液压起重机中的平衡阀及故障分析3篇
液压起重机中的平衡阀及故障分析液压平衡阀动画原理

液压起重机中的平衡阀及故障分析液压平衡阀动画原理为了防止油缸、马达等液压执行元件在受重力或特定外力作用时产生滑动,常常在该执行元件上安装一种依靠自身背压限制这种运动的阀,这种阀就是我们所说的平衡阀。
平衡阀是吊车的变幅油缸、伸缩油缸及卷扬马达上必备的重要安全装置。
平衡阀的作用,一是为了能使油缸在受特定方向上外力作用时产生背压并阻止这个方向上的运动;二是为了防止油缸活塞超速下降并有效地控制下降速度。
由此看来,在活塞下降过程中油压受节流阻尼是必要的,这种“刹车”性质的能量损耗是有益的,但是在活塞顶升过程中这个单向阀被异化成顺序阀的强阻尼作用,必然会造成工作油压力的衰减,形成液压油的高温和动力消耗。
为了克服这个不足所以在该阀上又同向地并联了一个单向阀,这样在油缸顶升中液油就可以通过这个单向阀轻松地跨越这个阻尼作用了。
这就是在许多吊车液压图上我们看到其在平衡阀一旁再并联一个单向阀的原因。
从图纸上看这样两个单向阀并联似乎很是没有必要,但是如果真的没有了这个并联的单向阀,吊车的工作是仍然可以进行,但是对于提高吊车效率、增加动作速度以及防止液压油高温是很有必要的。
平衡阀就其结构和工作原理不同又可分为若干种。
目前在吊车上运用最广、经常能见到的平衡阀一般有单向节流式的和单向顺序式的两种。
2两种平衡阀的结构与工作原理分析 2.1单向节流形式的平衡阀单向节流形式的平衡阀是指该阀在形式上是由单向阀和节流阀组成,但它又不同于普通单向节流阀。
普通单向节流阀的三角节流槽贯穿阀芯上的密封环线,切断了密封环线,所以它没有完全关闭油流的结构,而且阀芯的弹簧很软,液流正向流动时可轻松打开单向阀而通过,但在反向来油时,单向阀回到关闭位置,油液只能慢慢通过阀芯上的节流槽,使其在反方向上受节流而降低运动速度。
可见它在正反两个方向上都能不同程度地使油通过;单向节流形式的平衡阀与之是不相同的:首先这个节流阀的节流槽开设位置不同,这里的节流槽并未穿过阀芯的密封环线,所以它有完整的密封环,可以在一定情况下完全地切断流油。
海洋钻井平台起重机液压系统常见故障分析及排除

海洋钻井平台起重机液压系统常见故障分析及排除摘要:海洋起重机在海洋钻井平台的日常生产中扮演者重要的角色,由于平台远离陆地,同时又受天气环境等因素影响,当起重机发生故障时等候厂家人员上平台修理太浪费时间,从而严重影响正常的生产进度。
本文就海上钻井平台吊机液压系统引起吊机故障的元件以及可能出现的一些典型故障进行分析,仅供参考。
关键词:海洋钻井平台起重机液压系统故障分析排除海洋钻井平台吊机液压系统是一个有机整体。
系统中的每一个元件都是为了实现特定的功能而存在的。
当某个元件出现故障,无法实现设计功能的时候,吊机必然会表现出相应的故障现象。
只有找到引发故障的元件,才能根据它的损坏程度对其进行维修或更换,恢复其应有的功能,从而排除吊机故障。
因此,从系统的角度来说,排除故障的过程就是找出这个“故障元件”的过程。
以下就常见的典型故障进行分析排除。
一、吊机无动作或者动作无力首先向操作者了解是整机故障和还是个别动作故障?如果只是单一动作出故障,是不是该动作的两个方向都有故障?故障发生在轻载还是重载,高速还是低速?弄清这些问题后,可以缩小排查范围,以便更快的找到故障原因。
1.1在主机工作正常、各电气控制功能都正常的前提下,整台机都无法动作。
则应从几个动作的共用部分查找原因。
最基本的要弄明白到底是液压故障还是机械故障、电气故障。
(1)主油泵机械故障:主油泵是否正常(是否存在异常响声、振动)、系统主压力表读数情况。
诊断:如果油泵存在严重的噪音、振动等情况,且系统主无法起压,则可能是油泵内部损坏。
(2)控制压力:如果控制系统无法起压,则是控制油泵的问题,如果没有单独的控制油泵时,则可能是减压阀问题。
(3)电磁阀:如果油泵正常,控制压力也正常。
还可能是多路阀控制管路上的限位电磁阀组未得电,导致手柄输出的控制压力无法到达多路阀。
(4)负载反馈回路:使手柄离开中间位置,测量油泵反馈口压力,如果多路阀发出的反馈信号无法到达油泵,则油泵仍处在卸荷状态,系统无法起压。
液压系统常见故障及解决方法

液压系统常见故障及解决方法液压系统作为工程机械中重要的动力传递和控制系统,常常会出现各种故障,给工程机械的正常工作带来困扰。
本文将就液压系统常见的故障进行分析,并提出相应的解决方法,以帮助读者更好地理解和应对液压系统故障。
首先,液压系统常见的故障之一是液压泵失效。
液压泵是液压系统的动力源,一旦液压泵失效,整个液压系统将无法正常工作。
造成液压泵失效的原因可能包括液压油污染、液压泵内部零部件磨损、密封件老化等。
对于液压泵失效的情况,我们可以采取以下解决方法,首先,定期对液压油进行检查和更换,保持液压油的清洁;其次,定期对液压泵进行维护保养,及时更换磨损严重的零部件;最后,注意液压泵的使用环境,避免高温、高湿等恶劣条件对液压泵的影响。
其次,液压系统常见的故障之二是液压缸漏油。
液压缸漏油会导致工程机械的动作失灵,严重影响工作效率。
造成液压缸漏油的原因可能包括密封件老化、液压缸内部零部件磨损、安装不当等。
对于液压缸漏油的情况,我们可以采取以下解决方法,首先,定期检查液压缸的密封件,及时更换老化严重的密封件;其次,定期对液压缸进行维护保养,注意液压缸内部零部件的磨损情况;最后,注意液压缸的安装和使用,避免因安装不当导致液压缸漏油。
最后,液压系统常见的故障之三是液压阀故障。
液压阀作为液压系统的控制元件,一旦出现故障会导致工程机械的动作不准确甚至失控。
造成液压阀故障的原因可能包括阀芯卡滞、阀芯密封不严、阀体内部堵塞等。
对于液压阀故障的情况,我们可以采取以下解决方法,首先,定期对液压阀进行清洗和维护保养,保持阀芯的灵活性;其次,定期检查液压阀的密封情况,及时更换密封件;最后,注意液压阀的安装和使用,避免因阀体内部堵塞导致液压阀故障。
综上所述,液压系统常见故障的解决方法包括定期检查和维护保养液压系统的各个部件,及时更换老化严重的零部件,注意液压系统的使用环境和安装,以确保液压系统的正常工作。
希望本文所述的液压系统常见故障及解决方法能够帮助到广大读者,使他们能够更好地应对液压系统故障,确保工程机械的正常工作。
汽车起重机液压系统故障分析

汽车起重机液压系统故障分析汽车起重机液压系统故障分析目前汽车起重机的起重作业部分是采纳液压传动。
液压传动:它是以液压油作为工作介质,通过动力元件〔油泵〕,将原动机的机械能变为液压油的压力能,再通过操纵元件,然后借助执行元件〔油缸或油马达〕将压力能转换为机械能,驱动负载实现直线或回转运动。
且通过对操纵元件操纵和对压力流量的调剂,调定执行元件的力和速度。
液压传动系统中,一样用的是通断式操纵元件。
例如常规的液压系统中普遍采纳的压力阀、流量阀、方向阀以及由此组成的组合阀等。
所操纵的参数〔如压力、流量〕是依靠手动机构〔调剂手柄〕等来调定的,就其操纵目的而言,差不多上保持被调定值的稳固或单纯变换方向,也叫定值和顺序操纵元件。
一.查找液压故障的方法液压系统和液压元件在使用过程中免不了要发生故障,绝对可靠不出故障的起重机或液压元件是没有的。
但发生故障的可能性要尽量减少,发生故障后应能尽快排除,迅速修复。
液压系统经常显现的故障有以下几种:a.压力故障。
常见的有:压力达不到要求、压力不稳固、压力调剂失灵、压力缺失大等。
b.动作故障。
常见的有:起动不正常、不能动作、运动方向错误、速度达不到要求、负荷作用下速度明显下降、起步迟缓、爬行等。
c.振动和噪音。
d.油温过高。
e.泄漏,f.油液污染。
起重机的液压系统有些故障显现后,尚能带病运转下去,但有些故障发生后,起重机只能或必须停机修理。
为了保证液压元件和液压系统在显现故障后能尽快排除故障,使其复原正常运转。
而不是在故障发生后一筹莫展,造成更大的经济缺失。
正确而果断地判定发生故障的缘故,迅速排除故障成了使用起重机的关键。
综合分析,故障总体确实是液压油应该到达的位置没有到达,造成速度和力量的变化。
〔一〕对液压系统和液压元件故障的差不多认识液压故障涉及的学科和技术门类专门广,因而排除液压故障,一样需要有一定的液压技术知识和丰富的实践知识。
在处理液压故障之前,第一必须对〝故障〞有一个差不多认识。
液压系统常见故障和排除方法范文

液压系统常见故障和排除方法范文液压系统是一种广泛应用于各种机械设备中的能量传递和控制系统,它的工作稳定性对设备的正常运行至关重要。
然而,由于各种原因,液压系统常常会出现故障,影响设备的正常工作。
本文将介绍液压系统常见的故障,并提供相应的排除方法。
液压系统常见的故障包括泄漏、压力不稳定、动作缓慢、温度过高、异响、阀门卡死等。
下面将针对每种故障进行详细介绍,并提供排除方法。
首先是泄漏问题。
泄漏是液压系统最常见的故障之一,主要表现为液压油从管路、密封件甚至阀门等部件处溢出。
泄漏的原因可能是密封件老化、磨损、安装不当等。
解决泄漏问题的方法是检查并更换老化、磨损的密封件,并确保密封件的正确安装。
其次是压力不稳定问题。
液压系统的正常工作压力应保持稳定,如果压力不稳定,可能会导致设备无法正常工作。
该问题的原因可能是液压泵进气量不足、油液污染、阀芯卡死等。
解决压力不稳定问题的方法是检查并清洗污染的油液,确保液压泵正常供油,并检查阀芯,排除阻塞。
第三是动作缓慢问题。
液压系统的动作应迅速准确,如果动作缓慢,可能会导致设备延误或无法正常工作。
动作缓慢的原因可能是液压泵供油量不足、油液粘度过高、油液温度过低等。
解决动作缓慢问题的方法是检查并调整液压泵的供油量,调整油液温度和粘度,并确保液压系统的正常工作温度。
第四是温度过高问题。
液压系统的工作温度应保持在一定范围内,如果温度过高,可能会导致设备故障。
温度过高的原因可能是液压泵工作时间过长、油液污染、冷却系统失效等。
解决温度过高问题的方法是检查并清洗污染的油液,检修液压泵,确保冷却系统正常工作。
第五是异响问题。
液压系统在工作时,如出现噪音或异响,可能是系统内部发生了异常。
异响的原因可能是空气进入液压系统、液压泵零部件磨损、液压缸杆部分磨损等。
解决异响问题的方法是排除液压系统内部的气体,并更换磨损的零部件。
最后是阀门卡死问题。
在液压系统中,阀门起着控制油液流动的作用,如果阀门卡死,可能会导致液压系统无法工作。
汽车起重机平衡阀工作原理及故障排除

汽车起重机平衡阀工作原理及故障排除摘要:变幅液压系统是起重机中的一个重要部分。
变幅液压系统由于具有体积小、重量轻、易安装、功率密度大、响应快、可控制性强、工作平稳等优点,应用日趋广泛。
变幅液压系统是目前液压起重机中使用较为广泛的一种变幅系统,其变幅动作都是通过发动机把机械能转化为液压油的压力能来驱动液压油缸工作而实现的。
在起重机维护与修理的过程中,正确使用、拆装、安装调试、维护保养、排除故障及修理,对充分发挥其效能,延长它们的使用寿命是非常重要的。
因此,对起重机液压系统的分析及故障诊断尤其重要。
以QY20型汽车起重机变幅机构背压平衡阀为例,分析其工作原理,讨论总结了与平衡阀有关的常见故障的诊断及排除方法,以及其故障诊断实例分析。
关键词:起重机;变幅液压系统;平衡阀;故障诊断;排除方法汽车起重机液压系统中的平衡阀主要是对吊物的下降、落臂与缩臂起到限速作用,防止下放重物时的失控,同时使重物和吊臂保持在空间某一位置,其中平衡阀结构图如图1。
以QY20型汽车起重机变幅机构背压平衡阀为例,分析其工作原理,其原理图如图2,常见故障的诊断及排除方法,以及其故障诊断实例分析。
图1平衡阀结构图变幅液压系统平衡阀工作原理(1)当换向阀3处于图示中位时,变幅油缸1下腔的液压油被平衡阀2所封闭,油缸1保持静止。
(2)当换向阀3处于图示油缸1上升位置时,压力油经换向滑阀3和平衡阀2中的单向阀2b进入油缸1的下腔,油缸1上腔的油经换向阀3回油箱,油缸活塞杆伸出,支起吊臂,起臂速度由油门和换向阀的开启度在一定范围内调节。
(3)当换向阀3处于图示油缸1下降位置时,油缸1下腔的回油经平衡阀被平衡阀中的顺序阀2a和单向阀2b所封闭,建立背压。
此时,一部分压力油经换向阀向滑阀3进入变幅油缸1的上腔,同时另一部分压力油经控制油路至平衡阀中2a处。
当压力升值一定值时,2a 处阀芯移动,打开回油道,变幅油缸1下腔回油经平衡阀中2a、换向滑阀3回油箱,于是活塞杆回缩吊臂下降。
液压系统故障的检查与排除范本(2篇)

液压系统故障的检查与排除范本液压系统故障的检查与排除是维修液压设备的重要环节。
本文将分享一个液压系统故障的检查与排除的范本,旨在帮助读者更好地理解和解决液压系统故障。
一、液压系统压力不足液压系统压力不足是一种常见的故障现象,可以通过以下步骤进行检查和排除:1. 检查液压泵的工作状态。
检查液压泵是否正常运转,是否有异常噪声或震动。
如果存在异常情况,需要对液压泵进行检修或更换。
2. 检查液压泵的进油口和出油口。
确保进油口没有堵塞物,并且出油口没有泄漏。
如果有堵塞物或泄漏现象,需要进行清洁和修复。
3. 检查液压系统的油液质量和油液量。
确保油液质量符合要求,不含杂质和水分。
同时,检查油液量是否足够。
如有必要,需要更换油液或添加新的油液。
二、液压系统漏油液压系统漏油是另一种常见的故障现象,可以通过以下步骤进行检查和排除:1. 检查液压系统的密封件。
检查液压系统中的密封圈、密封垫等密封件是否完好无损。
如有磨损或老化现象,需要进行更换。
2. 检查液压系统的管路连接。
确保液压系统的管路连接牢固,没有松动现象。
如有松动,需要进行紧固。
3. 检查液压系统的油箱和油管。
检查油箱和油管是否有破损或渗漏的情况。
如有破损或渗漏,需要进行修复或更换。
三、液压系统工作不稳定液压系统工作不稳定是另一种常见的故障现象,可以通过以下步骤进行检查和排除:1. 检查液压系统的油液温度。
检查油液温度是否超过允许范围。
如超过范围,需要采取降温措施。
2. 检查液压系统的油液粘度。
检查油液粘度是否符合要求。
如不符合要求,需要更换合适的油液。
3. 检查液压系统的阀门和元件。
检查阀门和元件是否正常工作,是否存在卡滞或老化的情况。
如有必要,需要进行清洁或更换。
四、液压系统噪声过大液压系统噪声过大是一种常见的故障现象,可以通过以下步骤进行检查和排除:1. 检查液压泵和液压缸的工作状态。
检查液压泵和液压缸是否存在异常噪声或震动。
如存在异常情况,需要对相关部件进行检修或更换。
液压回路平衡阀工作原理与故障排除

对于转轴与轴套间卡死 的问题 , 可以采用 隔离法来防腐。 在 相应轴与轴套部位用仪表空气吹 ,让 阀杆与 阀体之间压力高于
应地 向密封靠拢来维持 密封 。楔形 闸阀就是 扭矩 密封 ,当使用 较时间
长后 , 如果泄漏 , 只需用力多拧几牙便能关严 。 平行板 闸阀 , 属于
位 置密封 , 当阀 门泄漏后 , 用 多拧几牙 的办法也无法关严 。
3 l 6 L 腐蚀速率< 0 . 8 m m / a
1 . 对还没内漏 的蝶 阀可进行改进
在 阀体上下侧增加吹扫孔 , 通入压缩空气 , 调至合适的压力 ( 以对工艺无影 响为准 ) 。 增加 阀位反馈信号 , 编程使 阀门定期小
行程活动( 必须对工艺无影响 ) 。 2 . 对新购阀门的考虑
头 升降油缸 ) L H K型背压平衡 阀为例 , 分析其 工作 原理 、 调节方 法, 总结平衡 阀应用过程 中常见的故障 , 并提 出相应的排除方法 。
采用 同等材料或 同等 电位。 为保证蝶板 的抗腐蚀 和抗 冲刷性 , 采 用化学镀镍处理蝶板 ,使蝶板既具有抗腐蚀性 ,硬度又能达到 5 2 HR C 。另一方面 , 可 以通过软件编程 或硬件操作 , 在工艺允许 的条件下 , 让 阀门在规定 的时间 以规定的开度动作一 次, 可以防 止蝶板与阀体的密封面长期静止不动 而打不开 的问题。
2 . 阀不 能打 开 的 问题
管道介质 , 使管道介质 中的颗粒不会进入阀杆和轴承之 间, 同时 也可 防止尾气进入腔体后冷凝下 来造成的化学腐蚀和阀杆和阀 体表面产生 的电位腐蚀。 再加上 阀门隔一段时间动作一次 , 可以 有效克服转轴与轴套卡死的问题 。还 可以从选用扭矩小的阀门
结构和适 当增加气缸尺寸来考虑 ,可以补偿 由于阀门阻力逐渐 增大 的不 良影响 , 但扭矩 的匹配要在设计的允许 范围内。所 以, 具有最小开关扭矩的 3偏心结构是首选 ,外加适 当增加气缸尺 寸, 便 可以达 到较好效果 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压是机械行业、机电行业的一个名词。
液压可以用动力传动方式,成为液压传动。
今天为大家精心准备了液压起重机中的平衡阀及故障分析3篇,希望对大家有所帮助!液压起重机中的平衡阀及故障分析1篇浙江省特种设备科学研究院浙江省杭州市 310020摘要:随着经济的高速发展,国家基础建设的规模越来越大,需要吊运物品的质量、体积和起升高度都越来越大。
在起重机的市场保有量逐年上升的同时,客户对机器的操控性要求越来越高。
重物的平稳提升与下放是起重机操控性的一个非常关键的指标,所以通过掌握液压平衡阀的平衡原理来提升产品的品质是非常重要的。
关键词:汽车起重机;平衡阀;故障;解决方案1提升平衡阀的液压原理分析当马达做上升动作时,压力油从A口进入,经过独立的进油单向阀后进入B 口。
马达做下降动作:先导口压力p启=0时,平衡阀锥阀密封关闭。
先导口压力p启≠0时,平衡阀主阀芯产生位移。
F:弹簧力;f:缝隙缓冲阻力。
令主阀芯的位移y,当0<y<x时,锥阀密封被打开,滑阀密封未打开。
阀芯右移,推动缝隙缓冲阻尼装置右移,容腔被压缩,油液经小孔流入A口,此时的缝隙缓冲阻尼装置不起作用。
此时由于滑阀未打开,阻尼M1、M3、锥阀液阻很大将流量限制得很小,不需要缝隙缓冲阻尼装置,缝隙缓冲阻力f很小。
当y>x时,滑阀密封被打开。
此时压力油从B口经滑阀、锥阀进入A口。
当滑阀被打开,流量瞬间变大,同时缝隙缓冲阻尼装置上的小孔随即进入到配合间隙中,缝隙缓冲阻尼装置开启起缓冲作用。
阀芯右移,推动缝隙缓冲阻尼装置右移,容腔被压缩,油液经小孔、配合缝隙流入A口,此时的缝隙缓冲阻尼装置起作用,缝隙缓冲阻力f很大。
卸掉先导压力p启时,主阀芯在弹簧力的作用下向做移动,单向阀DLS被打开,A口液压油进入缝隙缓冲阻尼的容腔中。
马达下降口供油,油液经阻尼N1、N3、单向阀到达A口,N1与N3组成一个液压半桥。
(3)在载荷G的波动值相同的情况下,A波动越大→加减速越明显→p下、p 启、F弹波动越明显→A波动越大。
所以可以通过提高n、F弹来提升平衡阀的稳定性。
同时n、F弹的升高都会引起p下的升高,进而增加了能耗。
2平衡阀常见故障在起重机械中,采用吊钩升降的方式最多,这里以控制升降的卷扬平衡阀为例分析平衡阀常见的故障现象,其它平衡阀故障现象类似。
由卷扬平衡阀引起的故障包括:落钩动作滞后、溜钩、落钩抖动、落钩启动冲击等。
落钩滞后的故障现象为:当扳动操控手柄后,过了较长时间,执行机构才开始动作;溜钩的故障现象为:吊起重物停止后,重物又慢慢的往下落;落钩抖动的故障现象是:落钩过程中,重物持续的抖动;落钩启动冲击的故障现象为:落钩开始瞬间,重物会失速下坠一下。
3各种故障的原因及解决方案3.1落钩滞后控制压力PiL开始建立压力至平衡阀开始产生流量之间的时间△T1规定为滞后时间。
△T1的时间超过0.5s时,就可认为产生了滞后。
落钩滞后主要是由平衡阀前的阻尼产生的,这个阻尼用来抑制平衡阀阀芯的波动。
但当温度较低时,因液压油流动较缓慢,这个阻尼会对阀芯开启产生滞后。
为了解决上述问题,可以采用快速响应的功能。
在油路上与阻尼并联接入一个液控阀,当PiL口开始见压时,首先通过液控阀迅速打开平衡阀阀芯,平衡阀正常工作。
当压力达到一定的值时,压力油控制液控阀的下位(有单向阀)接通,液控阀关闭,压力油通过阻尼流入平衡阀,这样能够有效减少△T1的时间。
3.2溜钩正常情况下,马达停止后,吊起的重物应该保持在原有位置而不下落。
但是如果平衡阀泄露量比较大,同时配套的主阀采用中位节流机能,在重物重力的作用下,就会在平衡阀与主阀之间的A口处产生压力,油液按照空心箭头所示流动,顶开平衡阀上的梭阀,流向制动器,使得制动器保持打开状态,从而使重物又慢慢往下落。
改进油路设计,制动器的压力单独控制,不从平衡阀的梭阀口引出,则平衡阀A口的压力对制动器没有影响,就不会导致溜沟。
3.3落钩抖动平衡阀打开瞬间,马达出口B的压力(用代号PB表示,下同)突然下降,马达进口X的压力(用代号PX表示,下同)延迟7ms左右跟随着下降,PX下降导致平衡阀关闭。
平衡阀关闭后,马达出口压力PB开始上升,马达进口压力PX跟随着上升,使得平衡阀阀芯又开启。
由于系统持续供油,平衡阀按上述过程不断循环,直到马达出口压力PB波动的最小压力大于平衡阀的开启压力,平衡阀阀芯振动才会停止。
从上述可知,平衡阀开启的时候,马达进口和出口的压力波动使得平衡阀反复开闭,导致了落钩反复抖动。
为了减小压力波动,只有减少马达进口压力PX的波动对平衡阀阀芯的影响,最有效果的是加强控制平衡阀阀芯开启的阻尼来抑制压力PX的波动。
例如原来为0.8mm的阻尼孔,可减小到0.5mm。
3.4落钩启动冲击由于控制平衡阀阀芯开启的阻尼非常小,泵产生的压力油从阻尼进入并推动阀芯开启过程比较慢,马达进油压力PX迅速上升,直到平衡阀的阀芯开到一定的程度,落钩才开始启动,进油压力PX瞬间从峰值下降。
此时,在落钩启动的瞬间,存在压力冲击,使得重物会失速下坠一下。
为了消除压力冲击,在操控重物下落侧C点增加二次溢流阀。
当进油压力PX迅速增大,达到溢流阀的设定压力时,系统卸压,从而防止进油压力瞬间出现峰值而冲得很高,进而能够有效消除压力冲击。
结论本文针对起重机的落钩动作滞后、溜钩、落钩抖动、落钩启动冲击分别分析了解决措施:(1)通过平衡阀快速响应功能的设计,能够有效消除起重机落钩滞后的故障,特别是在低温的情况下,效果最明显;(2)通过制动器压力独立控制的方式,能够有效防止由于平衡阀内泄造成的溜钩故障;(3)通过减少控制平衡阀阀芯启闭的阻尼孔,增强阻尼效果,能够有效控制起重机落钩抖动故障;(4)通过增加二次溢流阀,能够减小起重机落钩的开启冲击。
但是,各种解决措施之间又存在一定的制约。
比如减少阻尼孔可以有效控制落钩抖动,但较小的阻尼会导致落钩滞后。
增加制动器压力独立控制回路可以防止溜钩、增加二次溢流阀可以防止落钩启动冲击,但是会造成系统设计复杂。
因此,应根据起重机的具体工况和性能指标有针对地进行系统的改良设计。
参考文献:[1]孟浩.汽车起重机平衡阀修理工艺研究[J].中国设备工程,2022(14):86-89.[2]彭彪,侯敏,赵敏.起重机伸缩液压系统故障分析及对策施[J].机床与液压,2022,44(8):85-86.[3]陈晋市,刘昕晖,王同建,等.平衡阀对起重机起升系统抖动现象的影响因素[J].中国工程机械学报,2022,8(1):46-50.[4]党伟,徐尚国,程伟,等.起重机吊臂缩臂抖动原因和解决措施[J].机床与液压,2022,45(20):173-175.液压起重机中的平衡阀及故障分析2篇摘要:就平衡阀的结构原理和常见的故障成因进行了较细致的分析和探讨。
关键词:平衡阀;液控单向节流阀;外控顺序阀中图分类号:TD422.4 7 文献标识码:A 文章编号:1007—6921(2008)08—0180—011平衡阀及其分类为了防止油缸、马达等液压执行元件在受重力或特定外力作用时产生滑动,常常在该执行元件上安装一种依靠自身背压限制这种运动的阀,这种阀就是我们所说的平衡阀。
平衡阀是吊车的变幅油缸、伸缩油缸及卷扬马达上必备的重要安全装置( 液压起重机中的平衡阀及故障分析3篇)。
平衡阀的作用,一是为了能使油缸在受特定方向上外力作用时产生背压并阻止这个方向上的运动;二是为了防止油缸活塞超速下降并有效地控制下降速度。
由此看来,在活塞下降过程中油压受节流阻尼是必要的,这种“刹车”性质的能量损耗是有益的,但是在活塞顶升过程中这个单向阀被异化成顺序阀的强阻尼作用,必然会造成工作油压力的衰减,形成液压油的高温和动力消耗。
为了克服这个不足所以在该阀上又同向地并联了一个单向阀,这样在油缸顶升中液油就可以通过这个单向阀轻松地跨越这个阻尼作用了。
这就是在许多吊车液压图上我们看到其在平衡阀一旁再并联一个单向阀的原因。
从图纸上看这样两个单向阀并联似乎很是没有必要,但是如果真的没有了这个并联的单向阀,吊车的工作是仍然可以进行,但是对于提高吊车效率、增加动作速度以及防止液压油高温是很有必要的。
平衡阀就其结构和工作原理不同又可分为若干种。
目前在吊车上运用最广、经常能见到的平衡阀一般有单向节流式的和单向顺序式的两种。
2两种平衡阀的结构与工作原理分析2.1单向节流形式的平衡阀单向节流形式的平衡阀是指该阀在形式上是由单向阀和节流阀组成,但它又不同于普通单向节流阀。
普通单向节流阀的三角节流槽贯穿阀芯上的密封环线,切断了密封环线,所以它没有完全关闭油流的结构,而且阀芯的弹簧很软,液流正向流动时可轻松打开单向阀而通过,但在反向来油时,单向阀回到关闭位置,油液只能慢慢通过阀芯上的节流槽,使其在反方向上受节流而降低运动速度。
可见它在正反两个方向上都能不同程度地使油通过;单向节流形式的平衡阀与之是不相同的:首先这个节流阀的节流槽开设位置不同,这里的节流槽并未穿过阀芯的密封环线,所以它有完整的密封环,可以在一定情况下完全地切断流油。
其次阀芯上的弹簧刚度大大加强,使单向阀的单向通过功能几乎被异化成了顺序阀功能( 液压起重机中的平衡阀及故障分析3篇)。
常态下单向阀芯被弹簧压紧而完全处于关闭状态,可实现背压,并阻止油缸在反方向上的运动。
在阀芯对面又增加了一个导控活塞,可以在外来控制压力作用下推动单向阀芯开启,实现油液反向导通,并可根据外控压力改变其开度实现节流口大小的调节,以达到控制油缸或马达运动速度的目的,从这一点上说把它叫做“液控单向、节流阀”会更形象、更好理解一些。
2.2单向顺序式的平衡阀单向顺序式的平衡阀和单向节流式的平衡阀功效几乎是一样的。
单向顺序式的平衡阀其结构上是由一个单向阀和一个顺序阀并联组成的;而刚才提到的单向节流式平衡阀中的单向阀,由于其弹簧刚度的加强它已被几乎异化成了顺序阀了,再加上它后来又并上去的单向阀,这样二者就已是殊途同归了。
前面的平衡阀由于原有单向阀功能被异化了,所以它才额外地需要再并联一个单向阀。
而这种单向顺序式的平衡阀中单向阀未经异化,所以一般它就不需要再并联单向阀了。
这就是我们经常看到德国设备的图纸中的平衡阀总是并一个单向阀,而美国设备图纸中平衡阀无单向阀并联的原因(注:德国设备中一般采用单向节流式的平衡阀,美国设备中多采用单向益流式平衡阀)。
3由平衡阀引起的吊车常见故障3.1吊臂颤抖不管是那种形式的平衡阀,在吊车上它的控制油一般大多取自它所控制的油缸的上腔油道。
当上腔来油后压力使液控阀(指平衡阀中的液控顺序阀或液控节流阀)开启,油缸活塞下腔就可实现回油,活塞在上腔压力油的推动下下行。
若是由重力或外力造成的活塞下滑过快,液压缸上腔压力将迅速下降,导致液控阀重新关闭,活塞运动停止。