青岛版九年级数学期末测试题

合集下载

青岛版九年级上学期期末数学测试题及参考答案

青岛版九年级上学期期末数学测试题及参考答案

青岛版九年级上学期期末数学测试题注意事项:本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,36分,第Ⅱ卷为非选择题,84分,共120分,考试时间120分钟。

第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来并填在第4页的答题栏中,每小题选对得3分,选错,不选或选出的答案超过一个,均记零分)1. 如图,它们是一个物体的三视图,该物体的形状是( )俯视图正视图左视图A. 圆柱B. 正方体C. 圆锥D. 长方体2..顺次连结等腰梯形各边中点得到的四边形是()A、矩形B、菱形C、正方形D、平行四边形3.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是A.B.C.D.4. 根据下列表格的对应值:02=++c bx ax 的范围是A . 3<x <3.23B . 3.23<x <3.24C . 3.24<x <3.25D .3.25 <x <3.26 5. 下列函数中,属于反比例函数的是 A 、3x y = B 、13y x=C 、52y x =-D 、21y x =+ 6. 将方程122=-x x 进行配方,可得 A .2)1(2=+x B .5)2(2=-x C .2)1(2=-x D .1)1(2=-x7. 对于反比例函数2y x=,下列说法不正确...的是 A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 8. 到三角形三条边的距离相等的点是三角形 A 、三条角平分线的交点 B 、三条高的交点 C 、三边的垂直平分线的交点 D 、三条中线的交点9. 一元二次方程2560--=的根是x xA、x1=1,x2=6B、x1=2,x2=3C、x1=1,x2=-6D、x1= -1,x2=610. 如果矩形的面积为6cm2,那么它的长y cm与宽x cm 之间的函数关系用图象表示大致A B C D11. 顺次连结等腰梯形各边中点得到的四边形是A、矩形B、菱形C、正方形D、平行四边形12. 如图,△ABC中,∠A=30°,∠C=90° AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是Array A、AD=DBB、DE=DCC、BC=AED、AD=BC一、选择题(每小题3分,共36分)填写最后结果,每小题填对得3分)13.在“W el i k e m a t h s.”这个句子的所有字母中,字母“e”出现的频率约为(结果保留2个有效数字).14.任意写出一个经过一、三象限的反比例函数图象的表达式.15.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次鱼共200条,有10条做了记号,则估计湖里有_____________条鱼.16.小明想知道某塔的高度,可是又不能爬上去,便灵机一动,发现身高1.80米的他在阳光下影长为2.4米,而塔的影子正好为36米,则塔的高度为______米17.某商品成本为500元,由于连续两年降低成本,现为190元.若每年成本降低率相同,设成本降低率为x,则所列方程为:.18.菱形的一条对角线长是6cm,周长是20cm,则菱形的面积是 cm2.19. 等腰△ABC一腰上的高为3,这条高与底边的夹角为60°,则△ABC的面积;三、解答题(本大题共7小题,满分63分,解答应写出必要的文字说明、证明过程或推演步骤)20. (本小题满分8分, 每小题答对得4分)解方程:(1)2 x2 + 5 x - 1= 0(2)2(2)-=-x x x21.(本小题满分6分)如图,树、红旗、人在同一直线上。

青岛版九年级下册数学期末测试卷(有答案)

青岛版九年级下册数学期末测试卷(有答案)

青岛版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有()A.4个B.5个C.6个D.7个2、把一个正方体截去一个角,剩下的几何体最多有几个面()A.5个面B.6个面C.7个面D.8个面3、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),其对称轴为直线x=1,下面结论中正确的是()A.abc>0B.2a﹣b=0C.4a+2b+c<0D.9a+3b+c=04、在□6x□9的空格中,任意填上“+”或“-”,可组成若干个不同的二次函数,其中其图象的顶点在x轴上的概率为( )A. B. C. D.15、如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A.4个B.3个C.2个D.1个6、二次函数的图像是由二次函数的图像()变换得到的.A.先向左平移1个单位,再向下平移2个单位B.先向左平移1个单位,再向上平移2个单位C.先向右平移1个单位,再向下平移2个单位 D.先向右平移1个单位,再向上平移2个单位7、有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.8、一次函数y=kx+b与反比例函数y=kx的图象如图所示,则下列说法正确的是( )A.它们的函数值y随着x的增大而增大B.它们的函数值y随着x的增大而减小C.它们的自变量x的取值为全体实数D.k<09、已知点A(1,m)与点B(3,n)都在反比例函数y= (k>0)的图象上,那么m与n的关系是()A. B. C. D.不能确定10、若二次函数y=ax2﹣2ax+c的图像经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=111、下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是()A. B. C. D.12、口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取得黄球的可能性的大小是()A. B. C. D.13、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我14、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为()。

青岛版九年级上册数学期末测试卷(必刷题)

青岛版九年级上册数学期末测试卷(必刷题)

青岛版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。

如图,如果扇形AOB 与扇形 是相似扇形,且半径 ( 为不等于0的常数)那么下面四个结论:①∠AOB=∠ A 1O 1B 1 ;②△AOB∽△ A 1O 1B 1 ;③ A 1B 1 =k ;④扇形AOB 与扇形 A 1O 1B 1 的面积之比为 。

成立的个数为:( )A.1个B.2个C.3个D.4个2、如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F , S △DEF :S △BAF =4:25,则DE :AB =( ).A.2∶5B.2∶3C.3∶5D.3∶23、如图,在8×8正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( )A.点EB.点FC.点GD.点H4、如图所示,图中共有相似三角形( )A.2对B.3对C.4对D.5对5、若关于x的方程x2﹣2x+m=0的一个根为﹣1,则另一个根为()A.﹣3B.﹣1C.1D.36、下列命题中,假命题的是( )A.两条弧的长度相等,它们是等弧B.等弧所对的圆周角相等C.所有的等边三角形都相似D.位似图形一定有位似中心7、已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是()A.相切B.相离C.相离或相切D.相切或相交8、如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A. B. C. D.9、设a,b是方程x2+x﹣2012=0的两个根,则a2+2a+b的值为()A.2009B.2010C.2011D.201210、关于x的一元二次方程x2-2x+m=0的一个根是x1=-1,则m的值和方程的另一个根x2是()A.m=2 x2=-1 B.m=-3 x2=3 C.m=-3 x2=1 D.m=2 x2=-311、已知关于x的方程2x2﹣(4k+1)x+2k2﹣1=0有两个不相等的实数根,则k的取值范围是()A.k=﹣B.k≥﹣C.k>﹣D.k<﹣12、一元二次方程2x2﹣7x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定13、如图,A、B、C分别是小正方形的三个顶点,且每个小正方形的边长均为1,则sin∠BAC的值为()A. B. C.1 D.14、用直角三角板检查半圆形的工件,合格的是()A. B. C. D.15、已知坐标平面上的机器人接受指令“[a ,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走a.若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A.(-1,)B.(-1,)C.( ,-1)D.( ,-1)二、填空题(共10题,共计30分)16、如图所示,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD,BC于M,N两点,与DC切于点P,则图中阴影部分面积是________.17、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,点O在中线CD 上,设OC=xcm,当半径为3cm的⊙O与△ABC的边相切时,x=________.18、如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是________.19、如图,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在圆周上(与点A、B不重合),则∠ACB的度数为________20、圆锥的底面半径为5cm,母线长为12cm,其侧面积为________cm2.21、如图,直线与双曲线交于点,将直线向上平移4个单位长度后,与双曲线交于点,与轴交于点,若,则的值为________.22、如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=________°.23、如图,在等边△ABC中,点D、E分别在BC、AC边上,且∠ADE=60°,AB=3,BD=1,则EC=________.24、如图,已知∠ACB=∠CBD=90°,AC=b,CB=a,若△ACB∽△CBD,写出BD与a,b之间满足的关系式________.25、如图,在矩形中,,点为线段上的动点,将沿折叠,使点落在矩形内点处.下列结论正确的是________. (写出所有正确结论的序号)①当为线段中点时,;②当为线段中点时,;③当三点共线时,;④当三点共线时,.三、解答题(共5题,共计25分)26、计算:|1﹣|﹣+2cos30°﹣20170.27、如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)28、如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)29、如图,BM是⊙O的直径,四边形ABMN是矩形,D是⊙O上的点,DC⊥AN,与AN交于点C,己知AC=15,⊙O的半径为30,求的长.30、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、C5、D6、A7、D8、C9、C10、B11、C13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。

青岛数学九年级期末试卷

青岛数学九年级期末试卷

青岛数学九年级期末试卷专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 下列哪个数是无理数?A. √2B. √3C. √4D. √53. 下列哪个数是负数?A. -1B. 0C. 1D. 24. 下列哪个数是整数?A. 1.5B. 2.5C. 3.5D. 4.55. 下列哪个数是质数?A. 11B. 12C. 13D. 14二、判断题(每题1分,共5分)1. 2的平方根是2。

()2. 0是有理数。

()3. 1的倒数是1。

()4. 任何数的相反数都是负数。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 2的平方是______。

2. 3的立方是______。

3. 5的相反数是______。

4. 4的倒数是______。

5. 6的平方根是______。

四、简答题(每题2分,共10分)1. 请解释什么是偶数?2. 请解释什么是无理数?3. 请解释什么是负数?4. 请解释什么是整数?5. 请解释什么是质数?五、应用题(每题2分,共10分)1. 计算下列数的和:2 + 3 + 4 + 5 + 6。

2. 计算下列数的差:10 4。

3. 计算下列数的积:3 × 7。

4. 计算下列数的商:8 ÷ 2。

5. 计算下列数的平方:5²。

六、分析题(每题5分,共10分)1. 请分析下列数中哪些是偶数,哪些是奇数:2, 3, 4, 5, 6, 7, 8, 9, 10。

2. 请分析下列数中哪些是无理数,哪些是有理数:√2, √3, √4, √5, √6, √7, √8, √9, √10。

七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画出边长为3cm的正方形。

2. 请用直尺和圆规画出半径为2cm的圆。

八、专业设计题(每题2分,共10分)1. 设计一个实验,验证牛顿第二定律。

2. 设计一个电路,实现两个输入信号的逻辑与操作。

【新】青岛版九年级上册数学期末测试卷及含答案

【新】青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于()A.﹣2B.2C.﹣2或2D.02、要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A.x(x﹣1)=30B.x(x+1)=30C. =30D. =303、已知Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中,正确的是()A. B. C. D.4、已知矩形中,,,下列四个矩形相似的是()A. B. C. D.5、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.20°D.40°6、在正方形网格中,∠BAC如图放置,点A,B,C都在格点上,则sin∠BAC 的值为 ( )A. B. C. D.7、一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,且最短边长为6,则最长边长为()A.18B.12C.24D.308、如图,在△ABC中,D、E分别为AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为()A. B. C. D.49、若关于x的一元二次方程2x2﹣2x+3m﹣1=0有两个实数根x1、x2,且x1x2>x1+x2﹣4,则实数m的取值范围是()A.m>﹣B.m≤C.m<﹣D.﹣<m≤10、如图,AB为⊙O的切线,切点为B,连接AO,OA与⊙O交于点C,BD为⊙O 的直径,连接CD,若∠A=30°,⊙O的半径为4,则图中阴影部分的面积为()A. B. C. D.11、关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠012、如图,⊙O的直径CD过弦EF的中点G,∠DCF=18°,则弧DE的度数等于()A.72°B.54°C.36°D.18°13、一个公共房门前的台阶高出地面2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是18°B.斜坡AB的坡度是tan18° C.AC=2tan18°米 D.AB= 米14、已知一个直角三角形的两条直角边恰好是方程2x2﹣9x+8=0的两根,则此三角形的面积为()A.1B.2C.3D.415、若m、n是方程的两个实数根,则的值为()A.0B.2C.-1D.3二、填空题(共10题,共计30分)16、如图,若内一点满足,则称点P为的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家g雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知中,,,为的布罗卡尔点,若,则________.17、已知关于x的方程(k-1)x2-2kx+k-3=0有两个不相等的实数根,则k的取值范围是________。

青岛版九年级上册数学期末测试卷及含答案(实用)(完美版)

青岛版九年级上册数学期末测试卷及含答案(实用)(完美版)

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若0°<α<90°,且4sin2α﹣3=0,则α等于()A.30°B.45°C.60°D.90°2、关于x的一元二次方程x2﹣3x+m=0的两实数根分别为x1、x2,且x1+3x2=4,则m的值为()A. B. C. D.33、若△ABC~△DEF,它们的面积比为4︰1,则△ABC与△DEF的相似比为()A.2︰1B.1︰2C.4︰1D.1︰44、若一个圆柱的底面半径是1,高是3,则该圆柱的侧面展开图的面积是()A.6B.3πC.6πD.12π5、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°6、已知:∠A为锐角,且cosA≥,则()A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30° D.30°≤∠A<90°7、方程与方程的所有实数根的和为()A.3B.5C.-2D.08、如图,在Rt△ABC中,∠A=30°,BC=2 ,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A. ﹣B. ﹣C. ﹣D. ﹣9、方程x(x-6)=0的根是()A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=010、公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18B.x 2﹣3x+16=0C.(x﹣1)(x﹣2)=18 D.x 2+3x+16=011、如图,在△ABC中,若DE∥BC,=,DE=4cm,则BC的长为()A.8cmB.12cmC.11cmD.10cm12、若关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C. 且 D. 且13、圆的直径是8cm,若圆心与直线的距离是4cm,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切14、如图,在⊙O中,弦AB,CD相交于点P,若∠A=55°,∠APD=80°,则∠B 等于( )A.40°B.45°C.50°D.55°15、在Rt△ABC中,斜边AB =4,∠B= 60°,将△ABC绕点B按顺时针方向旋转60°,顶点C运动的路线长是()A. B. C. π D.二、填空题(共10题,共计30分)16、计算:cos60°+()0=________17、如图所示,在▱ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为________.18、已知x1, x2是方程2x2﹣5x﹣1=0的两个根,则x1+x2的值是________.19、如图半径为6的⊙O中,弦AB=8,则圆心O到AB的距离为________.20、如图,将弧长为6π,圆心角为120°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计),则圆锥形纸帽的高是________.21、如图,在半径为3的⊙O中,Q、B、C是⊙O上的三个点,若∠BQC=36°,则劣弧BC的度数是________ .22、如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k= ________.23、在△ABC中,AB=10,AC=8,B为锐角且,则BC=________.24、如图,四边形是三个正方形、________25、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为2 ,则a的值是________三、解答题(共5题,共计25分)26、计算:4sin45°+3tan230°- .27、如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.28、如图,在Rt△ABC中,,D是AB的中点,过D点作AB的垂线交AC 于点E,若BC=6,sinA=,求DE的长.29、如图,在RT△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB 长为半径作⊙D.求证:AC与⊙D相切.30、在Rt△ABC中,∠C=90°,BC=3,AC=4,以C点为圆心、BC长为半径画圆,请你判断点A与⊙C的位置关系.参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、C5、D6、A7、A8、A9、B10、C12、C13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。

青岛版九年级上册数学期末测试卷【及含答案】

青岛版九年级上册数学期末测试卷【及含答案】

青岛版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、一元二次方程=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根 D.无法确定根的情况2、若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是()A.k<5B.k>5C.k≤5,且k≠1D.k<5,且k≠13、若△ABC∽△DEF ,若∠A=50°,∠B=60°,则∠F的度数是()A.50°B.60°C.70°D.80°4、如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB. πC.2πD. π5、下列方程中,有两个不相等实数根的是()A. B. C. D.6、已知反比例函数y=,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根7、如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20°B.40°C.70°D.80°8、已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A,C,D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是( )A.r>15B.15<r<20C.15<r<25D.20<r<259、如图,四边形内接于,延长交于点,连接.若,,则的度数为()A.50°B.60°C.70°D.80°10、如图,在中,,点是的中点,连接,将沿翻折得到与交于点,连接.若,则点到的距离为()A. B. C. D.11、若方程有两个不等的实数根,则m的取值范围是( )A.m=1B.C. 且D. 且12、方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定13、若两个相似三角形的周长之比为1:4,则它们的面积之比为()A.1:2B.1:4C.1:8D.1:1614、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米15、如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD 绕AB所在直线旋转一周所得圆柱的侧面积为( )A.10πB.4πC.2πD.2二、填空题(共10题,共计30分)16、在Rt△ABC中,∠C=90°,sinA=,则tanA=________.17、扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为________cm.18、如图,在△ABC中,AB=AC,点A在y轴上,点C在x轴上,BC⊥x轴,tan∠ACO=.延长AC到点D,过点D作DE⊥x轴于点G,且DG=GE,连接CE,反比例函数y=(k≠0)的图象经过点B,和CE交于点F,且CF:FE=2:1.若△ABE面积为6,则点D的坐标为________.19、若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则=________.20、已知x1, x2是方程x2+6x+3=0的两实数根,则+ 的值为________.21、如图,要使△ABC与△D BA相似,则只需添加一个适当的条件是________ (填一个即可22、如图,连接正十边形的对角线AC与BD交于点E,则∠AED=________°.23、如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则tan∠ACG=________.24、设x1, x2是方程x2-4x+m=0的两个根,且x1+x2-x1x2=1,则x 1+x2=________,m=________.25、如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为________.三、解答题(共5题,共计25分)26、解方程:.27、如图所示,△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=.求线段BD的长.28、如图所示,某施工队要测量隧道长度,米,,施工队站在点D处看向B,测得仰角,再由D走到处测量,米,测得仰角为,求隧道长.(,,).29、光华机械厂生产某种产品,1999年的产量为2000件,经过技术改造,的产量达到2420件,平均每年增长的百分率是多少?30、如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、A5、D6、C7、C9、B10、D11、D12、A13、D14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

2022-2023年青岛版初中数学(初三)九年级上册期末考试综合检测试卷及部分答案(三套)

2022-2023年青岛版初中数学(初三)九年级上册期末考试综合检测试卷及部分答案(三套)

2022-2023年青岛版数学九年级上册期末考试测试卷及答案(一)1.如图,已知点A(0,4),A(4,0),点A为线段AA的中点,且AA⊥AA,AA⊥A轴,则点A的坐标为( )A. (4,3)B. (4,2)C. (4,1.5)D. (4,1)2.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5B.(x+2)2=9C.(x﹣2)2=9D.(x﹣2)2=21 3.如图,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子DA恰好与甲影子CA在同一条直线上,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙两同学相距()米.A.1B.2C.3D.54.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽P A等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米5.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b6.如图,在正方形ABCD中,AB=2,E是AD中点,BE交AC于点F,DF的长为()A.B.C.D.7.如图,二次函数y=ax2+c的图象与反比例函数y=的图象相交于A(﹣,1),则关于x的不等式ax2+c>的解集为()A.x<﹣B.x>﹣C.x<﹣或x>0D.﹣<x<1 8.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应如下表所示:x…﹣10123…y…﹣23676…下列说法:①abc>0;②a+b+c=6;③b2﹣4ac>0;④当y<6时,x<1;⑤关于x的方程ax2+bx+c=3的解是x1=0,x2=4.正确的有()个.A.2B.3C.4D.5二、填空题(本题满分18分,共6道小题,每小题3分)9.若关于x的一元二次方程x2+4x+k=0有实数根,则k的取值范围是.10.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是.11.已知函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),则+的值为.12.如图,矩形ABCD的对角线交于点O,点E是矩形外一点,CE∥BD,BE∥AC,∠ABD =30°,连接AE交BD于点F、连接CF.若AC=8,则线段CF的长为.13.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).A点距离水平面为米,即OA=.如果曲线APB表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=ax2+bx+c(x>0),该抛物线的顶点是(2,),那么圆形水池的半径至少为米时,才能使喷出的水流不至于落在池外.14.如图是由若干个小正方体组成的.阴影部分是空缺的通道,一直通到对面.这个立体图形由个小正方体组成.三、作图题(本题满分4分)15.(4分)尺规作图:如图,已知∠α和线段a,求作:菱形ABCD,使∠DAB=∠α,对角线AC=a.四、解答题:16.(6分)(1)解方程:(x﹣3)2=7x﹣21(2)计算:tan260°﹣2sin30°﹣cos45°.17.(6分)在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色.(1)从袋中随机摸出1个,求摸到的是蓝色小球的概率;(2)从袋中随机摸出2个,用列表法或树状图法求摸到的都是红色小球的概率;(3)在这个袋中加入x个红色小球,进行如下试验:随机摸出1个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在0.9,则可以推算出x的值大约是多少?18.(8分)心理学家研究发现,一般情况下,一节课45分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,BC∥x轴,CD为双曲线的一部分),其中AB段的关系式为y=2x+20.(1)根据图中数据,求出CD段双曲线的关系式;(2)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?19.(6分)小明家所在居民楼的对面有一座大厦AB=74米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)20.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元21.(8分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2BC,E、F、G分别是OC、OD、AB的中点.求证:(1)BE⊥AC;(2)连接AF,求证:四边形AGEF是菱形.22.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?23.(10分)问题提出:将一个边长为n(n≥2)的菱形的四条边分别n等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?【问题探究】要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.为便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=1×(2+1)个.即:第二行平行四边形总共有2×(2+1)个.所以如图1,平行四边形共有2×(2+1)+1×(2+1)=(2+1)(2+1)=(2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有2个,边长为2的菱形共有12个.所以:如图1,菱形共有22+12=5=×2×3×5个.探究二:将一个边长为3的菱形的四条边分别3等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.(2)第二行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第二行平行四边形总共有2×(3+2+1)个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第三行平行四边形总共有3×(3+2+1)个.所以:如图2,平行四边形共有3×(3+2+1)+2×(3+2+1)+1×(3+2+1)=(3+2+1)(3+2+1)=(3+2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=×3×4×7个.探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.即:第二行平行四边形总共有2×(4+3+2+1)个.(3)模仿上面的探究,写出图3中第三行探究过程;(4)按照以上规律,第四行平行四边形总共有个.所以:如图3,平行四边形共有个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=30=×4×5×9个.【问题解决】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数是,菱形的个数是(用n表示).【实际应用】将一个边长为n(n≥2)的菱形的四条边都n等分,连接对边对应的等分点,得出该菱形被剖分的网格中的平行四边形的个数是225个,则n=.【拓展延伸】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,n 的值=.24.(12分)如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm和1cm,FQ⊥BC,分别交AC、BC于点P和点Q,连接EF、EP,设运动时间为t(s)(0<t<4)(1)连接DQ,若四边形EQDF为平行四边形,则t的值是;(2)设△EPF的面积为ycm2,求y与t的函数关系式;(3)运动时间t为何值时,EF⊥AC?参考答案:1.略2.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5B.(x+2)2=9C.(x﹣2)2=9D.(x﹣2)2=21【分析】两边配上一次项系数一半的平方可得.【解答】解:∵x2+4x=5,∴x2+4x+4=5+4,即(x+2)2=9,故选:B.3.如图,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子DA恰好与甲影子CA在同一条直线上,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙两同学相距()米.A.1B.2C.3D.5【分析】根据甲的身高与影长构成的三角形与乙的身高和影长构成的三角形相似,列出比例式解答.【解答】解:设两个同学相距x米,∵△ADE∽△ACB,∴,∴,解得:x=1.故选:A.4.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽P A等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米【分析】根据正切函数可求小河宽P A的长度.【解答】解:∵P A⊥PB,PC=100米,∠PCA=35°,∴小河宽P A=PC tan∠PCA=100tan35°米.故选:C.5.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.6.如图,在正方形ABCD中,AB=2,E是AD中点,BE交AC于点F,DF的长为()A.B.C.D.【分析】先在Rt△ABE中利用勾股定理求出BE=,再证明△AFE∽△CFB,根据相似三角形对应边成比例得出BF=BE=,然后证明△ADF≌△ABF,即可得出DF =BF=.【解答】解:∵在正方形ABCD中,AB=2,E是AD中点,∴∠BAE=90°,AE=AD=AB=1,∴BE==.∵AE∥BC,∴△AFE∽△CFB,∴==,∴BF=2EF,∵BF+EF=BE,∴BF=BE=.在△ADF与△ABF中,,∴△ADF≌△ABF,∴DF=BF=.故选:C.7.如图,二次函数y=ax2+c的图象与反比例函数y=的图象相交于A(﹣,1),则关于x的不等式ax2+c>的解集为()A.x<﹣B.x>﹣C.x<﹣或x>0D.﹣<x<1【分析】把点P的纵坐标代入反比例函数解析式求出点P的坐标,再根据函数图象写出抛物线在双曲线上方部分的x的取值范围即可.【解答】解:∵点A横坐标为﹣,∴不等式ax2+c>的解集是x<﹣或x>0.故选:C.8.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应如下表所示:x…﹣10123…y…﹣23676…下列说法:①abc>0;②a+b+c=6;③b2﹣4ac>0;④当y<6时,x<1;⑤关于x的方程ax2+bx+c=3的解是x1=0,x2=4.正确的有()个.A.2B.3C.4D.5【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,本题得以解决.【解答】解:由表格可得,该函数的对称轴是直线x==2,∴该函数的顶点坐标是(2,7),有最大值,开口向下,∴a<0,∵x=0时,y=c=3,∴c>0,∵﹣=2,∴b=﹣4a>0,∴abc<0,故①错误;∵图像经过点(1,6),∴a+b+c=6,故②正确;∵由表格可得,抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;由表格可得,当y<6时,x<1,故④正确;∵函数的对称轴为直线x=2,∴点(0,3)关于对称轴的对称点为(4,3),∴关于x的方程ax2+bx+c=3的解是x1=0,x2=4.故⑤正确;故选:C.二、填空题(本题满分18分,共6道小题,每小题3分)9.若关于x的一元二次方程x2+4x+k=0有实数根,则k的取值范围是k≤4.【分析】根据判别式的意义得到△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故答案为:k≤4.10.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是(﹣1,2)或(1,﹣2).【分析】利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,把A点的横纵坐标分别乘以或﹣即可得到点A′的坐标.【解答】解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣2×,4×)或[﹣2×(﹣),4×(﹣)],即点A′的坐标为:(﹣1,2)或(1,﹣2).故答案为:(﹣1,2)或(1,﹣2).11.已知函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),则+的值为﹣.【分析】根据函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),得出ab=﹣6,a+b =1,再把要求的式子进行变形,然后代值计算即可.【解答】解:∵函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),∴b=﹣,b=﹣a+1,∴ab=﹣6,a+b=1,∴+==﹣;故答案为﹣.12.如图,矩形ABCD的对角线交于点O,点E是矩形外一点,CE∥BD,BE∥AC,∠ABD=30°,连接AE交BD于点F、连接CF.若AC=8,则线段CF的长为2.【分析】根据平行四边形的判定定理得到四边形OBEC是平行四边形,根据矩形的性质得到OB=OC,根据菱形的判定定理即可得到平行四边形OBEC是菱形,可得BE=OC =AO,由“AAS”可证△AOF≌△EBF,可得BF=OF,推出△OBC是等边三角形,根据等边三角形的性质得到CF⊥OB,解直角三角形即可得到结论.【解答】解:(1)∵CE∥BD,BE∥AC,∴四边形OBEC是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OB=BD,OC=AC,∴OB=OC,∴平行四边形OBEC是菱形;∴OC=BE=OA,∵BE∥AC,∴∠OAF=∠BEF,在△AOF与△EBF中,,∴△AOF≌△EBF(AAS),∴OF=BF,∵AC=8,∴BD=8,∴OC=OB=4,∵∠ABD=30°,∴∠OBC=60°,∴△OBC是等边三角形,∴CF⊥OB,∴CF=OC=2.故答案为:2.13.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).A点距离水平面为米,即OA=.如果曲线APB表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=ax2+bx+c(x>0),该抛物线的顶点是(2,),那么圆形水池的半径至少为 4.5米时,才能使喷出的水流不至于落在池外.【分析】直接利用顶点式求出二次函数解析式,进而得出a的值,求出答案即可.【解答】解:由题意可得,设抛物线解析式为:y=a(x﹣2)2+,当x=0时,y=,则=a(0﹣2)2+,解得:a=﹣1,故抛物线解析式为:y=﹣(x﹣2)2+,当y=0时,0=﹣(x﹣2)2+,解得:x1=4.5,x2=﹣0.5,故圆形水池的半径至少为4.5米时,才能使喷出的水流不至于落在池外.故答案为:4.5.14.如图是由若干个小正方体组成的.阴影部分是空缺的通道,一直通到对面.这个立体图形由38个小正方体组成.【分析】由题意,阴影部分是空缺的通道,一直通到对面,即中间有重复,因此可分层计数,从前往后分为4层,画出每层的示意图进行计数即可.【解答】解:从前往后分层数,如图所示:共有13+6+6+13=38个,答:这个立体图形由38个小正方体组成.故答案为:38.三、作图题(本题满分4分)15.(4分)尺规作图:如图,已知∠α和线段a,求作:菱形ABCD,使∠DAB=∠α,对角线AC=a.【分析】作∠MAN=α,作∠MAN的角平分线AP,在射线AP时截取AC=a,作线段AC 的垂直平分线交AM于D,交AN于B,连接CD,BC,四边形ABCD即为所求作.【解答】解:如图,四边形ABCD即为所求作.四、解答题:16.(6分)(1)解方程:(x﹣3)2=7x﹣21(2)计算:tan260°﹣2sin30°﹣cos45°.【分析】(1)利用因式分解法求解即可;(2)代入特殊锐角的三角函数值,再计算乘方和乘法,最后计算加减即可.【解答】解:(1)∵(x﹣3)2=7x﹣21,∴(x﹣3)2﹣7(x﹣3)=0,则(x﹣3)(x﹣10)=0,∴x﹣3=0或x﹣10=0,解得x1=3,x2=10;(2)原式=()2﹣2×﹣×=3﹣1﹣1=1.17.(6分)在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色.(1)从袋中随机摸出1个,求摸到的是蓝色小球的概率;(2)从袋中随机摸出2个,用列表法或树状图法求摸到的都是红色小球的概率;(3)在这个袋中加入x个红色小球,进行如下试验:随机摸出1个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在0.9,则可以推算出x的值大约是多少?【分析】(1)根据概率公式可得;(2)画树状图列出所有等可能结果,再根据概率公式计算可得;(3)根据大量重复实验时,频率可估计概率列出方程求解可得.【解答】解:(1)∵4个小球中,有1个蓝色小球,∴P(蓝色小球)=;(2)画树状图如下:共有12种情况,摸到的都是红色小球的情况有6种,P(摸到的都是红色小球)==;(3)∵大量重复试验后发现,摸到红色小球的频率稳定在0.9,∴摸到红色小球的概率等于0.9,∴=0.9,解得:x=6.18.(8分)心理学家研究发现,一般情况下,一节课45分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,BC∥x 轴,CD为双曲线的一部分),其中AB段的关系式为y=2x+20.(1)根据图中数据,求出CD段双曲线的关系式;(2)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【分析】(1)分别从图象中找到其经过的点,利用待定系数法求得函数的解析式即可;(2)分别求出注意力指数为32时的两个时间,再将两时间之差和20比较,大于20则能讲完,否则不能.【解答】解:(1)∵AB段的关系式为y=2x+20,∴当x=10时,y=40,∴点B的坐标为(10,40),点C的坐标为(24,40),设C、D所在双曲线的解析式为y2=,把C(24,40)代入得,k=960,∴y=(x>24).(2)令y=2x+20=32,∴32=2x+20,∴x=6令y==32,∴x=30,∵30﹣6=24>20,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.19.(6分)小明家所在居民楼的对面有一座大厦AB=74米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)【分析】利用所给角的三角函数用CD表示出AD、BD;根据AB=AD+BD=74米,即可求得居民楼与大厦的距离.【解答】解:设CD=x米.在Rt△ACD中,tan37°=,则=,∴AD=x;在Rt△BCD中,tan48°=,则=,∴BD=x.∵AD+BD=AB,∴x+x=74,解得:x=40,答:小明家所在居民楼与大厦的距离CD的长度是40米.20.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元【分析】根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.【解答】解:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.21.(8分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2BC,E、F、G分别是OC、OD、AB的中点.求证:(1)BE⊥AC;(2)连接AF,求证:四边形AGEF是菱形.【分析】(1)由平行四边形的性质可得OB=BC,由等腰三角形的性质可得出BE⊥AC;(2)由直角三角形的性质和三角形中位线定理可得到EG=EF,根据平行四边形的性质和菱形的判定定理即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴BO=BD,即BD=2BO,又∵BD=2BC,∴OB=BC,又∵点E是OC的中点,∴BE⊥AC;(2)∵E、F分别是OC、OD的中点,∴EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AG=AB,∴又∵平行四边形ABCD中,AB=CD,AB∥CD,∴EG=EF=AG,EF∥AG,∴四边形AGEF是菱形.22.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?【分析】(1)根据表格中的x、y的值利用待定系数法确定一次函数的解析式即可;(2)根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由表格数据可推想函数表达式为一次函数,设:函数y与x的表达式为:y=kx+b,将(30,500),(40,400)代入表达式得:k=﹣10,b=800.函数关系式为:y=﹣10x+800;(2)工艺品每天获得的利润为W元,由题意得:W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000,∴当x=50时,每天获得的利润最大,为9000元.23.(10分)问题提出:将一个边长为n(n≥2)的菱形的四条边分别n等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?【问题探究】要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.为便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=1×(2+1)个.即:第二行平行四边形总共有2×(2+1)个.所以如图1,平行四边形共有2×(2+1)+1×(2+1)=(2+1)(2+1)=(2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有2个,边长为2的菱形共有12个.所以:如图1,菱形共有22+12=5=×2×3×5个.探究二:将一个边长为3的菱形的四条边分别3等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.(2)第二行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第二行平行四边形总共有2×(3+2+1)个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第三行平行四边形总共有3×(3+2+1)个.所以:如图2,平行四边形共有3×(3+2+1)+2×(3+2+1)+1×(3+2+1)=(3+2+1)(3+2+1)=(3+2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=×3×4×7个.探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.即:第二行平行四边形总共有2×(4+3+2+1)个.(3)模仿上面的探究,写出图3中第三行探究过程;(4)按照以上规律,第四行平行四边形总共有4×(4+3+2+1)个.所以:如图3,平行四边形共有(4+3+2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=30=×4×5×9个.【问题解决】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数是(n+n﹣1+n﹣2+…+1)2,菱形的个数是(用n表示).【实际应用】将一个边长为n(n≥2)的菱形的四条边都n等分,连接对边对应的等分点,得出该菱形被剖分的网格中的平行四边形的个数是225个,则n=5.【拓展延伸】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,n 的值=9.【分析】本题是找规律的试题,通过第一行,第二行,第三行,进而推出第四行的规律为4×(4+3+2+1)个,在通过边数得到平行四边形的个数(n+n﹣1+n﹣2+…+1)2,菱形的个数为,再通过找规律得到其他答案.【解答】解:【问题探究】第三行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第三行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第三行还包括斜边长为3,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.即:第三行平行四边形总共有3×(4+3+2+1)个.按照以上规律,第四行平行四边形共有4×(4+3+2+1)个,所以,如图3,平行四边形共有4x(4+3+2+1)+3×(4+3+2+1)+2×(4+3+2+1)+1×(4+3+2+1)=(4+3+2+1)×(4+3+2+1)=(4+3+2+1)2个.【问题解决】将一个边长为n(n>2)的菱形的四条边都几等分,连接对边对应的等分点,根据上面的规律,得出该菱形的补剖分的网格中的平行四边形的个数是(n+n﹣1+n﹣2+…+1)2个,菱形的个数n(n+1)(2n+1)个.根据题意可得,(n+n﹣1+n﹣2+…+1)2=225,n+n﹣1+n﹣2+…+1=15,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学试题
一、细心选一选(本题有10个小题,每小题3分,满分30分)下面每小题
给出的四个选项中,只有一个是正确的. 1.下面的图形中,是中心对称图形的是( ).
2.方程022=-x x 的根是( ).
A .2=x
B .2-=x
C .01=x ,22=x
D .01=x ,22-=x 3.⊙o 的直径为12㎝,弦AB 垂直平分半径OC ,则弦AB 的长为( )
A .33㎝ B.6㎝ C.63㎝ D.123㎝
4.为了绿化校园,某校计划经过两年时间,绿地面积增加21%.设平均每年绿地面积增长率为x ,则方程可列为( ).
A. (1+x )2 =21%
B. (1+x) +(1+x )2 =21%
C. (1+x )2
=1+21% D. (1+x) +(1+x )2
=1+21%
5.给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是( )A.1 B.2 C.3 D.4 6.如图,OAB △绕点O 逆时针旋转80 到OCD △的位置, 已知45AOB ∠= ,则AOD ∠等于( ).
A .
B .
C .
D .
(第6题)
A .55
B .45
C .40
D .35
7.用形状和大小完全相同的直角三角形拼下列图形,:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形,基中一定可以拼成的有( )
A . 3种 B. 4种 C. 5种 D. 6种
8.已知弧CD 是⊙O 的一条弧,点A 是弧CD 的中点,连接AC ,CD. 则( ) A.CD=2AC B.CD >2AC C. CD <2AC D.不能确定.
9. 直角△ABC 中,∠C=90°,AC=8,BC=6,两等圆⊙A ,⊙B 外切,那么图中两个扇形(阴影部分)的面积是( ) A.254π B.258π C.2516π D.2532
π
10. 根据下表,确定方程ax 2+bx +c=0的一个解的取值范围是( )
A. 2<x <2.23
B. 2.23<x <2.24
C. 2.24<x <2.25
D. 2.24<x ≤2.25
二、耐心填一填(本题有8个小题,每小题3分,共24分).
11.已知两圆相切,圆心距为8㎝,如果一圆的半径是5㎝,则另一圆的半径
是 ㎝。

12.如果关于x 的一元二次方程k 2x 2+kx=0的一个根是-2,那么k= . 13.在直角三角形中,若两条直角边长分别为6cm 和8cm ,则三角形的内切圆半径与外接圆半径之比为 .
14.依次连接等腰梯形各边中点所得到的四边形是 .
15.⊿ABC 中,D 、E 、F 分别为AB 、BC 、AC 的中点,过点A 作AH ⊥BC 于点H ,
连接DE 、DF 、HF ,若DE=6,则FH= .
16.小明要制作一个圆锥形模板模型,模型的侧面是由一个半径为9㎝, 圆心角是240°的扇形纸板制作成的,还需要一块圆形纸板做底面,那么这块圆形纸板的直径为 ㎝。

17.如图,AB 是⊙O 的直径,AB=10㎝,M 是半圆AB 的一个 三等分点,N 是半圆AB 的一个六等分点,P 是直径AB 上 一动点,连结MP 、NP ,则MP +NP 的最小值是 ㎝.
18.如果一个平行四边形的边长是8,一条对角线为6,那么它的另一条对角线的长a 的取值范围是 .
B
A
九年级数学答案卷
一、细心选一选(本题有10个小题,每小题3分,满分30分)
二、耐心填一填(本题有8个小题,每小题3分,共24分). 1. 2. 3. 4. 5. 6. 7. 8.
三、用心答一答 (本题有5个小题, 共46分, 解答要求写出文字说明, 证明过程或计算步骤) 19.(本题满分8分)
如图,正方形网格中,ABC △为格点三角形
(顶点都是格点),将ABC △绕点A 按逆时针 方向旋转90 得到11AB C △(B 与1B 是对应点). (1)在正方形网格中,作出11AB C △; (2)设网格小正方形的边长为1,请求出点C 经过的路线长.
G
F
E
D
C
B
A
20.解下列一元二次方程. (本题满分8分)
⑴.2x 2+5x =3 ⑵.(x -2)(2x -1)=1-2x
21.(本题满分10分)
如图:在⊿ABC 中,∠BAC 90°,AD⊥BC 于D ,CE 平分∠ACB,交AD 于G ,交AB 于E ,EF⊥BC 于F.
求证:四边形AEFG 是菱形;
22.(本题满分8分)已知:如图,AB是⊙O的直径,C是⊙O上一点,CD切⊙O于点C,AD⊥CD,垂足为D,延长AD和BC的延长线交于点E,求证:AB=AE.
23.(本题满分12分)
某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价x元,则可卖出()
32010x
-件,但物价部门限定每件商品加价不能超过进货价的25%.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价-进货价)。

相关文档
最新文档