2017-2018学年浙江省杭州市拱墅区八年级(上)期末数学试卷
2017-2018学年度上学期期末考试八年级数学试卷1

浙教版2017-2018学年度上学期期末考试八年级数学试卷1(时间:120分钟 满分:120分 )一、用心选一选(每小题3分,共30分)1.下列图形中不一定是轴对称图形的是( )A.等腰三角形B.线段C.钝角D.直角三角形 2.下列命题是真命题的是( )A.若两个角相等,则它们是对顶角B.如果a b >,a c >,那么b c> C.两边和其中一边的对角对应相等的两个三角形全等 D.全等三角形的面积相等3.如图在△ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于点D ,若BCBD则点D 到AB 的 距离是()A.1B. 2C.D. 4.下列图象中,以方程240y x --=的解为坐标的点组成的图象是选项中的( ) +5.下列判断正确的是( )A. 35a a ->-B. a a ≥C.a a >- D. 2a a >6.等腰三角形一腰上的中线把这个三角形的周长分成1︰2两部分,已知这个三角形周长为36cm ,则个等腰三角形的底边为( )cm.A.4B.10C.20D.4或207.已知不等式:①2x -<-;②5x >;③2x <;④22x -<-,从这四个不等式中取两个,构成正整数解是3的不等式组是()A.①与②B.②与③C.③与④D.①与④ 8.在函数13y x =-中,自变量的取值范围是( ) A. 3x ≥- B. 3x ≥-且3x ≠ C. 3x ≥且3x ≠- D. 3x ≠-A. B. C. D.第3题图9. 将一次函数213y x =-+的图象,先向左平移3个单位长度,再向下5个单位长度,得到的函数解析式为( ) A. 26y x =-- B. 22y x =-- C. 27y x =-+ D. 23y x =-+ A.第一、二、三象限 B. 第二、三、四象限 C. 第一、三、四象限 D. 第一、二、四象限距离相等,则可选择的地址有 处. m解集为______.18.如图,在△ABC 中,FD 、EG 分别是AB 、AC 的垂直平分线,分别交BC 于点D 、E ,若BC =17cm,则△ADE 的周长是 .19.如图,△ABC ≌△ABE ≌△ADC ,若∠1︰∠2︰∠3=28︰5︰3,则∠α的度数是 .20. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4)点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m .当m =3时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为28时,m= .第17题图第18题图 第19题图三、专心答一答(共60分)21. (6分)请在下图方格中画出三个以AB 为腰的等腰三角形ABC .(要求:1、锐角三角形、直角三角形、钝角三角形各画一个;2、点C 在格点上;3、只需画出图形即可,不写画法;4、标上字母,每漏标一个扣1分.)23. (9分)先阅读理解下面的例题,再按要求解答: 例题:解一元二次不等式x 2-16>0. 解:∵x 2-16=(x +4)(x -4), ∴(x +4)(x -4)>0.由有理数的乘法法则“两数相乘,同号得正”,有 (1)4040x x +>⎧⎨->⎩或(2)4040x x +<⎧⎨-<⎩24. (9分)如图,在等腰△ABC 中,点D 是AB 上任一点,AE ⊥CD ,垂足为E ,CH ⊥AB ,垂足为H , 交A E 于点G .(1)若AG =CD ,求证:∠ACB =90°; (2)BD 与CG 相等吗?请说明理由.第22题图第24题图25.(10分)如图,l 1、l 2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是 2 000小时,照明效果一样.(1)根据图象分别求出l 1、l 2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)26.(8分)如图已知一块四边形草地ABCD ∠A=60°,∠B =∠D =90°,AB =28米,CD =16米,求这块草地的面积.第25题图 第27题图。
2017-2018学年浙江省杭州市拱墅区八年级(下)期末数学试卷(解析版)

21. (10 分)某校园艺社计划利用已有的一堵长为 10m 的墙,用篱笆围一个面积为 12m 的 矩形园子. (1)如图,设矩形园子的相邻两边长分别为 x(m) 、y(m) . ①求 y 关于 x 的函数表达式; ②当 y≥4m 时,求 x 的取值范围; (2)小凯说篱笆的长可以为 9.5m,洋洋说篱笆的长可以为 10.5m.你认为他们俩的说法对 吗?为什么?
第 2 页(共 19 页)
两地的距离为
米.
14. (4 分)请构造一个一元二次方程,使它能满足下列条件:①二次项系数不为 1;②有 一个根为﹣2.则你构造的一元二次方程是 .
15. (4 分)某气球内充满一定质量的气体,温度不变时,气球内气体的压强 P(kPa)与气 体的体积 V (m ) 成反比例. 当气体的体积 V=0.8m 时, 气球内气体的压强 P=125kPa. 当 气球内气体的压强大于 150kPa 时,气球就会爆炸.则气球内气体的体积应满足 V m ,气球才不会爆炸. 16. (4 分)如图,在菱形纸片 ABCD 中,AB=4,∠A=60°,将菱形纸片翻折,使点 A 落 在 CD 边的中点 E 处,折痕为 FG,点 F、G 分别在边 AB、AD 上,则 GE= = . ,EF
2
) C.4x +5=4
2
B.2x ﹣3x+1=0
2
x
D.2x =
2
x﹣1
【解答】解:A、∵a=﹣1,b=﹣3,c=1, ∴△=b ﹣4ac=(﹣3) ﹣4×(﹣1)×1=13>0, 所以原方程有两个不相等的实数根. 故 A 选项错误; B、∵a=2,b=﹣3,c=1, ∴△=b ﹣4ac=(﹣3) ﹣4×2×1=1>0, 所以原方程有两个不相等的实数根. 故 B 选项错误; C、∵a=4,b=﹣4 ∴△=b ﹣4ac=(﹣4
拱墅区初二期末数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √2B. 3C. 0.333...D. -π2. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的解是()A. x1 = 2, x2 = 3B. x1 = 3, x2 = 2C. x1 = -2, x2 = -3D. x1 = -3, x2 = -23. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是()A. 16cmB. 18cmC. 22cmD. 24cm4. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = 2xC. f(x) = |x|D. f(x) = x^35. 已知等差数列{an}的前n项和为Sn,若a1 = 2,公差d = 3,则S10 =()A. 170C. 190D. 2006. 在直角坐标系中,点A(2,3),点B(-3,4)关于直线y = x对称的点分别是()A. A'(3,2),B'(4,-3)B. A'(-3,4),B'(2,3)C. A'(-3,2),B'(4,-3)D. A'(3,-2),B'(2,4)7. 若sinα = 1/2,且α是第二象限的角,则cosα的值是()A. -√3/2B. √3/2C. 1/2D. -1/28. 已知函数f(x) = -x^2 + 4x - 3,则函数f(x)的对称轴方程是()A. x = -1B. x = 1C. x = 2D. x = 39. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,c = 8,则角C的度数是()A. 30°B. 45°C. 60°10. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 等腰三角形的底角相等C. 对顶角相等D. 相邻角互补二、填空题(每题5分,共50分)11. 若sinθ = 3/5,且θ是第二象限的角,则cosθ的值为______。
2017-2018学年浙教版八年级上数学期末综合练习数学试卷附答案

八年级数学期末综合练习试题卷(八年级数学上册,本卷满分120分)一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.已知a =3cm ,b =6cm ,则下列长度的线段中,能与a ,b 组成三角形的是(▲)A .2cmB .6cmC .9cmD .11cm 2.在平面直角坐标系中,点M (a 2+1,-3)所在的象限是(▲)A .第一象限B .第二象限C .第三象限D .第四象限3.正比例函数y =(k -2)x 中,y 随x 的增大而减小,则k 的取值范围是(▲)A .k ≥2B .k ≤2C .k >2D .k <24.不等式1-x >0的解在数轴上表示正确的是(▲)AB C D5.下列判断正确的是(▲)A .两边和一角对应相等的两个三角形全等B .一边及一锐角相等的两个直角三角形全等C .顶角和底边分别相等的两个等腰三角形全等D .三个内角对应相等的两个三角形全等6.已知a >b ,则下列四个不等式中,不正确的是(▲)A .a -3>b -3B .-a +2>-b +2C .1a >51bD .1+4a >1+4b517.已知(-1,y 1),(1.8,y 2),(-,y 3)是直线y =-3x +m (m 为常数)上的三个点,则y 1,y 2,2y 3的大小关系是(▲)A .y 3>y 1>y 2B .y 1>y 3>y 2C .y 1>y 2>y 3D .y 3>y 2>y 18.如图,给出下列四个条件,AB =DE ,BC =EF ,∠B =∠E ,∠C =∠F ,从中任选三个条件能使△ABC ≌△DEF 的共有(▲)A .4组B .3组C .2组D .1组9.如图,直线y =3x +6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C′恰好落在直线AB 上,则点C 的坐标为(▲)八年级数学试题卷(第1页,共4页)A.(3,3)B.(4,3)C.(-1,3)D.(3,4)第9题图第10题图10.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R。
2017-2018学年浙教版八年级上学期期末复习试卷及参考答案

2017-2018学年浙教版八年级上学期期末复习试卷一、单选题1. 若三角形两条边的长度分别是3cm和7cm,则第三条边的长度可能是()A . 3cmB . 4cmC . 5cmD . 10cm2. 不等式2x﹣2<0的解集是()A . x<1B . x<﹣1C . x>1D . x>﹣13. 点A(﹣1,2)与A′关于x轴对称,则点A′的坐标是()A . (1,2)B . (1,﹣2)C . (﹣1,﹣2)D . (﹣1,2)4. 可以用来说明命题“若m<n,则 ”是假命题的反例是()A . m=2,n=﹣3B . m=﹣2,n=3C . m=﹣2,n=﹣3D . m=2,n=35. 等腰三角形的一个外角等于130°,则这个等腰三角形的底角为( )A . 65°B . 50°C . 65°或40°D . 50°或65°6. 一次函数y=x﹣2的图象大致是()A .B .C .D .7. 在Rt△ABC中,∠C=90°,当△ABC沿折痕BE翻折时,点C恰好落在AB的中点D上,若BE=4,则AC的长是()A . 4B . 6C . 8D . 108. 如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是( )A . (4,8)B . (5,8)C . (,)D . (,)9. 在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为A .B .C .D .10. 如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()B .C . 1D . 3是斜边长为△ACD的斜边AD为直角边,画第三个等腰A . cmB .C . cmD . cm12. 如图,在等边△ABC AB=10BD=4A . 8B . 10C .D .y= 中,自变量用不等式表示则∠ABE+∠ACE=________16. 如图所示的一块地,∠17. 如图,函数y=2x选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对________题.19. 如图,点E 在边长为4的正方形ABCD 的边AD 上,点A 关于BE 的对称点为A′,延长EA′交DC 于点F ,若CF=1cm ,则AE=________m .三、解答题20. 利用数轴,解一元一次不等式组:.21. 如图,已知在△ABC 中,△ABC 的外角∠ABD 的平分线与∠ACB 的平分线交于点O ,MN 过点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .求证:MN=CN ﹣BM .22. 如图,已知四边形ABCD 中,AC 平分∠BAD ,AB=AC=5,AD=3,BC=CD .求点C 到AB 的距离.四、综合题23. 如图所示,△ABC 的顶点分别为A (-4, 5),B (﹣3, 2),C (4,-1).(1) 作出△ABC 关于x 轴对称的图形△A B C ;(2) 写出A 、B 、C 的坐标;(3) 若AC=10,求△ABC 的AC 边上的高.24. 某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:原料维生素C 及价格甲种原料乙种原料111111维生素C(单位/千克)600400原料价格(元/千克)95现要配制这种营养食品20千克,要求每千克至少含有9600单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?最少费用是多少?25. 在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0),点P是直线AB 上的一个动点,记点P关于y轴对称的点为P′.(1)当b=3时(如图1),①求直线AB的函数表达式.(2)②在x轴上找一点Q(点O除外),使△APQ与△AOB全等,直接写出点Q的所有坐标(3)若点P在第一象限(如图2),设点P的横坐标为a,作PC⊥x轴于点C,连结AP′,CP′.当△ACP′是以点P′为直角顶点的等腰直角三角形时,求出a,b的值.(4)当线段OP′恰好被直线AB垂直平分时(如图3),直接写出b=.五、作图题26. 已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.。
2017-2018第一学期浙教版八年级数学期末试卷

………○……:___________班级:__…○…………线………绝密★启用前 2017-2018第一学期浙教版八年级数学期末试卷 张,要平心静气,不要急于下结论;下笔时,要把字写得规矩些,让自己和老师都看得舒服些,祝你成功!一、单选题(计36分) 1.(本题3分)点P ()3,1m m +-在x 轴上,则m 的值为( ) A. 1 B. 2 C. -1 D. 0 2.(本题3分)在△ABC 中,AB=AC ,BD 为△ABC 的高,如果∠BAC=40°,则∠CBD 的度数是( ) A. 70° B. 40° C. 20° D. 30° 3.(本题3分)在下列条件中①∠A +∠B =∠C ②∠A ﹕∠B ﹕∠C =1﹕2﹕3 ③∠A =21∠B =13∠C ④∠A =∠B =2∠C ⑤∠A =∠B =12∠C 中,能确定△ABC 为直角三角形的条件有( ) A .5个 B .4个 C .3个 D .2个 4.(本题3分)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么 A .0k >,0b > B .0k <,0b < C .0k >,0b < D .0k <,0b > 5.(本题3分)把点A (-2,1)向右平移3个单位长度,再向上平移2个单位长度后得到点B ,点B 的坐标是( ) A .(1,3) B .(-5,3) C .(1,-3)D .(-5,-1) 6.(本题3分)如图,∠BAD =∠BCD =90°,AB =CB ,据此可以证明△BAD ≌△BCD ,证明的依据是 ( )………外………………○…………○……A. AASB. ASAC. SASD. HL7.(本题3分)已知关于x的不等式组()324213x xa xx--≤⎧⎪⎨+>-⎪⎩的解集是13x≤<,则a=( )A.1B.2C.0D.-18.(本题3分)如图,画△ABC中AB边上的高,下列画法中正确的是()9.(本题3分)一直角三角形的两边长分别为3和4,则第三条边的长为()A.5 B.5 C.7 D.5或710.(本题3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是()A.(63,32) B.(64,32) C.(63,31) D.(64,31)11.(本题3分)如图,点A、B的坐标分别为(-5,6)、(3,2)则三角形ABO的面积为()A. 12B. 14C. 16D. 1812.(本题3分)如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于(3,-2),则“炮”位于点()………○………学校:______…装…………○………二、填空题(计27分) 13.(本题3分)已知P 1(a ,-1)和P 2(2,b )关于原点对称,则(a+b )2016=. 14.(本题3分)已知△ABC 为等腰三角形,其面积为30,一边长为10,则另两边长是. 15.(本题3分)如图中的螺旋由一系列直角三角形组成,则第n 个三角形的面积为. 16.(本题3分)如图,△ABC 绕点A 旋转后与△ADE 完全重合,则△ABC ≌△_______,那么两个三角形的对应边为__ ___,__ ___,___ __,对应角为____ __,___ ___,___ ____. 17.(本题3分)直线y =2x +2沿y 轴向下移动6个单位长度后,与x 轴的交点坐标为_______ 18.(本题3分)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,线段AC 的垂直平分线DE 交AC 于D 交BC 于E ,则△ABE 的周长为. 19.(本题3分)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是。
【精品】2016-2017学年浙江省杭州市拱墅区八年级(上)期末数学试卷
2016-2017学年浙江省杭州市拱墅区八年级(上)期末数学试卷一、仔细选一选1.在平面直角坐标系中,已知点P(﹣2,3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.不等式2x﹣1<3的解集在数轴上表示为()A.B.C.D.3.在Rt△ABC中,∠C=90°,∠A﹣∠B=70°,则∠A的度数为()A.80°B.70°C.60°D.50°4.下列各点中,在直线y=2x﹣3上的是()A.(0,3)B.(1,1)C.(2,1)D.(﹣1,5)5.如图,在△ABM和△CDN中,A,C,B,D在同一条直线上,MB=ND,MA=NC,则下列条件中能判定△ABM≌△CDN的是()A.∠MAB=∠NCD B.∠MBA=∠NDC C.AC=BD D.AM∥CN 6.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,OC长为半径画弧交数轴于点M,则点M对应的实数为()A.B.4C.5D.2.57.关于x的不等式组的解集为x<3,那么a的取值范围为()A.a>3B.a≥3C.a<3D.a≤38.如图,在△ABC中,AB=AC,AD平分∠BAC,交BC于点D,DE⊥AB于点E,DF⊥AC于点F,对于下列结论:①AD⊥BC;②AE=AF;③AD上任意一点到AB,AC的距离相等;④AD上任意一点到点B,点C的距离相等.其中正确结论的个数是()A.1B.2C.3D.49.如图,直线y=x+4与x轴,y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,则PC+PD的最小值为()A.2+B.5C.2D.610.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.二、认真填一填11.命题“同旁内角互补,两直线平行”的逆命题是,该逆命题是一个命题(填“真”或假”).12.“5与m的2倍的和是正数”可以用不等式表示为.13.若x<y,且(a﹣3)x>(a﹣3)y,则a的取值范围是.14.若点M(k﹣1,k+1)在第三象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.15.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=43°,则∠P的度数为度.16.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2的坐标是,点A2017的坐标是.三、全面答一答17.如图,在△AFD和△CEB中,点A、E、F、C在同一条直线上,有下列四个判断:①AD=CB;②AE=CF;③∠B=∠D;④∠A=∠C.请以其中三个为已知条件,剩下一个作为结论,编一道数学题(用序号?????的形式写出),并写出证明过程.18.已知长度分别为2,4,x的三条线段可以组成一个三角形,且x为正整数.(1)用记号(2,4,x)表示一个符合条件的三角形,试求出所有符合条件的三角形;(2)用直尺和圆规作出符合上述条件的等腰三角形(用给定的单位长度,不写作法,保留作图痕迹).19.解下列一元一次不等式(组):(1)4x+1≤8﹣3x,并把解在数轴上表示出来.(2).20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)作出将△ABC先向左平移4个单位,再向上平移1个单位后的图形△A1B1C1,并写出△A1B1C1三个顶点的坐标;(2)作出△ABC关于x轴对称的图形△A2B2C2;(3)求△ABC的面积,并求出AC边上高的长.21.甲仓库有水泥110吨,乙仓库有水泥70吨,现要将这些水泥全部运往A,B 两工地,调运任务承包给某运输公司.已知A工地需水泥100吨,B工地需水泥80吨,从甲仓库运往A,B两工地的路程和每吨每千米的运费如表:路程(千米)运费(元/吨.千米)甲仓库乙仓库甲仓库乙仓库A地252010.8B地2015 1.2 1.2(1)设甲仓库运往A地水泥x吨,则甲仓库运往B地水泥吨,乙仓库运往A地水泥吨,乙仓库运往B地水泥吨(用含x的代数式表示);(2)求总运费W关于x的函数关系式,并求出自变量的取值范围;(3)当甲、乙两仓库各运往A,B两工地多少吨水泥时,总运费最省?最省的总运费是多少?22.如图,在△ABC中,∠BAC=90°,AB=3 cm,BC=5 cm,点D在线段AC上,且CD=1 cm,动点P从BA的延长线上距A点5 cm的E点出发,以每秒 2 cm 的速度沿射线EA的方向运动了t秒.(1)直接用含有t的代数式表示PE=;(2)在运动过程中,是否存在某个时刻,使△ABC与以A、D、P为顶点的三角形全等?若存在,请求出t的值;若不存在,请说明理由.(3)求△CPB的面积S关于t的函数表达式,并画出图象.23.如图,在平面直角坐标系中,过点A的两条直线分别交y轴于B(0,3)、C (0,﹣1)两点,且∠ABC=30°,AC⊥AB于A.(1)求线段AO的长,及直线AC的解析式;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2016-2017学年浙江省杭州市拱墅区八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选1.在平面直角坐标系中,已知点P(﹣2,3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(﹣2,3)位于第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.不等式2x﹣1<3的解集在数轴上表示为()A.B.C.D.【分析】根据不等式解集的表示方法,可得答案.【解答】解:由题意,得x<2,故选:D.【点评】本条查了不等式的解集,每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.在Rt△ABC中,∠C=90°,∠A﹣∠B=70°,则∠A的度数为()A.80°B.70°C.60°D.50°【分析】根据直角三角形两锐角互余可得∠A+∠B=90°,然后与∠A﹣∠B=70°联合求解即可.【解答】解:∵∠C=90°,∴∠A+∠B=90°,又∠A﹣∠B=70°,∴∠A=(90°+70°)=80°.故选:A.【点评】本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余.4.下列各点中,在直线y=2x﹣3上的是()A.(0,3)B.(1,1)C.(2,1)D.(﹣1,5)【分析】分别把各点代入一次函数的解析式进行检验即可.【解答】解:A、当x=0时,y=﹣3≠3,故不合题意;B、当x=1时,y=2﹣3=﹣1≠1,故不合题意;C、当x=2时,y=4﹣3=1,故符合题意;D、当x=﹣1时,y=﹣2﹣3=﹣5≠3,故不合题意.故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.如图,在△ABM和△CDN中,A,C,B,D在同一条直线上,MB=ND,MA=NC,则下列条件中能判定△ABM≌△CDN的是()A.∠MAB=∠NCD B.∠MBA=∠NDC C.AC=BD D.AM∥CN【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、MB=ND,MA=NC和∠MAB=∠NCD,不能判定△ABM≌△CDN,故A选项不符合题意;B、MB=ND,MA=NC和∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项不符合题意;C、由AC=BD可得AB=CD,利用SSS能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,结合MB=ND,MA=NC不能判定△ABM≌△CDN,故D选项不符合题意.故选:C.【点评】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.6.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,OC长为半径画弧交数轴于点M,则点M对应的实数为()A.B.4C.5D.2.5【分析】先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出OC=,然后利用画法可得到OM=OC=,于是可确定点M对应的数.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.故选:A.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.也考查了等腰三角形的性质.7.关于x的不等式组的解集为x<3,那么a的取值范围为()A.a>3B.a≥3C.a<3D.a≤3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【解答】解:解①得x<3,而不等式组的解集为x<3,所以a≥3.故选:B.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8.如图,在△ABC中,AB=AC,AD平分∠BAC,交BC于点D,DE⊥AB于点E,DF⊥AC于点F,对于下列结论:①AD⊥BC;②AE=AF;③AD上任意一点到AB,AC的距离相等;④AD上任意一点到点B,点C的距离相等.其中正确结论的个数是()A.1B.2C.3D.4【分析】首先根据角平分线的性质可得AD上任意一点到AB,AC的距离相等,根据等腰三角形的性质得到AD⊥BC,根据全等三角形的性质得到AE=AF,根据线段垂直平分线的性质得到AD上任意一点到点B,点C的距离相等.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,AD上任意一点到AB,AC的距离相等,故①③正确;∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△ADE与Rt△AFD中,∴Rt△ADE≌Rt△AFD,∴AE=AF;故②正确;∵AB=AC,AD平分∠BAC,∴AD垂直平分BD,∴AD上任意一点到点B,点C的距离相等,故④正确;故选:D.【点评】此题主要考查角平分线的性质和直角三角形全等的判定,根据角平分线的性质求得DE=DF,是关键的一步.9.如图,直线y=x+4与x轴,y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,则PC+PD的最小值为()第11页(共26页)A .2+B .5C .2D .6【分析】作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC +PD 值最小,根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D ′的坐标,利用勾股定理即可求出PC +PD的最小值.【解答】解:作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC +PD 值最小,如图.令y=x+4中x=0,则y=4,∴点B 的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴点C (﹣3,2),点D (0,2).∵点D ′和点D 关于x 轴对称,∴点D ′的坐标为(0,﹣2),∴PC +PD 的最小值==5,故选:B.。
2017-2018学年浙教版八年级数学上专题测试及期末复习试卷(附答案)
小专题(一) 构造全等三角形的方法技巧类型1 连结线段构造全等三角形【例1】 如图,已知AB =AD ,BC =CD ,求证:∠B =∠D.证明:连结AC ,在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS ). ∴∠B =∠D.【方法归纳】 通过连结两点,构造出三角形,再证明两个三角形全等,然后利用全等三角形的性质说明角相等或边相等.1.如图,已知AB ∥CD ,AD ∥BC ,求证:∠A =∠C.证明:连结BD , ∵AB ∥CD , ∴∠ABD =∠CDB. ∵AD ∥BC , ∴∠ADB =∠CBD. 又∵BD =DB ,∴△ABD ≌△CDB(ASA ).∴∠A =∠C.2.如图,在△ABC 中,AB =AC ,点M 为BC 中点,MD ⊥AB 于点D ,ME ⊥AC 于点E.求证:MD =ME.证明:连结AM.在△ABM 和△ACM 中,⎩⎨⎧AB =AC ,AM =AM ,BM =CM ,∴△ABM ≌△ACM(SSS ). ∴∠BAM =∠CAM.∵MD ⊥AB ,ME ⊥AC ,∴MD =ME.类型2 利用“截长补短”构造全等三角形【例2】 如图,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB.求证:CD =AD +BC.证明:在CD 上截取DF =DA ,连结FE.在△ADE 和△FDE 中,⎩⎨⎧AD =FD ,∠ADE =∠FDE ,DE =DE ,∴△ADE ≌△FDE. ∴∠A =∠DFE.又∵AD ∥BC ,∴∠A +∠B =180°. ∵∠DFE +∠EFC =180°. ∴∠B =∠EFC.在△EFC 和△EBC 中,⎩⎨⎧∠EFC =∠B ,∠ECF =∠ECB ,EC =EC ,∴△EFC ≌△EBC. ∴FC =BC.∴CD =DF +FC =AD +BC.【方法归纳】 遇到证明线段的和差倍分问题时,通常利用截长法或补短法,具体的作法是在某条线段上截取一条线段与特定线段相等,或者延长某条线段,使之与特定线段相等,再利用三角形全等的有关性质解决.3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,BD ,CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并加以证明.解:BC =BE +CD.证明:在BC 上截取BF =BE ,连结OF. ∵BD 平分∠ABC , ∴∠EBO =∠FBO. 又∵BO =BO , ∴△EBO ≌△FBO.∴∠EOB =∠FOB.∵∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,∴∠BOC =180°-∠OBC -∠OCB =180°-12∠ABC -12∠ACB =180°-12(180°-∠A)=120°.∴∠EOB =∠DOC =60°.∴∠BOF =60°,∠FOC =∠DOC =60°. ∵CE 平分∠DCB ,∴∠DCO =∠FCO.又∵CO =CO ,∴△DCO ≌△FCO.∴CD =CF.∴BC =BF +CF =BE +CD.4.(德州中考)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.点E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG.先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是EF =BE +DF ;(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.解:EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连结AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG.在△ABE 和△ADG 中,⎩⎨⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ). ∴AE =AG ,∠BAE =∠DAG . ∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF. ∴∠EAF =∠GAF.在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG .∵FG =DG +DF =BE +DF ,∴EF =BE +DF.类型3 利用“中线倍长”构造全等三角形【例3】 如图,在△ABC 中,AD 是BC 边上的中线,AC>AB ,求证:AB +AC>2AD>AC -AB.证明:延长AD 至E ,使AD =DE ,并连结CE , ∵D 是BC 上的中点,∴CD =BD.又∵AD =DE ,∠ADB =∠CDE , ∴△ADB ≌△EDC(SAS ). ∴AB =CE.∵AC +CE>2AD>AC -CE ,∴AB +AC>2AD>AC -AB.【方法归纳】 当题目中出现中线时,常常延长中线,使所延长部分与中线的长度相等,然后连结相应的端点,便可以得到全等三角形.5.已知:如图,AD ,AE 分别是△ABC 和△ABD 的中线,且BA =BD.求证:AE =12AC.证明:延长AE 至F ,使EF =AE ,连结DF. ∵AE 是△ABD 的中线, ∴BE =DE.又∵∠AEB =∠FED ,∴△ABE ≌△FDE.∴∠B =∠BDF ,AB =DF. ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF.∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC.∵AD 是△ABC 的中线, ∴BD =CD. ∴DF =CD. 又∵AD =AD ,∴△ADF ≌△ADC(SAS ). ∴AC =AF =2AE ,即AE =12AC.6.如图,AB =AE ,AB ⊥AE ,AD =AC ,AD ⊥AC ,点M 为BC 的中点,求证:DE =2AM.证明:延长AM至点N,使MN=AM,连结BN,∵M为BC中点,∴BM=CM.又∵AM=MN,∠AMC=∠NMB,∴△AMC≌△NMB(SAS).∴AC=BN,∠C=∠NBM.∴∠ABN=∠ABC+∠NBM=∠ABC+∠C=180°-∠BAC=∠EAD. ∵AD=AC,AC=BN,∴AD=BN.又∵AB=AE,∴△ABN≌△EAD(SAS).∴DE=NA.又∵AM=MN,∴DE=2AM.小专题(二) 等腰三角形中的分类讨论类型1 对顶角和底角的分类讨论对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°; ②若已知的这个角为底角,则一腰上的高与底边的夹角为38°. 故所求的一腰上的高与底边的夹角为26°或38°.类型2 对腰长和底长的分类讨论在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边. 2.(1)已知等腰三角形的一边长等于6 cm ,一边长等于7 cm ,求它的周长;(2)等腰三角形的一边长等于8 cm ,周长等于30 cm ,求其他两边的长. 解:(1)周长为19 cm 或20 cm .(2)其他两边的长为8 cm ,14 cm 或11 cm ,11 cm .3.若等腰三角形一腰上的中线分周长为9 cm 和12 cm 两部分,求这个等腰三角形的底和腰的长.解:如图,由于条件中中线分周长的两部分,并没有指明哪一部分是9 cm 、哪一部分是12 cm ,因此,应有两种情形.设这个等腰三角形的腰长为x cm ,底边长为y cm ,根据题意,得⎩⎨⎧x +12x =9,12x +y =12或⎩⎨⎧x +12x =12,12x +y =9.解得⎩⎨⎧x =6,y =9,或⎩⎪⎨⎪⎧x =8,y =5.故腰长是6 cm ,底边长是9 cm 或腰长是8 cm ,底边长是5 cm .类型3 几何图形之间的位置关系不明确的分类讨论4.已知C 、D 两点在线段AB 的中垂线上,且∠ACB =50°,∠ADB =80°,求∠CAD 的度数.解:①如图1,当C 、D 两点在线段AB 的同侧时, ∵C 、D 两点在线段AB 的垂直平分线上,∴CA =CB.∴△CAB 是等腰三角形. 又∵CE ⊥AB ,∴CE 是∠ACB 的平分线.∴∠ACE =∠BCE. ∵∠ACB =50°,∴∠ACE =25°. 同理可得∠ADE =40°,∴∠CAD =∠ADE -∠ACE =40°-25°=15°;图1 图2②如图2,当C 、D 两点在线段AB 的两侧时,同①的方法可得∠ACE =25°,∠ADE =40°,∴∠CAD =180°-(∠ADE +∠ACE)=180°-(40°+25°)=180°-65°=115°. 故∠CAD 的度数为15°或115°.类型4 运动过程中等腰三角形中的分类讨论5.(下城区校级期中)在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =6 cm ,在射线BC 上一动点D ,从点B 出发,以2厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为258或5或8秒. 解析:①当AD =BD 时,在Rt △ACD 中,根据勾股定理,得AD 2=AC 2+CD 2,即BD 2=(8-BD)2+62, 解得BD =254cm .则t =2542=258(秒);②当AB =BD 时,在Rt △ABC 中,根据勾股定理,得 AB =AC 2+BC 2=62+82=10(cm ), 则t =102=5(秒);③当AD =AB 时,BD =2BC =16 cm ,则t =162=8(秒).综上所述,t 的值可以是:258,5,8.6.(杭州期中)如图,已知△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动,且速度为每秒1 cm ,点Q 从点B 开始沿B →C 方向运动,且速度为每秒2 cm ,它们同时出发,设出发的时间为t 秒.(1)当t =2秒时,求PQ 的长;(2)求出发时间为几秒时,△PQB 是等腰三角形?(3)若Q 沿B →C →A 方向运动,则当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间.解:(1)BQ =2×2=4(cm ),BP =AB -AP =8-2×1=6(cm ), ∵∠B =90°,∴PQ =BQ 2+BP 2=42+62=213(cm ). (2)根据题意,得BQ =BP , 即2t =8-t , 解得t =83.∴出发时间为83秒时,△PQB 是等腰三角形.(3)分三种情况:①当CQ =BQ 时,如图1所示, 则∠C =∠CBQ , ∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°. ∴∠A =∠ABQ. ∴BQ =AQ.∴CQ =AQ =5 cm . ∴BC +CQ =11 cm . ∴t =11÷2=5.5(秒).②当CQ =BC 时,如图2所示, 则BC +CQ =12 cm . ∴t =12÷2=6(秒).③当BC =BQ 时,如图3所示, 过B 点作BE ⊥AC 于点E , 则BE =AB·BC AC =6×810=4.8(cm ).∴CE =BC 2-BE 2=3.6 cm .∴CQ =2CE =7.2 cm . ∴BC +CQ =13.2 cm . ∴t =13.2÷2=6.6(秒).由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.小专题(三) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题1.如图所示,有一张直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为(A )A .1 cmB .1.5 cmC .2 cmD .3 cm第1题图 第2题图2.如图,长方形ABCD 的边AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,已知AB =6,△ABF 的面积是24,则FC 等于(B )A .1B .2C .3D .43.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为(D )A .252cmB .152cm C .254cmD .154cm第3题图 第4题图4.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C′处,BC ′交AD 于点E ,则线段DE 的长为(B )A .3B .154C .5D .1525.(上城区期末)在矩形纸片ABCD 中,AB =3,AD =5,如图所示,折叠纸片,使点A 落在BC 边上的A′处,折痕为PQ ,当点A′在BC 边上移动时,折痕的端点P 、Q 也随之移动,若限定点P 、Q 分别在线段AB 、AD 边上移动,则点A′在BC 边上可移动的最大距离为(B )A .1B .2C .3D .4解析:如图1,当点D 与点Q 重合时,根据翻折对称性可得 A′D =AD =5.在Rt △A ′CD 中,A ′D 2=A′C 2+CD 2, 即52=(5-A′B)2+32,解得A′B =1.如图2,当点P 与点B 重合时,根据翻折对称性可得A′B =AB =3. ∵3-1=2,∴点A′在BC 边上可移动的最大距离为2. 故选B .6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为7.第6题图 第7题图7.如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,AC =8 cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C′点,那么△ADC′的面积是6_cm 2.8.如图,长方形ABCD 中,CD =6,BC =8,E 为CD 边上一点,将长方形沿直线BE 折叠,使点C 落在线段BD 上C′处,求DE 的长.解:∵在长方形ABCD 中,∠C =90°,DC =6,BC =8, ∴BD =62+82=10.由折叠可得BC ′=BC =8,EC ′=EC ,∠BC ′E =∠C =90°, ∴C ′D =2,∠DC ′E =90°. 设DE =x ,则C ′E =CE =6-x . 在Rt △C ′DE 中,x 2=(6-x )2+22, 解得x =103.∴DE 的长为103.类型2 利用勾股定理解决立体图形的最短路径问题9.如图是一个封闭的正方体纸盒,E 是CD 中点,F 是CE 中点,一只蚂蚁从一个顶点A 爬到另一个顶点G ,那么这只蚂蚁爬行的最短路线是(C )A .A ⇒B ⇒C ⇒G B .A ⇒C ⇒G C .A ⇒E ⇒GD .A ⇒F ⇒G10.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m .(精确到0.01 m )第10题图第11题图11.(凉山中考)如图,圆柱形玻璃杯,高为18 cm,底面周长为24 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为20cm.12.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?解:把长方体的面DCC′D′沿棱CD展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连结AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC,即O为DC的中点.由勾股定理得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O(或A′B′中点O′),再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.13.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.解:(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97;蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89. ∵l1>l2,∴最短路径的长是89.小专题(四) 全等三角形的基本模型类型1 平移型把△ABC 沿着某一条直线l 平行移动,所得到△DEF 与△ABC 称为平移型全等三角形.图1,图2是常见的平移型全等三角形.在证明平移型全等的试题中,常常要碰到移动方向的边加(减)公共边.如图1,若BE =CF ,则BE +EC =CF +CE ,即BC =EF.如图2,若BE =CF ,则BE -CE =CF -CE ,即BC =EF.1.如图,已知EF ∥MN ,EG ∥HN ,且FH =MG ,求证:△EFG ≌NMH.证明:∵EF ∥MN ,EG ∥HN , ∴∠F =∠M ,∠EGF =∠NHM. ∵FH =MG ,∴FH +HG =MG +HG , 即GF =HM.在△EFG 和△NMH 中,⎩⎨⎧∠F =∠M ,GF =HM ,∠EGF =∠NHM ,∴△EFG ≌△NMH(ASA ).2.(金华六校10月联考)如图,A 、B 、C 、D 四点在同一直线上,请你从下面四项中选出三个选项作为条件,余下一个作为结论,构成一个真命题,并进行证明.①AB =CD ;②∠ACE =∠D ;③∠EAG =∠FBG ;④AE =BF. 你选择的条件是:①②③,结论是:④.(填写序号)证明:∵∠EAG =∠FBG , ∴∠EAD =∠FBD. ∵AB =CD ,∴AB +BC =BC +CD , 即AC =BD.在△ACE 和△BDF 中,⎩⎨⎧∠ACE =∠D ,AC =BD ,∠EAD =∠FBD ,∴△ACE ≌△BDF(ASA).类型2翻折型将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件,即公共边或公共角相等.3.(下城区校级期中)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.(1)不添加辅助线,找出图中其他的全等三角形;(2)求证:CF=EF.解:(1)图中其他的全等三角形为:△ACD≌△AEB,△DCF≌△BEF.(2)证明:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD.∴∠CAB-∠DAB=∠EAD-∠DAB,即∠CAD=∠EAB.∴△CAD≌△EAB.∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.类型3旋转型将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图1,涉及对顶角相等;如图2,涉及等角加(减)等角的条件.4.已知:如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.证明:∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE.5.如图,△ABC ,△CDE 是等边三角形,B ,C ,E 三点在同一直线上.(1)求证:AE =BD ;(2)若BD 和AC 交于点M ,AE 和CD 交于点N ,求证:CM =CN ; (3)连结MN ,猜想MN 与BE 的位置关系,并加以证明. 解:(1)证明:∵△ABC 和△DCE 均为等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠DCE =60°. ∴∠BCD =∠ACE =120°.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD(SAS ). ∴AE =BD.(2)证明:∵△ACE ≌△BCD ,∴∠CBD =∠CAE.∵∠ACN =180°-∠ACB -∠DCE =60°, ∴∠BCM =∠ACN.在△BCM 和△ACN 中,⎩⎨⎧∠CBM =∠CAN ,CB =CA ,∠BCM =∠ACN ,∴△BCM ≌△ACN(ASA ). ∴CM =CN.(3)MN ∥BE.证明:∵CM =CN ,∠MCN =60°, ∴△MCN 为等边三角形. ∴∠CMN =60°. ∴∠CMN =∠ACB. ∴MN ∥BE.类型4 双垂型基本图形如图:此类图形通常告诉BD ⊥DE ,AB ⊥AC ,CE ⊥DE ,那么一定有∠B =∠CAE. 6.如图,AD ⊥AB 于点A ,BE ⊥AB 于点B ,点C 在AB 上,且CD ⊥CE ,CD =CE.求证:AD =CB.证明:∵AD ⊥AB ,BE ⊥AB , ∴∠A =∠B =90°. ∴∠D +∠ACD =90°. ∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°. ∴∠D =∠BCE .在△ACD 和△BEC 中,⎩⎨⎧∠A =∠B ,∠D =∠BCE ,CD =CE ,∴△ACD ≌△BEC (AAS). ∴AD =CB . 7.如图,△ABC 为等腰直角三角形,∠ACB =90°,直线l 经过点A 且绕点A 在△ABC 所在平面内转动,作BD ⊥l ,CE ⊥l ,D 、E 为垂足.求证:DA +DB =2DE.证明:在l 上截取FA =DB ,连结CD 、CF.∵△ABC 为等腰直角三角形,∠ACB =90°,BD ⊥l , ∴AC =BC ,∠BDA =90°.∴∠CBD +∠CAD =360°-∠BDA -∠ACB =360°-90°-90°=180°. 又∵∠CAF +∠CAD =180°, ∴∠CBD =∠CAF.在△CBD 和△CAF 中,⎩⎨⎧CB =CA ,∠CBD =∠CAF ,BD =AF ,∴△CBD ≌△CAF(SAS ). ∴CD =CF. ∵CE ⊥l ,∴DE =EF =12DF =12(DA +FA)=12(DA +DB).∴DA +DB =2DE.小专题(五) 一元一次不等式(组)的解法1.解下列不等式(组):(1)(金华金东区期末)5x +3<3(2+x); 解:去括号,得5x +3<6+3x. 移项,得5x -3x <6-3. 合并同类项,得2x <3. 系数化为1,得x <32.(2)(黄冈中考)x +12≥3(x -1)-4;解:去分母,得x +1≥6(x -1)-8. 去括号,得x +1≥6x -6-8. 移项,得x -6x ≥-6-8-1. 合并同类项,得-5x ≥-15. 两边都除以-5,得x ≤3.(3)⎩⎪⎨⎪⎧x +1≥2,①3(x +1)>x +5;② 解:由①,得x ≥1. 由②,得x>1.所以,不等式组的解集为x>1.(4)(莆田中考)⎩⎪⎨⎪⎧x -3(x -2)≥4,①1+2x3>x -1;②解:由①,得x ≤1.由②,得x <4.所以原不等式组的解集为x ≤1.(5)(金华金东区期末)⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -1≤7-32x.② 解:解不等式①,得x >52.解不等式②,得x ≤4. 故不等式组的解集为52<x ≤4.2.(苏州中考)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.解:去分母,得4x -2>3x -1. 移项,得4x -3x >2-1. 合并同类项,得x >1.将不等式解集表示在数轴上如图:3.(萧山区校级月考)解不等式x3<1-x -36,并求出它的非负整数解.解:去分母,得2x<6-(x -3).去括号,得2x<6-x +3. 移项,得x +2x<6+3. 合并同类项,得3x<9. 系数化为1,得x<3.所以,非负整数解为0,1,2.4.(杭州经济开发区期末)解不等式组⎩⎪⎨⎪⎧x -4≥3(x -2),①x +113-1>-x.②并把它的解在数轴上表示出来.解:解不等式①,得x ≤1.解不等式②,得x >-2. ∴原不等式组的解为-2<x ≤1. 在数轴上表示为:5.(十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x >-52.解不等式②,得x ≤1. 所以-52<x ≤1.故满足条件的整数有-2、-1、0、1.小专题(六) 一元一次不等式的实际应用1.建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想,强调相关各国要打造互利共赢的“利益共同体”和共同发展繁荣的“命运共同体”.某国有企业在“一带一路”的战略合作中,向东南亚销售A 、B 两种外贸产品共6万吨.已知A 种外贸产品每吨800元,B 种外贸产品每吨400元.若A 、B 两种外贸产品销售额不低于3 200万元,则至少销售A 产品多少万吨?解:设销售A 产品x 万吨.根据题意,得 800x +400(6-x)≥3 200. 解得x ≥2.答:至少销售A 产品2万吨.2.(来宾中考)已知购买一个足球和一个篮球共需130元,购买2个足球和一个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4 000元,问最多可买多少个篮球? 解:(1)设每个足球的售价为x 元,每个篮球的售价为y 元.根据题意,得⎩⎪⎨⎪⎧x +y =130,2x +y =180. 解得⎩⎪⎨⎪⎧x =50,y =80. 答:每个足球和每个篮球的售价分别为50元、80元. (2)设可购买z 个篮球.根据题意,得 50(54-z)+80z ≤4 000.解得z ≤1303.∵z 取整数,∴z 最大可取43.答:最多可买43个篮球.3.2017年的5月20日是第17个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图),若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,这份快餐最多含有多少克的蛋白质?信 息1.快餐成分:蛋白质、脂肪、碳水化合物和其他. 2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x 克的蛋白质.根据题意,得x +4x ≤400×70%.解得x ≤56.答:这份快餐最多含有56克的蛋白质.4.(玉林中考)蔬菜经营户老王近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少钱?(2)今天因进价不变,老王仍用10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)解:(1) 设老王批发青菜x 市斤,西兰花y 市斤,根据题意,得⎩⎪⎨⎪⎧x +y =200,2.8x +3.2y =600.解得⎩⎪⎨⎪⎧x =100,y =100. (4-2.8)×100+(4.5-3.2)×100=250(元). 答:当天售完后老王一共能赚250元钱. (2)设青菜的售价定为a 元,根据题意,得 100×(1-10%)a +4.5×100-600≥250. 解得a ≥409≈4.44.答:青菜售价至少定为4.5元/市斤.小专题(七) 一次函数的图象与性质类型1 一次函数的图象与字母系数的关系1.在平面直角坐标系中,正比例函数y =kx(k<0)的图象可能是(C )2.(怀化中考)一次函数y =kx +b(k ≠0)在平面直角坐标系中的图象如图所示,则k 和b 的取值范围是(C )A .k >0,b >0B .k <0,b <0C .k <0,b >0D .k >0,b <0第2题图 第3题图3.(江山期末)已知一次函数y =kx +b 的图象如图所示,则下列语句中不正确的是(B )A .函数值y 随x 的增大而增大B .当x >0时,y >0C .k +b =0D .kb <04.已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是(C )5.已知一次函数y =(2k -1)x +b -1的图象经过第一、二、四象限,则k ,b 的取值范围为(B )A .k>12,b>1B .k<12,b>1C .k>12,b<1D .k<12,b<16.对于一次函数y =kx +b ,其中b 实际是该函数的图象与y 轴交点的纵坐标.在画图实践中我们发现当k>0,b>0时,其图象经过第一、二、三象限.请你随意画几个一次函数的图象继续探究:(1)当b>0时,图象与y 轴的交点在x 轴上方;当b<0时,图象与y 轴的交点在x 轴下方;(2)当k 、b 取何值时,图象经过第一、三、四象限?第一、二、四象限?第二、三、四象限?请写出你的探究结论和同伴交流.解:当k>0,b<0时,图象经过第一、三、四象限; 当k<0,b>0时,图象经过第一、二、四象限; 当k<0,b<0时,图象经过第二、三、四象限.7.一次函数y =mx +n 的图象如图所示.(1)试化简代数式:m 2-|m -n|;(2)若点(-2,a),(3,b)在函数图象上,比较a ,b 的大小.解:(1)由图象可知,m <0,n >0, 所以m -n<0.所以m 2-|m -n|=-m +m -n =-n.(2)因为一次函数y =mx +n 的图象从左往右逐渐下降, 所以y 随x 的增大而减小.又因为点(-2,a),(3,b)在函数图象上,且-2<3,所以a >b.类型2 一次函数图象上点的坐标特征8.(遂宁中考)直线y =2x -4与y 轴的交点坐标是(D )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)9.一次函数y =5x -2的图象经过点A(1,m),如果点B 与点A 关于y 轴对称,那么点B 所在的象限是(B )A .第一象限B .第二象限C .第三象限D .第四象限10.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y =-3x +2上,则y 1,y 2,y 3的大小关系是(A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 3>y 1D .y 3>y 2>y 111.(钦州中考)一次函数y =kx +b(k ≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.12.(株洲中考)已知直线y =2x +(3-a)与x 轴的交点在A(2,0),B(3,0)之间(包括A ,B 两点),则a 的取值范围是7≤a ≤9.类型3 一次函数表达式的确定13.(金华金东区期末)将直线y =2x 向右平移2个单位长度所得的直线的表达式是(C )A .y =2x +2B .y =2x -2C .y =2(x -2)D .y =2(x +2)14.如图,A 、B 两点在坐标平面上,已知A(-3,0),B(0,-4),那么直线AB 关于y 轴对称的直线表达式为(B )A .y =-43x -4B .y =43x -4C .y =43x +4D .y =-43x +415.(江山期末)一次函数的图象经过M(3,2),N(-1,-6)两点.(1)求函数表达式;(2)请判定点A(1,-2)是否在该一次函数图象上,并说明理由. 解:(1)设y =kx +b(k ≠0),将点(3,2)(-1,-6)代入,得⎩⎨⎧2=3k +b ,-6=-k +b ,解得⎩⎪⎨⎪⎧k =2,b =-4. ∴y =2x -4.(2)当x =1时,y =2×1-4=-2, ∴点A(1,-2)在一次函数图象上.16.(益阳中考)如图,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位长度,再向上平移2个单位长度得到像点P 2,点P 2恰好在直线l 上.(1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位长度,再向上平移6个单位长度得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k ≠0). 因为点P 1(2,1),P 2(3,3)在直线l 上,所以⎩⎨⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3.所以直线l 所表示的一次函数的表达式为y =2x -3.(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9). 因为2×6-3=9, 所以点P 3在直线l 上.小专题(八) 一次函数与方程、不等式的综合应用类型1 一次函数与一元一次方程的综合应用 1.方程2x +12=0的解是直线y =2x +12(C )A .与y 轴交点的横坐标B .与y 轴交点的纵坐标C .与x 轴交点的横坐标D .与x 轴交点的纵坐标2.已知方程kx +b =0的解是x =3,则函数y =kx +b 的图象可能是(C )A B C D3.一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =0的解为(A )A .x =-1B .x =2C .x =0D .x =3第3题图 第4题图4.如图,已知直线y =3x +b 与y =ax -2的交点的横坐标为-2,则关于x 的方程3x +b =ax -2的解为x =-2. 5.已知方程3x +9=0的解是x =-3,则函数y =3x +9与x 轴的交点坐标是(-3,0),与y 轴的交点坐标是(0,9).类型2 一次函数与二元一次方程组的综合应用6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(B )A .⎩⎪⎨⎪⎧x =-2y =-4B .⎩⎪⎨⎪⎧x =-4y =-2 C .⎩⎪⎨⎪⎧x =2y =-4D .⎩⎪⎨⎪⎧x =-4y =2第6题图 第7题图7.如图,两条直线l 1和l 2的交点坐标可以看作下列哪个方程组中的解(B )A .⎩⎪⎨⎪⎧y =2x +1y =x +2B .⎩⎪⎨⎪⎧y =-x +3y =3x -5C .⎩⎪⎨⎪⎧y =-2x +1y =x -1D .⎩⎪⎨⎪⎧y =-2x +1y =x +18.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y)恰好是两条直线的交点坐标,则这两条直线的表达式是(C )A .y =x +9与y =23x +223B .y =-x +9与y =23x +223C .y =-x +9与y =-23x +223D .y =x +9与y =-23x +2239.利用一次函数的图象解二元一次方程组:⎩⎪⎨⎪⎧x +y =1,2x -y =5.解:根据图象可得出方程组⎩⎪⎨⎪⎧y =-x +1,y =2x -5的解是⎩⎪⎨⎪⎧x =2,y =-1.10.在平面直角坐标系中,直线l 1经过点(2,3)和点(-1,-3),直线l 2经过原点O ,且与直线l 1交于点P(-2,a).(1)求a 的值;(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设直线l 1与y 轴交于点A ,试求出△APO 的面积. 解:(1)设直线l 1的表达式为y =kx +b , ∵直线l 1经过(2,3)和(-1,-3),∴⎩⎪⎨⎪⎧2k +b =3,-k +b =-3.解得⎩⎪⎨⎪⎧k =2,b =-1. ∴直线l 1的表达式为y =2x -1.把P(-2,a)代入y =2x -1,得a =2×(-2)-1=-5.(2)设直线l 2的表达式为y =mx ,把P(-2,-5)代入,得-5=-2m ,解得m =52.∴直线l 2的表达式为y =52x.∴(-2,-5)可以看作是二元一次方程组⎩⎪⎨⎪⎧y =2x -1,y =52x 的解.(3)对于y =2x -1,令x =0,解得y =-1,则A 点坐标为(0,-1). ∴S △APO =12×2×1=1.11.(青岛中考)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y(m )与甲跑步的时间x(s )之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?解:设l 2的关系式为y 2=kx +b(k ≠0),根据题意,可得方程组⎩⎪⎨⎪⎧10=b ,22=2k +b.解得⎩⎪⎨⎪⎧k =6,b =10. ∴y 2=6x +10.当y 1=y 2时,8x =6x +10,解得x =5.答:甲追上乙用了5 s .类型3 一次函数与不等式的综合应用12.一次函数y =kx +b(k ≠0)的图象如图所示,当kx +b <0时,x 的取值范围是(D )A .x <0B .x >0C .x <2D .x >2第12题图 第14题图 13.对于函数y =-x +4,当x >-2时,y 的取值范围是(D )A .y <4B .y >4C .y >6D .y <614.如图,函数y =2x -4与x 轴、y 轴分别交于点(2,0),(0,-4),当-4<y <0时,x 的取值范围是(C )A .x <-1B .-1<x <0C .0<x <2D .-1<x <215.(杭州开发区期末)一次函数y =kx +b(k ≠0)的图象如图所示,当y <0时,自变量x 的取值范围是(A )A .x <-2B .x >-2C .x >2D .x <2第15题图 第16题图16.(绍兴五校联考期末)直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b<k 2x +c 的解集为x<1.17.已知函数y 1=kx -2和y 2=-3x +b 相交于点A(2,-1).(1)求k 、b 的值,在同一坐标系中画出两个函数的图象;(2)利用图象求出:当x 取何值时有:①y 1<y 2;②y 1≥y 2;(3)利用图象求出:当x 取何值时有:①y 1<0且y 2<0;②y 1>0且y 2<0. 解:(1)k =12,b =5.图象略.(2)①当x<2时,y 1<y 2. ②当x ≥2时,y 1≥y 2.(3)①当53<x<4时,y 1<0且y 2<0.②当x>4时,y 1>0且y 2<0.小专题(九)分段函数1.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是(A )第1题图第2题图2.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费(A )A.0.4元B.0.45 元C.约0.47元D.0.5元3.如图是某工程队在一项修筑公路的工程中,修筑的公路长度y(米)与时间x(天)之间的关系函数(图象为折线).根据图象提供的信息,可知到第七天止,该工程队修筑的公路长度为(D )A.630米B.504米C.480米D.450米第3题图第4题图4.(绍兴五校联考期末)小波、小威从学校出发到青少年宫参加书法比赛,小波步行一段时间后,小威骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小波出发时间t(分)之间的函数关系如图所示.下列说法:①小威先到达青少年宫;②小威的速度是小波速度的2.5倍;③a=24;④b=480.其中正确的是(B ) A.①②③B.①②④C.①③④D.①②③④5.(江山期末)在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.。
浙江省杭州市八年级上学期数学期末考试试卷
浙江省杭州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)下图为某物体的三视图,该物体的形状是()A . 三棱柱B . 长方体C . 正方体D . 圆锥【考点】2. (2分)下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A . 等边三角形B . 矩形C . 菱形D . 正方形【考点】3. (2分)如图,对图中各射线表示的方向下列判断错误的是().A . OA表示北偏东15°B . OB表示北偏西50°C . OC表示南偏东45°D . OD表示西南方向【考点】4. (2分)下列各题中的数据,准确的是()A . 我们数学教科书封面的长是21厘米B . 小颖班上共有56位同学C . 珠穆朗玛峰的海拔高度为8848米D . 我国人口总数约为13亿【考点】5. (2分)如图,P是∠AOB的角平分线OC上的一点,点D、E分别在OA,OB上,且OD=OE,则判定△OPD≌△OPE 的依据是()A.A.S.A B.S.A.S C.A.A . SB . S.S.S【考点】6. (2分)(2017·桥西模拟) 如图1,在等边△ABC中,点D,E分别是BC,AC边上的中点,点P为AB边上的一个动点,设AP=x,连接PE,PD,PC,DE,其中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A . 线段PEB . 线段PDC . 线段PCD . 线段DE【考点】7. (2分) (2017八上·江夏期中) 如图,平面直角坐标系中,已知定点A(1,0)和B(0,1),若动点C 在x轴上运动,则使△ABC为等腰三角形的点C有()个.A . 5B . 4C . 3D . 2【考点】二、填空题 (共8题;共9分)8. (2分) (2019七上·滨湖期中) 2的倒数是________;绝对值等于3的有理数是________.【考点】9. (1分) (2019七下·台安期中) 若的坐标为,且点到轴的距离是1,则点的坐标是________.【考点】10. (1分)直线y=3x+b与y轴的交点的纵坐标为﹣2,则这条直线一定不过________ 象限.【考点】11. (1分) (2017八上·罗山期中) 已知三角形的两边长分别为3和6,那么第三边长x的取值范围是________.【考点】12. (1分) (2020七下·新城期末) 如图,AD,AE分别是△ABC的中线和高线,BC=6cm,AE=4cm,则S△ABD=________。
拱墅区数学八年级期末试卷
一、选择题(每题4分,共40分)1. 若a、b是方程x²-3x+c=0的两个实数根,则a+b的值为()A. 3B. -3C. 1D. -12. 在直角坐标系中,点A(-2,3),点B(2,-3),则线段AB的中点坐标为()A. (0,0)B. (0,6)C. (-2,-3)D. (2,3)3. 下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)³ = a³ + 3a²b+ 3ab² + b³D. (a-b)³ = a³ - 3a²b + 3ab² - b³4. 已知等腰三角形ABC中,AB=AC,AD是底边BC上的高,则∠BAD的度数为()A. 30°B. 45°C. 60°D. 90°5. 若x=2是函数y=kx+b的一个解,则k和b的关系为()A. k=2,b≠0B. k≠0,b=0C. k=0,b≠0D. k和b可以是任意实数6. 下列各数中,绝对值最小的是()A. -3B. -2.5C. 0D. 27. 在等差数列{an}中,a₁=3,d=2,则第10项a₁₀的值为()A. 17B. 19C. 21D. 238. 已知一次函数y=kx+b的图象过点(1,-1),则k和b的关系为()A. k=1,b=-1B. k=-1,b=1C. k=1,b≠-1D. k≠1,b≠-19. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 75°C. 90°D. 105°10. 若等比数列{an}中,a₁=1,q=2,则第5项a₅的值为()A. 4B. 8C. 16D. 32二、填空题(每题4分,共40分)11. 已知一元二次方程x²-5x+6=0的两个实数根为x₁和x₂,则x₁+x₂=______,x₁x₂=______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年浙江省杭州市拱墅区八年级(上)期末数学试卷一.选择题(共30分,每小题3分)
1.下列图案中,属于轴对称图形的是().
A. B.C D.
2.下列各点中,属于第四象限的点是().
A. (2, 1)
B. (2, -1)
C. (-2, -1)
D. (-2, 1)
3.已知三角形的两边长分别为2cm 和3cm ,则该三角形第三条边的长可能是().
A.1cm
B.3cm
C.5cm
D.6cm
4.要说明命题“2a= a(a为实数)”是假命题,可选择的反例为().
A.a=-2
B.a=0
C.a=1
D.a=2
5.若等腰三角形的一个内角为54∘,则这个等腰三角形顶角的度数为().
A.72∘
B.54∘
C.54∘或63∘
D.54∘或72∘
6.若x ⩽y,则().
A.-2x⩽-2y
B.3-x≤3-y
C.a2x≤a2y
D.x-a2⩾y-a2
7.如图,在△ABC中,边AB的垂直平分线交BC于点D,连结AD.若AB=7,BC=8,AC=5,则△ADC 的周长为().
A.12
B.13
C.15
D.16
8.已知(-1.7, y1),(m, y2)是一次函数y=-2x+b(b为常数)图象上的二个点,若y1< y2,则m的值可以是().
A.−2
B.−1
C.0
D.2
9.已知A,B两地相距60km,甲、乙两人沿同一条公路分别从A,B两地出发相向而行,图中l1,l2分别表示甲、乙两人离B地的路程s(km)与时间t(h)的函数关系的图象.则下列结论错误的是().
A.乙比甲晚出发0.5 小时
B.甲、乙的速度差为10km/h
C.乙出发1.4小时后与甲相遇
D.甲出发1.3小时或1.5小时两人恰好相距5km
10.如图,在△ABC中,AB=BC > AC,BP,CE是△ABC的高线,CQ是△ABC的角平分线,CQ 交BP于点N.现有四个结论:①∠ABP=∠ACE,②NP2+AP2=QN2,③NQ>NP,④BQ =QC,则QE=EA.其中正确的结论是().
A.①②
B.①③
C.②③D①③④
二.填空题(共24分,每小题4分)
11. 如图,在△ABC中,∠A=40∘,若外角∠DCA=100∘,则∠B= ∘.
12.若点A(2-a, a+1)在y轴上,则a的值为.
13.已知正比例函数y=kx(k≠0),当x=2时,y=3,则当x=-3时,y= .
14.若不等式(a-3)x < 3-a的解是x >-1,则a的取值范围是.
15.Rt△ABC 中,∠C=90∘,AC=BC=4,点D是AC边上的中点,点P为AB边上一动点,将△ABC沿着DP折叠,使点A的对应点A´落在△ABC内部(不含边上),则线段AP长的取值范围是.
16.已知一次函数y=ax+b(a≠0)的图象过点(-2, 3),且不经过第三象限,则a的取值范围是.若2a + b是正整数,则a的值为.
三.解答题(共66分)
17.解一元一次不等式组⎪⎩
⎪
⎨
⎧
≤
-
>
-
2
2
1
)1
(2
4
3
x
x
x
,并把不等式组的解在数轴上表示出来.
18.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-1),B(3,-3),C(0,-4).把△ABC 先向上平移5个单位,再向左平移4个单位,使点B平移到点B′(-1, 2) .
(1)作出平移后的△A′B′C′,并写出C′的坐标.
(2)求出平移的距离CC′.
19.如图,在△ABC中,∠BAC=90∘,AD是△ABC的中线.
(1)若∠DAC=25∘,求∠B的度数.
(2)若AB=5,AD=6.5,求△ABD的面积.
20.欢欢4岁那年父亲种下一棵山毛榉和一棵枫树.当时山毛榉高2.4米,枫树高0.9米,山毛榉的平均生长速度是每年长高0.15米,枫树的平均生长速度是每年长高0.3米.
(1)求出两种树的高y(m)关于欢欢年龄x(岁)(x≥4)的函数关系式.
(2)若现在枫树已经比山毛榉高了,请问欢欢现在的年龄应超过多少岁?
21.如图,在△ABC中,AD平分∠BAC,BD= CD,DE⊥AB于点E,DF⊥AC于点F.
(1)判断△ABC的形状,并给出证明.
(2)若AB=10,AD=8,求BC和DE的长.
22.已知一次函数y =kx+b(k≠0)的图象过点(-1, 3).
(1)若图象还经过点(3,-5) ,求这个函数的表达式.
(2)在(1)的条件下,若点P (m, n) 在该函数的图象上,且m-n> 4,求m的取值范围.(3)若当x >t时,总有y>3,求t的取值范围.
23.已知:在△ABC 中,AC=BC,∠ACB=90∘,点F 在射线CA上,延长BC至点D,使CD=CF,点E是射线BF与射线DA的交点.
(1)如图1,若点F在边CA上.
①求证:BE⊥AD .
②小敏在探究过程中发现∠BEC=45∘,于是她想:若点F在CA的延长线上,是否也存在同样的结论?请你在图2上,画出符合条件的图形,并通过测量猜想∠BEC的度数.
(2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.。