贝叶斯定理,根据已有信息和先验概率对总体参数进行估计。

三、常用的参数估计方法1. 最大似然估计最大似然估计是参数估计中最常用的方法之一。

最大似然估计的核心思想是选取一组参数值,使得给定样本数据出现的可能性最大。

最大似然估计可以简化为求解似然函数的最大值所对应的参数值。

2. 矩估计矩估计是通过样本矩的函数与总体矩的函数相等来进行参数估计。

矩估计的基本思想是利用样本矩估计总体矩,然后通过总体矩的函数得到对总体参数的估计。

3. 贝叶斯估计贝叶斯估计是基于贝叶斯定理的一种参数估计方法。

贝叶斯估计将参数估计问题转化为给定样本数据下参数的后验分布的估计问题。

通过引入先验分布和似然函数,可以得到对总体参数的估计。

四、参数估计的应用参数估计在各个领域中都有广泛的应用。

第7章参数估计

第7章参数估计
对于是非标志(即服从两点分布的变量)来说,若 将其具体表现分别用1、0数量化 ,成数就是其平 均数 是非标志的方差=P(1-P)
x 1 0
f P 1-p
x
xf f
1 p 0 (1 p) p (1 p)
p
2 (x x)2 f (1 p)2 p (0 p)2 (1 p)
f
p (1 p)
似然函数常简记为L或 L 1,2, ,k
未知参数的函数。
38
若有 ˆi (x1, x2,..., xn ) i 1, 2, k 使得
L x1, x2,..., xn;ˆ1, ˆ 2,
, ˆ k
max L (1 ,2 , ,k )
x1, x2,..., xn; 1, 2,
, k
则 ˆi (X1, X2,..., Xn) 为参数θi的极大似然估计量。
中选出一个使样本观察值出现的概率为最大的 ˆ 作
为θ的估计量。
称 ˆ 为θ 的极大似然估计量。
37
2.似然函数的数学表达式
设X1,X2,…Xn是取自总体X的一个样本,样本的联合密度 (连续型)或联合分布律 (离散型)为 :
f (x; 1,2 , , k )
定义似然函数为:
n
L L x1,..., xn; 1, 2, , k f xi; 1, 2, , k i 1 x1, x2 ,..., xn 给定的样本观察值
§7.1.4抽样误差
1.误差:调查结果与实际值之间的差异 抽样调查中的误差
登记性误差(非抽样误差) 误差代表性误差随系机统误误差差((抽非样抽误样差误)差)
2.抽样误差—由于抽样的随机性而产生的 样本指标对总体指标的代表性误差。抽样误 差可以计算并加以控制,但不可以避免。

参数估计的介绍

参数估计的介绍

参数估计的介绍一、总体参数估计概述统计推断(Statistical inference)就是根据样本的实际数据,对总体的数量特征作出具有一定可靠程度的估计和判断。

统计推断的基本内容有参数估计和假设检验两方面。

概括地说,研究一个随机变量,推断它具有什么样的数量特征,按什么样的模式来变动,这属于估计理论的内容,而推测这些随机变量的数量特征和变动模式是否符合我们事先所作的假设,这属于检验理论的内容。

参数估计和假设检验的共同点是它们都对总体无知或不很了解,都是利用部分观察值所提供的信息,对总体的数量特征作出估计和判断,但两者所要解决问题的着重点的所有方法有所不同。

本节先研究总体参数估计的问题。

总体参数估计是以样本统计量(即样本数字特征)作为未知总体参数(即总体数字特征)的估计量,并通过对样本单位的实际观察取得样本数据,计算样本统计量的取值作为被估计参数的估计值。

不论社会经济活动还是科学试验,人们作出某种决策之前总是要对许多情况进行估计。

例如商品推销人员要估计新式时装可能为消费者所学好的程度,自选商场经理要估计附近居民的购买能力,民意调查机构要估计竞选者的得票率,医药生产部门要推广某种药品的新配方,必须估计新药疗效的提高程度等等。

这些估计通常是在信息不完全、结果不确定的情况下作出。

参数估计为我们提供一套在满足一定精确度要求下根据部分信息来估计总体参数的真值,并作出同这个估计相适应的误差说明的科学方法。

科学的抽样估计方法要具备三个基本条件。

首先是要有合适的统计量作为估计量。

我们知道统计量是样本随机变量的函数,根据样本随机变量可以构造许多统计量,但不是所有的统计量都能够充当良好的估计量。

例如,从一个样本可以计算平均数、中位数、众数等等,现在要用来估计总体平均数,究竟以哪个样本统计量作为估计量更合适,如果采用样本平均数作为估计量,这就需要回答样本平均数和总体平均数存在什么样的内在联系,以样本平均数作为良好估计量的标准是什么等等。

统计分析方法论:推断统计分析——参数估计

统计分析方法论:推断统计分析——参数估计

推断统计分析——参数估计课前准备下载Anaconda软件。

课堂主题本次课讲解推断统计当中参数估计的含义与应用。

课堂目标学习本次课,我们能够达到如下目标:熟知点估计与区间估计的概念与区别。

熟知中心极限定理的含义。

熟知正态分布及其特性。

知识要点推断统计分析概述推断的神奇一只熊掉入陷阱,陷阱深19.617米,下落时间整2秒。

请问熊是什么颜色的?A 白色B 棕色C 黑色D 黑棕色E 灰色首先,根据题目算出g=9.8085,陷阱所在地的纬度大概是44度左右。

根据熊的地理分布,南半球没有熊,可以得知应该是北纬44度;其次,既然为熊设计地面陷阱,一定是陆栖熊,而且大部分陆栖熊视力不好,难以分辨陷阱,所以容易掉入陷阱;至此,可选答案有:棕熊和美洲黑熊/亚洲黑熊,鉴于题目只有棕熊和黑熊,那么只剩下这两个答案。

既然陷阱深19.617米,土质一定为冲击母质,这样才易于挖掘。

棕熊虽然有地理分布,但多为高海拔地区,而且凶悍,捕杀的危险系数大,价值没有黑熊高,而且一般的熊掌、熊胆均取自黑熊。

又因为黑熊的地理分布与棕熊基本不重合,可以判定:该题的正确答案为掉进陷阱里的熊是黑色。

总体,个体与样本总体,是包含我们要研究的所有数据,总体中的某个数据,就是个体。

总体是所有个体构成的集合。

从总体中抽取部分个体,就构成了样本,样本是总体的一个子集。

样本中包含的个体数量,称为样本容量。

推断统计概念推断统计研究如何根据样本数据去推断总体数量特征的方法。

它是在对样本数据进行描述的基础上,对统计总体的未知数量特征做出以概率形式表述的推断。

推断统计意义我们为什么要进行推断呢?因为在实际的研究中,获取总体数据通常比较困难,甚至也许是不可能完成的任务。

因此,我们就需要对总体进行抽样,通过样本的统计量去估计总体参数。

也就是说,总体的参数往往是未知的,我们为了获取总体的参数,就需要通过样本统计量来估计总体参数。

关于点估计与区间估计,说法正确的是()。

【不定项】D 点估计与区间估计都是通过样本统计量来估计总体参数的。

统计推断中的参数估计一致性

统计推断中的参数估计一致性

统计推断中的参数估计一致性统计推断是通过对样本进行分析和推断,从而对总体进行估计和判断的一种方法。

而参数估计是统计推断的重要组成部分,它的目标是通过样本数据来估计总体参数的值。

在统计推断中,参数估计的一致性是一个重要属性,它指的是当样本容量逐渐增大时,参数估计值逐渐趋近于总体参数的真实值。

一、参数估计的概念及方法参数是总体的定量特征,而参数估计则是通过样本对总体参数进行估计。

常见的参数估计方法包括点估计和区间估计。

1. 点估计点估计是通过一个点来估计总体参数的值。

在点估计中,最常用的方法是最大似然估计(Maximum Likelihood Estimation, MLE)和矩估计(Method of Moments Estimation, MOM)。

最大似然估计是基于样本的似然函数,通过选择参数使得样本观测值的出现概率最大化来估计总体参数。

矩估计则是基于样本矩的性质,通过将样本矩与总体矩相等来估计总体参数。

2. 区间估计区间估计是通过一个区间来估计总体参数的值。

常用的区间估计方法包括置信区间估计和预测区间估计。

置信区间是总体参数的一个区间估计,表示参数真值落在该区间内的概率。

预测区间则是对未来观测值的一个区间估计,表示未来观测值落在该区间内的概率。

二、参数估计的一致性参数估计的一致性是指当样本容量逐渐增大时,参数估计值逐渐趋近于总体参数的真实值。

一致性是参数估计的一个重要性质,它保证了随着样本容量的增加,参数估计值的精确度逐渐提高。

1. 大数定律大数定律是参数估计一致性的一个重要理论基础。

大数定律表明,当样本容量足够大时,样本均值的投影值逐渐趋近于总体均值。

这意味着在一致性条件下,点估计的估计值与总体真值之间的偏差逐渐减小。

2. 中心极限定理中心极限定理也是参数估计一致性的一个重要理论基础。

中心极限定理表明,当样本容量足够大时,样本均值的抽样分布逐渐趋近于正态分布。

这意味着在一致性条件下,点估计的抽样分布的变异性逐渐减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计推断-参数估计
从本章开始我们介绍统计推断,所谓统计推断就是由样本推断总体,统计推断包括参数估计和假设检验两部分,它们是统计推断最基本而且是互相有联系的两部分,本章介绍统计推断的第一部分参数估计。

参数通常指总体分布中的特征值和和各种分布中的参数,例如二点分布B(1,P)中的p,泊松分布P()中的,正态分布N(、)的、等,习惯用表示参数,通常参数是未知的。

参数估计的形式有两类,设x1,x2,…,x n是来自总体的样本。

我们用一个统计量的取值作为参数的估计值,则称为的点估计(量),就是参数的点估计,
如果对参数的估计需要对估计作出可靠性判断,就需要对这一可靠性给出可靠性区间或置信区间,叫区间估计。

下面首先介绍点估计
7.1点估计的几种方法
直接用来估计未知参数的统计量称为参数的点估计量,简称为点估
计,人们可以运用各种方法构造出很多的估计,本节介绍两种最常用的点估计方法。

它们是:矩法和极大似然法。

7.1.1替换原理和矩法估计
用下面公式表示的方法叫矩法
例7-1对某型号的20辆汽车记录每5L汽油的行驶里程(km),观测数据如下:
29.827.628.327.930.128.729.928.027.928.7
28.427.229.528.528.030.029.129.829.626.9
这是一个容量为20的样本观测值,对应总体是该型号汽车每5L汽油的行驶里程,其分布形式尚不清楚,可用矩法估计其均值,方差,本例中经计算有
=28.695,=0.9185
由此给出总体均值,方差的估计分别为即
【答疑编号:10070101针对该题提问】
矩法估计的统计思想(替换原理)十分简单明确,众人都能接受,使用场合甚广。

例7-2设总体为指数分布,其密度函数为
x1,…,x n是样本,由于,亦即,故的矩法估计为
例7-3设x1,…,x n是来自服从区间(0,)上的均匀分布的样本,>0为未知参数。

求的矩估计。

【答疑编号:10070102针对该题提问】
解:易知总体X的均值为
由矩法的矩估计为
比如,若样本值为0.1,0.7,0.2,1,1.9,1.3,1.8,则的估计值
=2×(0.1+0.7+0.2+1+1.9+1.3+1.8)=2
例7-4在一批产品取样n件,发现其中有m件次品,试用此样本求该批产品的次品率p的矩估计。

【答疑编号:10070103针对该题提问】
解:因为

例如抽样总数n=100,其中次品m=5.

例7-5电话总机在一分钟间隔内接到呼唤次数X~P()。

观察一分种接到呼唤次数共观察40次,结果如下
接到呼唤次数012345
观察次数51012832
求未知参数的矩估计
【答疑编号:10070104针对该题提问】
解:(1)∵X~P()
∴EX=
由矩法

(2)计算(0×5+1×10+2×12+3×8+4×3+5×2)=2
∴=2
7.1.2极大似然估计
为了叙述极大似然原理的直观想法,先看例7-6
例7-6设有外表完全相同的两个箱子,甲箱中有99个白球和1个黑球,乙箱中有99
个黑球和1个白球,现随机地抽取一箱,并从中随机抽取一球,结果取得白球,问这球是从哪一个箱子中取出的?
【答疑编号:10070105针对该题提问】
解:不管是哪一个箱子,从箱子中任取一球都有两个可能的结果:A表示取出白球,B 表示取出黑球,如果我们取出的是甲箱,则A发生的概率为0.99,而如果取出的是乙箱,则A发生的概率为0.01,现在一次试验中结果A发生了,人们的第一印象就是:“此白球(A)最像从甲箱取出的”,或者是说,应该认为试验条件对事件A出现有利,从而可以推断这球是从甲箱中取出的,这个推断很符合人们的经验事实,这里“最像”就是“极大似然”之意。

本例中假设的数据很极端,一般地,我们可以这样设想,在两个箱子中各有100个球,甲箱中白球的比例是P1,乙箱中白球的比例是P2,已知P1>P2,现随机地抽取一个箱子并从中抽取一球,假定取到的是白球,如果我们要在两个箱子中进行选择,由于甲箱中白球的比例高于乙箱,根据极大似然原理,我们应该推断该球来自甲箱。

下面分别给出离散型随机变量和连续型随机变量的极大似然估计求未知参数的估计的步骤
(一)离散型随机变量
第一步,从总体X取出样本x1,x2,…,x n
第二步,构造似然函数
L(x1,x2,…,x n,)=P(X =x1)P(X=x2)…P(X=x n)
第三步,计算ln L(x1,x2,…,x n,)并化简
第四步,当=时ln L(x1,x2,…,x n,)取最大值则取=
常用方法是微积分求最值的方法。

(二)连续型随机变量
若X~f(x,)
第一步从总体X取出样本x1,x2,…,x n
第二步构造似然函数
L(x1,x2,…,x n,)=f(x1,)f(x2,)…f(x n,)
第三步计算ln L(x1,x2,…,x n,)并化简
第四步当=时ln L(x1,x2,…,x n,)取最大值则取=
常用方法是微积分求最值的方法
例7-7设总体X~B(1,P)即
设P(A)=,从总体X中抽样x1,x2,…,x n,问最大似然法求
【答疑编号:10070106针对该题提问】
解:当X~B(1,P)时,应有
∴P(X=1)=P,P(X=0)=1-P
第一步构造似然函数
L(x1,x2,…,x n,P)=P(X=x1)P(X=x2)…P(X=x n)

=。

相关文档
最新文档