苏教版高数选修4-5第1讲:不等式的性质与绝对值不等式(教师版)——回龙观陈俊红
2018高中数学选修4-5课件:第一讲1.2-1.2.2绝对不等式的解法 精品

因为对任意 a∈[0,1],不等式 f(x)≥b 的解集为空集,
所以 b> a+ 1-a .(8 分)
max
以下给出三种思路求 g(a)= a+ 1-a的最大值. 思路 1:令 g(a)= a+ 1-a, 所以 g2(a)=1+2 a 1-a≤1+( a)2+( 1-a)2= 2, 当且仅当 a= 1-a,即 a=12时等号成立.
(2)分段讨论法. 解含绝对值的不等式的基本思想是等价转化,转化 为不含绝对值的不等式求解. (3)数形结合法. 从函数的观点,利用函数图象求不等式的解集.
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”). (1)|x|<1 的解集为{x|-1<x<1}.( ) (2)|x|<1 的几何意义就是数轴上到原点的距离小于 1 的点的集合.( ) (3)|x|≥1 的解集是{x|x≥1 或 x≤-1}.( ) (4)|x|>1 的几何意义就是数轴上到原点的距离大于 1 的点的集合.( )
构造函数 y=|x+1|+|x-1|-3,即 y=
-2x-3,x≤-1, -1,-1<x<1, 2x-3,x≥1.
作出函数的图象(如右图所示). 函数的零点是-32,32. 从图象可知,当 x≤-32或 x≥32时,y≥0,即|x+1| +|x-1|-3≥0. 所以原不等式的解集为-∞,-32∪32,+∞.
[典例 1] 解下列不等式. (1)|4x+5|≥25;(2)1<|x-1|<5. 解:(1)因为|4x+5|≥25⇔4x+5≥25 或 4x+5≤-25 ⇔4x≥20 或 4x≤-30⇔x≥5 或 x≤-125.
所以原不等式的解集为xx≥5或x≤-125. (2)因为 1<|x-1|<5⇔1<x-1<5 或-5<x-1<- 1⇔2<x<6 或-4<x<0,所以原不等式的解集为{x|2<x <6 或-4<x<0}.
(复习指导)选修4—5 第1课时 绝对值不等式含解析

选修4—5不等式选讲必备知识预案自诊知识梳理1.绝对值三角不等式(1)定理1:若a,b是实数,则|a+b|≤,当且仅当时,等号成立;(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;(3)定理2:若a,b,c是实数,则|a-c|≤,当且仅当时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a(a>0)的解法:①|x|<a⇔-a<x<a;②|x|>a⇔x>a或x<-a.(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔;②|ax+b|≥c⇔.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程及数形结合的思想.3.基本不等式定理1:设a,b∈R,则a2+b2≥,当且仅当a=b时,等号成立.定理2:若a,b为正数,则a+b2≥√ab,当且仅当a=b时,等号成立.定理3:若a,b,c为正数,则a+b+c3≥√abc3,当且仅当a=b=c时,等号成立.定理4:若a1,a2,…,a n为n个正数,则a1+a2+…+a nn ≥√a1a2…a nn,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a12+a22+…+a n2)(b12+b22+…+b n2)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量或存在实数k,使α=kβ时,等号成立.5.不等式证明的方法证明不等式常用的方法有比较法、综合法、分析法、放缩法以及利用绝对值三角不等式、柯西不等式法等.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)对|a-b|≤|a|+|b|,当且仅当ab≤0时,等号成立.()(2)|a+b|+|a-b|≥|2a|.()(3)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.()(4)用反证法证明命题“a,b,c全为0”时假设为“a,b,c全不为0”.()(5)若m=a+2b,n=a+b2+1,则n≥m.() 2.若|a-c|<|b|,则下列不等式正确的是()A.a<b+cB.a>c-bC.|a|>|b|-|c|D.|a|<|b|+|c|3.若不等式|x+1x|>|a-2|+1对于一切非零实数x均成立,则实数a的取值范围是() A.(2,3) B.(1,2)C.(1,3)D.(1,4)4.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则√m2+n2的最小值为.5.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是.第1课时绝对值不等式关键能力学案突破考点绝对值不等式的解法【例1】(2020全国1,理23)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.解题心得解含有两个以上绝对值符号的不等式的方法解法1:利用绝对值不等式的几何意义求解,体现了数形结合的思想;解法2:利用“零点分段法”求解,即令各个绝对值式子等于0,求出各自零点,把零点在数轴上从小到大排列,然后按零点分数轴形成的各区间去绝对值,进而将绝对值不等式转化为常规不等式,体现了分类讨论的思想;解法3:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.对点训练1(2019全国2,理23)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.考点求参数范围(多考向探究)考向1分离参数法求参数范围【例2】(2017全国3,理23)已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.解题心得在不等式有解或成立的情况下,求参数的取值范围,可以采取分离参数,通过求对应函数最值的方法获得.对点训练2已知f(x)=|x+1|,g(x)=2|x|+a,(1)当a=-1时,求不等式f(x)≥g(x)的解集;(2)若存在x0∈R使得f(x0)≥g(x0)成立,求a的取值范围.考向2利用函数最值求参数范围【例3】(2020辽宁大连一中6月模拟,23)已知函数f(x)=x|x-a|,a∈R.(1)当f(1)+f(-1)>1时,求a的取值范围;+|y-a|恒成立,求a的取值范围.(2)若a>0,对任意x,y∈(-∞,a],都有不等式f(x)≤y+54解题心得1.对于求参数范围问题,可将已知条件进行等价转化,得到含有参数的不等式恒成立,此时通过求函数的最值得到关于参数的不等式,解不等式得参数范围.2.解答此类问题应熟记以下转化:f(x)>a恒成立⇔f(x)min>a;f(x)<a恒成立⇔f(x)max<a;f(x)>a有解⇔f(x)max>a;f(x)<a有解⇔f(x)min<a;f(x)>a无解⇔f(x)max≤a;f(x)<a无解⇔f(x)min≥a.对点训练3(2020山西太原三模,23)已知函数f(x)=|x+1|+|x-2a|,a∈R.(1)若a=1,解不等式f(x)<4;(2)对任意的实数m,若总存在实数x,使得m2-2m+4=f(x),求实数a的取值范围.考向3恒等转化法求参数范围【例4】(2020全国2,理23)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.解题心得在不等式成立的前提下求参数范围,通常对不等式进行等价变形,求出不等式的解,然后根据已知条件确定参数范围.对点训练4(2018全国1,理23)已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.考点求函数或代数式的最值(多考向探究)考向1利用基本不等式求最值【例5】(2020河北石家庄二模,文23)函数f(x)=|2x-1|+|x+2|.(1)求函数f(x)的最小值;(2)若f(x)的最小值为M,a+2b=2M(a>0,b>0),求证:1a+1+12b+1≥47.解题心得在求某一代数式的最值时,根据已知条件利用基本不等式a 2+b 2≥2ab ,a+b2≥√ab (a ,b 为正数),a+b+c3≥√abc 3(a ,b ,c 为正数)对代数式进行适当的放缩,从而得出其最值.对点训练5(2020河南开封三模)关于x 的不等式|x-2|<m (m ∈N +)的解集为A ,且32∈A ,12∉A. (1)求m 的值;(2)设a ,b ,c 为正实数,且a+b+c=3m ,求√a +√b +√c 的最大值.考向2 利用绝对值三角不等式求最值【例6】已知函数f (x )=2|x+a|+|x -1a|(a ≠0).(1)当a=1时,解不等式f (x )<4;(2)求函数g (x )=f (x )+f (-x )的最小值.解题心得利用绝对值三角不等式求函数或代数式的最值时,往往需要对函数或代数式中的几个绝对值里面的代数式等价变形,使相加或相减后对消变量,得到常数.对点训练6已知函数f (x )=|2x+1|-|x-1|. (1)求f (x )+|x-1|+|2x-3|的最小值;(2)若不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,求实数m 的取值范围.考向3利用放缩法求最值【例7】(2019全国3,理23)设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1.解题心得利用放缩法求代数式的最值,一般利用基本不等式,绝对值三角不等式及数学结论进行放缩,在放缩的过程中,结合已知条件消去变量得到常量,从而得到代数式的最值.对点训练7已知实数m,n满足2m-n=3.(1)若|m|+|n+3|≥9,求实数m的取值范围;(2)求|53m-13n|+|13m-23n|的最小值.1.绝对值不等式主要利用“零点分段法”求解,有时也利用函数图像通过观察得出不等式的解集.2.含绝对值不等式的恒成立问题的求解方法(1)分离参数法:运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立中的参数范围问题.(2)数形结合法:在研究不等式f(x)≤g(x)恒成立问题时,若能作出两个函数的图像,通过图像的位置关系可直观解决问题.3.求函数或代数式的最值主要应用基本不等式、绝对值三角不等式以及通过放缩求解.在解决有关绝对值不等式的问题时,充分利用绝对值不等式的几何意义解决问题能有效避免分类讨论不全面的问题.若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.选修4—5 不等式选讲必备知识·预案自诊知识梳理1.(1)|a|+|b| ab ≥0 (3)|a-b|+|b-c| (a-b )(b-c )≥02.(2)①-c ≤ax+b ≤c ②ax+b ≥c 或ax+b ≤-c3.2ab考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.D |a|-|c|≤|a-c|<|b|,即|a|<|b|+|c|,故选D .3.C 因为|x +1x |=|x|+|1x |≥2,要使对于一切非零实数x ,|x +1x|>|a-2|+1恒成立,则|a-2|+1<2,即1<a<3.4.√5 由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma+nb )2,即5(m 2+n 2)≥25,当且仅当an=bm 时,等号成立,所以√m 2+n 2≥√5.5.[-2,4] ∵|x-a|+|x-1|≥|(x-a )-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a ≤4.第1课时 绝对值不等式 关键能力·学案突破 例1解(1)由题设知f (x )={-x -3,x ≤-13,5x -1,-13<x ≤1,x +3,x >1.y=f (x )的图像如图所示.(2)函数y=f (x )的图像向左平移1个单位长度后得到函数y=f (x+1)的图像.y=f (x )的图像与y=f (x+1)的图像的交点坐标为-76,-116.由图像可知当且仅当x<-76时,y=f (x )的图像在y=f (x+1)的图像上方. 故不等式f (x )>f (x+1)的解集为(-∞,-76). 对点训练1解(1)当a=1时,f (x )=|x-1|x+|x-2|·(x-1).当x<1时,f (x )=-2(x-1)2<0; 当x ≥1时,f (x )≥0.所以,不等式f (x )<0的解集为(-∞,1). (2)因为f (a )=0,所以a ≥1. 当a ≥1,x ∈(-∞,1)时,f (x )=(a-x )x+(2-x )(x-a )=2(a-x )(x-1)<0. 所以,a 的取值范围是[1,+∞). 例2解(1)f (x )={-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x<-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1得,2x-1≥1,解得1≤x ≤2; 当x>2时,由f (x )≥1解得x>2. 所以f (x )≥1的解集为{x|x ≥1}.(2)由f (x )≥x 2-x+m 得m ≤|x+1|-|x-2|-x 2+x. 而|x+1|-|x-2|-x 2+x ≤|x|+1+|x|-2-x 2+|x|=-(|x |-32)2+54≤54,且当x=32时,|x+1|-|x-2|-x 2+x=54. 故m 的取值范围为(-∞,54].对点训练2解(1)当a=-1时原不等式可化为|x+1|-2|x|≥-1,设φ(x )=|x+1|-2|x|={x -1,x ≤-1,3x +1,-1<x <0,-x +1,x ≥0,则{x ≤-1,x -1≥-1,或{-1<x <0,3x +1≥-1,或{x ≥0,-x +1≥-1. 即-23≤x ≤2.所以原不等式的解集为-23,2.(2)若存在x 0∈R 使得f (x 0)≥g (x 0)成立,等价于|x+1|≥2|x|+a 有解, 由(1)即φ(x )≥a 有解,即a ≤φ(x )max ,由(1)可知,φ(x )在(-∞,0)单调递增,在[0,+∞)单调递减, 所以φ(x )max =φ(0)=1,所以a ≤1.故a 的取值范围为(-∞,1].例3解(1)f (1)+f (-1)=|1-a|-|1+a|>1,若a ≤-1,则1-a+1+a>1,得2>1,即当a ≤-1时,不等式恒成立;若-1<a<1,则1-a-(1+a )>1,得a<-12,即-1<a<-12; 若a ≥1,则-(1-a )-(1+a )>1,得-2>1,此时不等式无解. 综上所述,a 的取值范围是-∞,-12.(2)由题意知,要使不等式恒成立,只需f (x )max ≤y+54+|y-a|min .当x ∈(-∞,a ]时,f (x )=-x 2+ax ,f (x )max =f a 2=a 24. 因为y+54+|y-a|≥a+54, 所以当y ∈-54,a 时,y+54+|y-a|min =a+54=a+54.于是a 24≤a+54,解得-1≤a ≤5.结合a>0,所以a 的取值范围是(0,5].对点训练3解(1)当a=1时,f (x )<4,即|x+1|+|x-2|<4,化为{x <-1,2x >-3或{-1≤x ≤2,3<4或{x >2,2x -1<4,解得-32<x<-1或-1≤x ≤2或2<x<52,综上,-32<x<52,即不等式f (x )<4的解集为-32,52.(2)根据题意,得m 2-2m+4的取值范围是f (x )值域的子集.m 2-2m+4=(m-1)2+3≥3,又f (x )=|x+1|+|x-2a|≥|2a+1|, 所以f (x )的值域为[|2a+1|,+∞).故|2a+1|≤3,解得-2≤a ≤1,即实数a 的取值范围为[-2,1].例4解(1)当a=2时,f (x )={7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为{x |x ≤32或x ≥112}. (2)因为f (x )=|x-a 2|+|x-2a+1|≥|a 2-2a+1|=(a-1)2,故当(a-1)2≥4,即|a-1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a<3时,f (a 2)=|a 2-2a+1|=(a-1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞).对点训练4解(1)当a=1时,f (x )=|x+1|-|x-1|,即f (x )={-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为{x |x >12}.(2)当x ∈(0,1)时|x+1|-|ax-1|>x 成立等价于当x ∈(0,1)时|ax-1|<1成立. 若a ≤0,则当x ∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<2a ,所以2a ≥1,故0<a ≤2. 综上,a 的取值范围为(0,2]. 例5(1)解f (x )=|2x-1|+|x+2|={-3x -1,x ≤-2,-x +3,-2<x <12,3x +1,x ≥12,当x ≤-2时,f (x )≥5;当-2<x<12时,52<f (x )<5; 当x ≥12时,f (x )≥52. 所以f (x )的最小值为52. (2)证明由(1)知M=52,即a+2b=5.又因为a>0,b>0,所以1a+1+12b+1=17[(a+1)+(2b+1)]1a+1+12b+1=172+2b+1a+1+a+12b+1 ≥172+2√2b+1a+1·a+12b+1 =47,当且仅当a=2b ,即a=52,b=54时,等号成立.所以1a+1+12b+1≥47. 对点训练5解(1)由已知得{|32-2|<m ,|12-2|≥m ,解得12<m ≤32.因为m ∈N *,所以m=1.(2)因为a+b+c=3,所以√a +√b +√c =√1·a +√1·b +√1·c ≤1+a 2+1+b 2+1+c2=3+a+b+c2=3, 当且仅当a=b=c=1时,等号成立.所以√a +√b +√c 的最大值为3.例6解(1)∵a=1,∴原不等式为2|x+1|+|x-1|<4,∴{x <-1,-2x -2-x +1<4,或 {-1≤x ≤1,2x +2-x +1<4,或{x >1,2x +2+x -1<4,∴-53<x<-1或-1≤x<1或∅. ∴原不等式的解集为(-53,1).(2)由题意得g (x )=f (x )+f (-x )=2(|x+a|+|x-a|)+(|x +1a |+|x -1a |)≥2|2a|+2|a |≥4√2.当且仅当2|a|=1|a |,即a=±√22,且-√22≤x ≤√22时,g (x )取最小值4√2. 对点训练6解(1)f (x )+|x-1|+|2x-3|=|2x+1|-|x-1|+|x-1|+|2x-3|=|2x+1|+|2x-3|≥|2x+1-(2x-3)|=4,当-12≤x ≤32时等号成立,所以f (x )+|x-1|+|2x-3|的最小值为4.(2)不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,∴|m-1|≥[f (x )+|x-1|+|2x-3|]min .∴|m-1|≥4,∴m-1≤-4或m-1≥4,即m ≤-3或m ≥5,∴实数m 的取值范围是(-∞,-3]∪[5,+∞).例7(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知得(x-1)2+(y+1)2+(z+1)2≥43,当且仅当x=53,y=-13,z=-13时等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为43.(2)证明由于[(x-2)+(y-1)+(z-a )]2=(x-2)2+(y-1)2+(z-a )2+2[(x-2)(y-1)+(y-1)(z-a )+(z-a )(x-2)]≤3[(x-2)2+(y-1)2+(z-a )2],故由已知得(x-2)2+(y-1)2+(z-a )2≥(2+a )23,当且仅当x=4-a 3,y=1-a 3,z=2a -23时等号成立. 因此(x-2)2+(y-1)2+(z-a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.对点训练7解因为2m-n=3,所以2m=n+3.(1)|m|+|n+3|=|m|+|2m|=3|m|≥9,所以|m|≥3,所以m ≤-3或m ≥3.故m 的取值范围为(-∞,-3]∪[3,+∞).(2)53m-13n +13m-23n =53m-13(2m-3)+13m-23(2m-3)=|m+1|+|m-2|≥3,当且仅当-1≤m ≤2(或-5≤n ≤1)时等号成立, 所以53m-13n +13m-23n 的最小值是3.。
选修4-5第一讲 不等式和绝对值不等式

第一讲 不等式和绝对值不等式§1.1.1不等式的基本性质学习目标1. 理解并掌握不等式的性质,能灵活运用实数的性质; 2 .掌握比较两个实数大小的一般步骤学习重难点学习重点:不等式的基本性质学习过程 一、课前准备实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总 左边的点所表示的数,可知:b a b a -⇔>b a b a -⇔=0ba b a -⇔<结论:要比较两个实数的大小,只要考察它们的差的符号即可。
二、新课导学不等式的基本性质: 10. 对称性:b a >⇔ ; 20. 传递性:⇒>>c b b a ,;30. 同加性:⇒>b a ;推论:同加性:⇒>>d c b a , ;30. 同乘性:⇒>>0,c b a ,⇒<>0,c b a ;推论1:同乘性:⇒>>>>0,0d c b a ;推论2:乘方性:⇒∈>>+N n b a ,0 ; 推论3:开方性:⇒∈>>+N n b a ,0 ;推论4:可倒性:⇒>>0b a .☆比较两数大小的一般方法:比差法与比商法(两正数). 典型例题例1已知0,0>>>c b a ,求证:b ca c > .例2若0a b a >>>-,0c d <<,则下列命题中能成立的个数是( )()1ad bc >;()20a bd c+<;()3a c b d ->-;()4()()a d c b d c ->-.A 1 .B 2 .C 3 .D 4.例3 ()1若0x y <<,试比较()()22x yx y +-与()()22xy x y -+的大小()2设0a >,0b >,且a b ≠,试比较a b a b 与b a a b 的大小.例4 若2()f x ax c =-满足4-≤(1)f ≤1-,1-≤(2)f ≤5,求(3)f 的取值范围.变式训练1:(1)已知0a b >>,0d c <<<(2)已知,,a b c 满足:a b c R +∈、、,222a b c +=,当n N ∈,2n >时,比较n c 与n na b +的大小.(3)设()1log 3,()2log 2x x f x g x =+=,其中0,1x x >≠,比较()f x 与()g x 的大小.§1.1.2基本不等式学习目标1. 理解并掌握重要的基本不等式,不等式等号成立的件 2 . 初步掌握不等式证明的方法学习重难点学习重点: 基本不等式的运用学习过程 一、课前准备 二、新课导学探究1:重要不等式 1. 222(,)a b ab a b R +≥∈(当且仅当a b =时取“=”) 2.重要不等式的几何解释3.变式:(1)22222a b a bab ++⎛⎫≤≤⎪⎝⎭(2)222a b c ab bc ac ++≥++ (3)若0b >,则22a b a b+≥ 例1.若,,a b c R +∈,求证:222a b c a b c b c a++≥++探究2:基本不等式(均值不等式)1.2a b +≤(0,0)a b >>(当且仅当a b =时取“=”),其中2a b+正数a,b 的算数平均数和几何平均数 2.基本不等式的几何解释3.推广:若0,0a b >>,则有22ab a b a b +≤≤≤+a b =时取“=”)例2.已知y x ,都是正数①如果xy 是定值p ,那么当y x =时,和y x +有最小值p 2; ②如果和y x +是定值s ,那么当y x =时,积有最大值241s利用基本不等式求最值应注意:①x,y 一定要都是正数;②求积xy 最大值时,应看和x+y 是否为定值;求和x+y 最小值时,看积xy 是否为定值;③等号是否能够成立.以上三点可简记为“一正二定三相等”. 利用基本不等式求最值时,一定要检验等号是否.........能取到...,若取到等号,则解法是合理的,若取不到,则必须改用其他方法. 例3.(1) 设.11120,0的最小值,求且yx y x y x +=+>> ; (2) 设x 、y 是正实数,且x+y=5,则lgx+lgy 的最大值是_______________________. (3) 若正数b a ,满足3++=b a ab ,则ab 的取值范围是 .例4.(1)已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;(2)利用(1)的结论求函数29()12f x x x=+-(1(0,)2x ∈)的最小值,指出取最小值时x的值.例5.为了竖一块广告牌,要制造三角形支架.三角形支架如图,要求∠ACB=60°,BC 长度大于1米, 且AC 比AB 长0.5米.为了广告牌稳固,要求AC 的长度越短越好,求AC 最短为多少米? 且当AC 最短时,BC 长度为多少米?变式训练2: (1)已知54x <,求函数14245y x x =-+-的最大值。
2018学年高中数学选修4-5课件:第1讲 不等式和绝对值

1.设ab>0,a,b∈R,那么正确的是( A.|a+b|>|a-b| C.|a+b|<|a-b|
)
B.|a+b|<|a|+|b| D.|a+b|<||a|-|b||
解析: 由ab>0,得a,b同号,易知|a+b|=|a|+|b|,|a-
b|=||a|-|b||
∴|a+b|>|a-b|. 答案: A
∴|x-y|<2m,但反过来不一定成立, 如取x=3,y=1,a=-2,m=2.5,|3-1|<2×2.5,
但|3-(-2)|>2.5,|1-(-2)|>2.5, ∴|x-y|<2m不一定有|x-a|<m且|y-a|<m,
故“|x-a|<m且|y-a|<m”是“|x-y|<2m”
(x,y,a,m∈R)的充分非必要条件. 答案: A
3.已知|a+b|<-c(a,b,c∈R),给出下列不等式: ①a<-b-c;②a>-b+c;③a<b-c;④|a|<|b|-c;
⑤|a|<-|b|-c.
其中一定成立的不等式是________(注:把成立的不等式 的序号都填上).
解析: 由|a+b|<-c得c<a+b<-c.
由a+b<-c得a<-b-c,所以①成立,③不成立.
二 绝能利用含绝对值不等式的几 何意义证明不等式. 2.会用绝对值三角不等式的两个性质定理证明简单的含绝
对值的不等式以及解决含绝对值的不等式的最值问题.
1.含绝对值不等式的两个性质定理的灵活运用.(重点) 2.含绝对值不等式的恒成立问题或最值问题.(重点、难
B.必要而不充分条件 D.既不充分也不必要条件
选修4-5_第一讲_不等式和绝对值不等式(不等式)

x 当 1 x , 2
2 4 x 时, ymax . 3 27
构造三个数相加等于定值
0 x 1时, 求函数y x(1 x )的最大值. 练习: (2)当
2
解:
0 x 1, 1 x 0,
2
由y x(1 x ), 得
2
y x (1 x )
x yz 3 证明:因为 xyz,所以 3
(x y z) xyz, 27
3
即(x y z) 27 xyz
3
2 例2: (1)当 0 x 1时, 求函数y x (1 x)的最大值.
解:
0 x 1, 1 x 0,
x x y x (1 x ) 4 (1 x ) 2 2 x x 1 x 4 3 2 2 4( ) 3 27
称 ab 为a,b的几何平均数。 基本不等式可以描述为: 两个正数的算术平均数不小于(即大于或等于) 它们的几何平均数。
例1 求证:
(1)在所有周长相同的矩形中,正方形的面积最大; 设矩形的长为x,宽为y, 设矩形周长为定值l,即2x+2y=l, 由基本不等式
l 4 xy
面积xy≤l2/16
第一讲 不等式和绝对值不等式
一 不等式
不等式的基本性质
A
a
B b
x
设a,b是两个实数,它们在数轴上所对应的点分别为A,B 那么,当点A在点B的左边时 A a B b x 当点A在点B的右边时 B b A a x
a<b
a b ab0 a b ab 0 a b ab0
a>b
. 例1 比较( x 3)( x 7)和( x 4)( x 6)的大小
2018高中数学选修4-5课件:第一讲1.1-1.1.1不等式的基本性质 精品

归纳升华 1.比较大小有两种基本方法:作差法、作商法.其 中作差法往往需要比较差与零的大小关系,作商法需判断 商与 1 的大小关系. 2.作差比较法的步骤是:(1)作差;(2)变形;(3)定号; (4)下结论.
由①+④得-π≤α-β<π. 又 α<β, 知 α-β<0, 所以-π≤α-β<0, 所以-π2≤ɑ-2 β<0.
归纳升华 1.求含有字母的数(或代数式)的取值范围,要注意 题设中的条件,充分利用已知求解,否则易出错.例如,
ɑ-β 若忽略 ɑ<β,则会导致 2 的取值范围变大.
2.利用不等式的基本性质求解,在变换过程中要注 意熟练掌握、准比较两式的大小时,常采用因式分解、 配方、通分、分母有理化等技巧,通过彻底的变形,从而 判断差式的值的正负,进而判断出两式的大小.
[变式训练] 比较 x2-x 与 x-2 的大小. 解:(x2-x)-(x-2)=x2-2x+2=(x-1)2+1, 因为(x-1)2≥0, 所以(x-1)2+1>0,即(x2-x)-(x-2)>0. 所以 x2-x>x-2.
又因为1a<1b,
所以1b-1a=a-abb>0.
所以 ab>0,故①正确.
②中,因为 ac<bc, 所以 c(a-b)<0. 又因为 a>b,所以 a-b>0. 所以 c<0,故②不正确. ③因为ac<bc, 所以ac-bc<0,即c(ba-b a)<0.
因为 a>b>0, 所以 ab>0,b-a<0. 所以 c>0.故③正确. ④因为 a<b<0,b<0, 所以 ab>b2,故④不正确. 答案:D
4.设 x∈R,则1+x244与12的大小关系是________. 解析:当 x=0 时,1+x2x4=0<12. 当 x≠0 时,1+x2x4=x12+1 x2, 所以x12+x2≥2,
高考数学一轮复习 第1节 不等式的基本性质与含绝对值不等式课件 理 苏教版选修4-5
不等式
a>0
a=0 a<0
|x|<a {x|-a<x<a}
∅
∅
|x|>a {x|x>a 或 x<-a} {x∈R|x≠0} R
ppt精选
6
(2)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法: (3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法:
ppt精选
ppt精选
15
(2)①若 a=1,f(x)=2|x-1|不满足题设;
②若 a<1,f(x)=-1-2xa+,aa+<x1<,1,x≤a, 2x-a-1,x≥1,
f(x)最小值为 1-a;
-2x+a+1,x≤1, ③若 a>1,f(x)=1-a,1<x<a,
2x-a-1,x≥a,
f(x)最小值为 a-1.
ppt精选
3
(3)a>b⇒a+c>b+c. (4)a>b,c>d⇒a+c>b+d. (5)a>b,c>0⇒ac>bc;a>b,c<0⇒ ac<bc . (6)a>b>0,c>d>0⇒ac>bd. (7)a>b>0⇒an > bn(n∈N,且 n>1).
(8)a>b>0⇒n a > n b(n∈N,且 n>1).
ppt精选
10
3.已知|x-a|<b(a、b∈R)的解集为{x|2<x<4},则 a-b= ________.
[解析] 由|x-a|<b,得 a-b<x<a+b, 又|x-a|<b(a,b∈R)的解集为{x|2<x<4}, 所以 a-b=2. [答案] 2
选修4-5不等式的基本性质(公开课精品课件)
2. 成立。由于 (a < b < c < d),则有 (frac{b}{d} < frac{c}{d}),进而有 (frac{c}{d} > frac{b}{d})。
决策分析
利用不等式描述各种因 素之间的优先关系,做
出最优决策。
05
习题与解答
习题
02
01
03
判断下列不等式是否成立,并说明理由 1. (a + b > c + d) 当且仅当 (a > c) 且 (b > d) 2. (|a| < b) 当且仅当 (a^2 < b^2)
习题
3. 若 (x > y > 0),则 (frac{1}{x} < frac{1}{y})
解决波动问题
利用不等式描述波动现象的物 理量之间的关系,解决波动问 题。
解决电磁学问题
利用不等式描述电场、磁场之 间的关系,解决电磁学问题。
在实际生活中的应用
投资决策
利用不等式描述投资收 益、风险之间的关系,
做出最优投资决策。
资源分配
利用不等式描述资源分 配问题,实现资源的最
优配置。
价格策略
利用不等式描述商品价 格与市场需求的关系, 制定合理的价格策略。
定义2
能够表示不等关系的式子,也叫 做不等式。
不等式的性质
性质1
不等式两边同时加上或减去同一个数或整式,不等 号的方向不变。
选修4-5_《不等式选讲》全册教案
第一讲 不等式和绝对值不等式课题:第01课时 不等式的基本性质 教学目标:1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础。
2.掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用比较法,反证法证明简单的不等式。
教学重点:应用不等式的基本性质推理判断命题的真假;代数证明,特别是反证法。
教学难点:灵活应用不等式的基本性质。
教学过程:一、引入:不等关系是自然界中存在着的基本数学关系。
《列子?汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>a b 即可。
怎么证呢? 二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
人教版高数选修4-5第1讲:不等式的性质与绝对值不等式(教师版)
不等式的性质与绝对值不等式__________________________________________________________________________________ __________________________________________________________________________________教学重点: 掌握基本不等式的概念、性质;绝对值不等式及其解法;教学难点: 理解绝对值不等式的解法1.基本不等式 (1)基本不等式成立的条件:(2)等号成立的条件:当且仅当时取等号.2.几个重要的不等式).0(2);,(222>≥+∈≥+ab ba ab R b a ab b a ),(2)2();,()2(2222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数设则的算术平均数为, 几何平均数为, 基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数.4.利用基本不等式求最值问题已知,0,0>>y x 则(1)如果积是定值那么当且仅当时, 有最小值是(简记: 积定和最小).(2)如果和是定值, 那么当且仅当时, 有最大值是(简记: 和定积最大).5.若, 则 (当且仅当时取“=”)若, 则 (当且仅当时取“=”)若, 则 (当且仅当时取“=”)若, 则 (当且仅当时取“=”)若, 则 (当且仅当时取“=”)若, 则(当且仅当时取“=”)注意:(1)当两个正数的积为定植时, 可以求它们的和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值, 正所谓“积定和最小, 和定积最大”.(2)求最值的条件“一正, 二定, 三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用6.绝对值的意义: (其几何意义是数轴的点A (a )离开原点的距离)()()()⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a7、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)(1)定义法;(2)零点分段法: 通常适用于含有两个及两个以上的绝对值符号的不等式;(3)平方法: 通常适用于两端均为非负实数时(比如);(4)图象法或数形结合法;(5)不等式同解变形原理: 即()a x a a a x <<-⇔><0 ()a x a x a a x -<>⇔>>或0()c b ax c c c b ax <+<-⇔><+0 ()c b ax c b ax c c b ax -<+>+⇔>>+或0 ()()()()()x g x f x g x g x f <<-⇔< ()()()()()()x g x f x g x f x g x f <>⇔>或 ()()()()a x f b b x f a a b b x f a -<<-<<⇔>><<或0类型一: 基本不等式的性质例1.已知且则的最小值为( )A. 18B. 36C. 81D. 243解析:因为m>0, n>0, 所以m +n ≥2=2=18答案:A① 练习1.若则下列不等式对一切满足条件的恒成立的是________(写出所有正确命题的编号). ② 1≤ab ②2≤+b a ③222≥+b a ④322≥+b a ⑤.211≥+ba 答案: ①③⑤练习2.已知则的最小值是________.答案:4 例2: 求函数的最大值解析: 注意到与的和为定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的性质与绝对值不等式__________________________________________________________________________________ __________________________________________________________________________________教学重点:掌握基本不等式的概念、性质;绝对值不等式及其解法; 教学难点: 理解绝对值不等式的解法1、基本不等式2ba ab +≤(1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. 2、几个重要的不等式).0(2);,(222>≥+∈≥+ab baa b R b a ab b a),(2)2();,()2(2222R b a b a b a R b a b a ab ∈+≤+∈+≤3、算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2ba +,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4、利用基本不等式求最值问题已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小).(2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.42p (简记:和定积最大). 5、若0x >,则12x x+≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用6、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =)()()()⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a7、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法;(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即()a x a a a x <<-⇔><0 ()a x a x a a x -<>⇔>>或0()c b ax c c c b ax <+<-⇔><+0 ()c b ax c b ax c c b ax -<+>+⇔>>+或0 ()()()()()x g x f x g x g x f <<-⇔< ()()()()()()x g x f x g x f x g x f <>⇔>或 ()()()()a x f b b x f a a b b x f a -<<-<<⇔>><<或0类型一: 基本不等式的性质例1. 已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18B .36C .81D .243解析:因为m >0,n >0,所以m +n ≥2mn =281=18答案:A练习1. 若,2,0,0=+>>b a b a 则下列不等式对一切满足条件的b a ,恒成立的是________(写出所有正确命题的编号). ① 1≤ab ②2≤+b a ③222≥+b a ④322≥+b a⑤.211≥+ba 答案:①③⑤练习2. 已知,822,0,0=++>>xy y x y x 则y x 2+的最小值是________. 答案:4例2:求函数152152()22y x x x =--<<的最大值解析:注意到21x -与52x -的和为定值。
22(2152)42(21)(52)4(21)(52)8y x x x x x x =--=+--≤+-+-=又0y >,所以02y <≤当且仅当21x -=52x -,即32x =时取等号。
故max 22y = 答案:max 22y =练习3. 求下列函数的值域22132y x x=+ 答案:值域为[6 ,+∞)练习4. 求下列函数的值域1y x x=+答案:值域为(-∞,-2]∪[2,+∞) 类型二:绝对值不等式的性质及其解法 例3. 解不等式392+≤-x x解析:原等式等价于39)3(2+≤-≤+-x x x ⎩⎨⎧≤≤-≥-≤⇔4323x x x 或423≤≤-=⇔x x 或∴原不等式的解集是{}342-=≤≤x x x 或答案:原不等式的解集是{}342-=≤≤x x x 或 练习5. 解不等式32<-x答案:{}51<<-x x练习6. 解不等式532<+<-x 答案:{}|82x x -<<例4. 解不等式123x x ->-。
解析:原不等式⇔22(1)(23)x x ->-⇔22(23)(1)0x x ---<⇔(2x-3+x-1)(2x-3-x+1)<0⇔(3x-4)(x-2)<0 ⇔423x <<。
答案:423x << 练习7. 解不等式125x x -++< 答案:原不等式的解集为{}23<<-x x练习8. 解关于x 的不等式212+<-x x答案:原不等式的解集为)3,31(-1. 已知,0,0>>y x y b a x ,,,成等差数列y d c x ,,,成等比数列,则cdb a 2)(+的最小值是( )A .0B .1C .2D .4答案:D2. 若直线),0,0(02>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则ba 11+的最小值为( ) A.14 B. 2C.32+ 2 D.32+2 2 答案:C3. 若,0,0>>y x 且y x a y x +≤+恒成立,则a 的最小值是________24. 求2710(1)1x x y x x ++=>-+的值域 答案:[)9,+∞ 5. 解不等式22x xx x >++的值。
答案:原不等式等价于2xx +<0⇔()2020x x x +<⇔-<< 6.解不等式 x x 3232->-的值。
答案:原不等式等价于032<-x ,所以不等式解集为⎭⎬⎫⎩⎨⎧>32x x_________________________________________________________________________________ _________________________________________________________________________________基础巩固1. 若函数)2(21)(>-+=x x x x f 在a x =处取最小值,则=a ( ) A .1+ 2 B .1+ 3C .3D .4答案:C2. 已知,02,0,0,0=+->>>z y x z y x 则2y xz的( ) A .最小值为8 B .最大值为8C .最小值为18D .最大值为18答案:D3. 函数xx y 1+=的值域为____________________.答案:(][),22,-∞-⋃+∞4. 在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________.答案:45. 若,0,0>>y x 满足,53xy y x =+则y x 43+的最小值是( ) A.245 B.285C .5D .6答案:C6. 已知,0,0>>b a ,1222=+b a 则21b a +的最大值为________. 327. 下列不等式一定成立的是( ) A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(212R x x x ∈≥+ D.)(1112R x x ∈>+ 答案:C8. 设,0,0>>b a 且不等式011≥+++ba kb a 恒成立,则实数k 的最小值等于( ) A .0 B .4C .-4D .-2答案:C9. 已知M 是ABC ∆内的一点,且AB ·AC =23,,300=∠BAC 若MCA MBC ∆∆,和MAB ∆的面积分别为,,,21y x 则y x 41+的最小值是( )A .20B .18C .16D .19答案:B10. 已知,1log log 22≥+b a 则b a 93+的最小值为________ 答案:1811. 已知0,0x y >>,且191x y+=,求x y +的最小值答案:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y xx y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y +=12. 若a x x >+++12恒成立,求实数a 的取值范围。
答案:由几何意义可知,12+++x x 的最小值为1,所以实数a 的取值范围为()1,∞-13. 数轴上有三个点A 、B 、C ,坐标分别为-1,2,5,在数轴上找一点M ,使它到A 、B 、C 三点的距离之和最小。
答案:设M (),0x则它到A 、B 、C 三点的距离之和()521-+-++=x x x x f即()⎪⎪⎩⎪⎪⎨⎧-<+-<≤-+-<≤+≥-=1,6321,852,45,63x x x x x x x x x f由图象可得:当()62min ==x f x 时 14. 解关于x 的不等式10832<-+x x答案:原不等式等价于1083102<-+<-x x ,即⎩⎨⎧<-+->-+1083108322x x x x ⇒⎩⎨⎧<<--<->3621x x x 或 ∴ 原不等式的解集为)3,1()2,6(---15. 解关于x 的不等式2321>-x答案:原不等式等价于⎪⎩⎪⎨⎧<-≠-2132032x x ⇒⎪⎩⎪⎨⎧<<≠474523x x能力提升16.已知两条直线m y l =:1和),0(128:2>+=m m y l 1l 与函数x y 2log =的图象从左至右相交于点A 、B ,2l 与函数x y 2log =的图象从左至右相交于点C 、D ,记线段AC 和BD 在x 轴上的投影长度分别为.,b a 当m 变化时,ab的最小值为( ) A .16 2 B .8 2C .348D .344答案:B17.对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为 ( ) A .k<3 B.k<-3 C.k ≤3 D.k ≤-3答案:B 18.函数)1,0(1≠>=-a a a y x的图象过定点,A 若点A 在直线)0,(01>=-+n m ny mx 上,求nm 11+的最小值; 答案:419.若正数b a ,满足,3++=b a ab 求ab 的取值范围 答案:9ab ≥ 20. 解关于x 的不等式1212-<-m x )(R m ∈答案:⑴ 当012≤-m 时,即21≤m,因012≥-x ,故原不等式的解集是空集。