循环平稳信号分析

合集下载

机械设备故障诊断中循环平稳信号处理的应用

机械设备故障诊断中循环平稳信号处理的应用
们最为关注 的。
循 环平 稳 信号 处 理的 简 单介 绍 循环平稳信号 , 就是在 统计特征 函数 的时候会出现周期性 的变化 。 这种信 号在实际应 用中有着非 常重要的意 义 。 通常来讲 , 平 稳信号 的出 现都 有一定 的普遍 性 , 当统 计系统 统计特 征 函数 的时候 , 可 以利用单次 记录的时 间平均值代替 平均集合, 这一点很适 用现场生 产数 据的收集 。
藏 落
机械设备故障诊断中循环平稳信号处理的应用
季建胜 浙 江红旗机械有 限公司 3 1 3 2 1 6
【 摘要 】 循环平稳信号处理技 术的引用, 丰富 了 机械设备 处理 的内 容 谱的 理论 进行补充 。 循 环 密度函数 方法和 平方包络 解调 方法都 可以 通 通过 试验数 据的结果 分析, 指 量。 本文概 括了 循环平穗信号处理的研 究情况和特点, 分析 了 这样的方法存 过引入的循环 平稳信号进行相 关的解调 。 在的部 分问题 , 最后在结尾部 分 点 明了 这项新技 术的应用问题和在机械 设 出平方包络分 析中因为构造了一定的解析 函数, 使得数 值平方 和循环 导 备 故障中的发展前景。 致 的混 叠效 应得 到了很好 的抑 制 。 第 三种 分析方 法 : 从机 械振 动信 号 的角度证 明多循 环平稳 、 纯循环 平稳的慨 念, 还有 就是和周期 的过程、 【 关键 词】循环平稳 ; 故障处理 ; 应用 平稳过 程之 间的关 系。 常见的采样 方式有两种 : 等 时间采样和等 角度 采 这两 种采样方 法分别研 究了他们的 循环的平稳性 , 得出不一样 的循 机 械 设备 信号 的特征 提取 法一 般分 为两种 , 第一种是稳 态 信号 的 样。 处 理方法 。 非常典型 的有 离散频 谱分析法和 频率细化 分析 法等。 这种处 环平 稳的 条件。 文 中理论证 明了当旋 转 机械 等角度 采样 得到的 振动 信 理方法相对 很成熟 。 应用 的范围也是非 常广泛 。 第二 种是 非平稳信号 的 号的 时候, 只要是转 速的波 动为循环平 稳的时候 , 那么等 时间采样 的信 处理 方法 。 非 常典 型的 有转 速跟 踪 法¥  ̄ ] Wi g n e r - V i l l e 分布 法等 , 循环 号也属于循 环平稳的信号。 鉴于循 环平稳在旋 转机械 中的广泛存在性 , 平稳 和高 阶谱 等 分析 方法 的引用 , 使 得循 环平 稳的 分析方 法有 了非 常 应该打 破常规 的平稳1 陧 设, 在循 环平稳的基础 之上研 究旋转机 械 的振 我们以齿轮 、 内燃机和 滚动轴承 的三种机械 的比 大的进步, 为社 会带来了 一定 的经济 效益 , 但是其 中存在 的问题 , 也 是我 动信号更加 切合实际 。

振动信号的包络解调分析方法研究及应用

振动信号的包络解调分析方法研究及应用

high—frequency carrier
signal,by
using the step-changed numerical algorithm
and the
adjustment
of the bistable
system
and the
optimal the algorithm achieve the
景。
关键词:振动信号,包络解调,解析小波,S变换,随机共振
AB STRACT
This academic dissertation has devoted its research
subject
to
demodulation
or
faults vibration signals.Some existing methods, enveloping based methods of mechanical such as the Hilbert transform,gemeralized demodulating—filtering,energy operator,
resollance
effect
has particular advantages and extraction
on
enhancing
and
detecting weak signals.Enhancement
of the weak
low—frequency
amplitude.modulated signals were studied using the combination of the
time—frequency
to
spectrum
could be the envelope of the

现代信号处理第4章循环平稳信号分析

现代信号处理第4章循环平稳信号分析

引言
机械循环平稳信号具有以下特点:
(1) 正常无故障的机械信号一般是平稳随机信号,统计 量基本不随时间变化。
(2) 故障信号产生周期成分或调制现象,其统计量呈现 周期性变化,此时信号成为循环平稳信号。
(3) 统计量中的某些周期信息反映机械故障的发生。
因此研究循环平稳信号处理和特征信息的提取方法, 对机械故障诊断具有重要的意义。
4.3.1调频信号的解调分析
x(t) Acos[2f zt sin(2fnt)]
4.3.2 多载波调频信号的解调
x(t) cos(2 fc1t sin(2 f0t)) cos(2 fc2t sin(2 f0t))
多载波调频信号的解调
4.3.3 多调制源调幅信号的解调
x(t) 1 cos2 f01t cos2 f02tcos2 fct
4.3.4 多载波调幅信号的解调
x(t) [1 cos(2 f0t)]cos(2 fc1t) [11.5cos(2 f0t)]cos(2 fc2t) n(t)
多载波调幅信号的解调
多载波调幅信号的解调
4.3.5 循环相关解调法识别信号有用信息
和混频信息的规律
(1) 如果循环频率高频段的循环谱切片图的循环频率信息与 该图片相对应的频率信息具有2倍的关系,并且切片图中相 应的循环频率信息(或频率信息)表现为中心频率,其两边 均有明显的调制边频带,则说明此循环频率(或频率)具有 载波频率特征,循环频率是载波频率的2倍,并且图中所对 应的边频带频率信息就是调制频率信息。
4.2.1 一阶循环统计量
循环统计方法是研究信号统计量的周期结构,它直 接对时变统计量进行非线性变换得到循环统计量, 并用循环频率——时间滞后平面分布图来描述信号, 抽取信号时变统计量中的周期信息。

机械设备故障诊断中循环平稳信号处理的应用

机械设备故障诊断中循环平稳信号处理的应用

机械设备故障诊断中循环平稳信号处理的应用【摘要】循环平稳信号处理技术的引用,丰富了机械设备处理的内容量。

本文概括了循环平稳信号处理的研究情况和特点,分析了这样的方法存在的部分问题,最后在结尾部分点明了这项新技术的应用问题和在机械设备故障中的发展前景。

【关键词】循环平稳;故障处理;应用机械设备信号的特征提取法一般分为两种,第一种是稳态信号的处理方法。

非常典型的有离散频谱分析法和频率细化分析法等。

这种处理方法相对很成熟,应用的范围也是非常广泛。

第二种是非平稳信号的处理方法。

非常典型的有转速跟踪法和Wigner-Ville分布法等,循环平稳和高阶谱等分析方法的引用,使得循环平稳的分析方法有了非常大的进步,为社会带来了一定的经济效益,但是其中存在的问题,也是我们最为关注的。

一、循环平稳信号处理的简单介绍循环平稳信号,就是在统计特征函数的时候会出现周期性的变化。

这种信号在实际应用中有着非常重要的意义。

通常来讲,平稳信号的出现都有一定的普遍性,当统计系统统计特征函数的时候,可以利用单次记录的时间平均值代替平均集合,这一点很适用现场生产数据的收集。

但是对于非平稳的时间序列,统计特征是随意变换的,因此我们就没有办法用上述特征判断。

循环平稳信号因为自身独特的平稳特征,使得单次收集到的数据都有一定的普遍性,因此适合现场数据的处理和分析。

循环平稳信号广泛应用在通讯、机械等系统中。

比如在机械滚动轴承中出现的反复机械的振动的信号。

我们以滚动轴承为例子,当滚动轴承发生故障的时候,因为机器周期性的旋转和周围因素的干扰,使其产生复杂的震动信号,这种振动信号也存在部分的随机信号。

对于随机信号,我们通常认为是有规律的,因此对这种随机信号进行循环平稳的分析,有效的提取出被噪声埋没的周期成分。

循环信号处理技术在机械中的应用,对于机械故障诊断有着至关重要的意义。

二、循环平稳信号的具体应用1、一阶循环统计量的应用。

这项内容主要包括了一阶循环矩。

信号分析与处理

信号分析与处理

信号分析与处理1.什么是信息?什么是信号?二者之间的区别与联系是什么?信号是如何分类的? 信息:反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。

信号:是传载信息的物理量,是信息的表现形式。

区别与联系 信号的分类1.按照信号随自变量时间的取值特点,信号可分为连续时间信号和离散时间信号;2.按照信号取值随时间变化的特点,信号可以分为确定性信号和随机信号; 2.非平稳信号处理方法(列出方法就行) 1.短时傅里叶变换(Short Time Fourier Transform) 2.小波变换(Wavelet Transform)3.小波包分析(Wavelet Package Analysis)4.第二代小波变换5.循环平稳信号分析(Cyclostationary Signal Analysis)6.经验模式分解(Empirical Mode Decomposition)和希尔伯特-黄变换(Hilbert-Huang Transform) 3.信号处理内积的意义,基函数的定义与物理意义。

内积的定义:(1)实数序列:),...,,(21n x x x X =,nn R y y y Y ∈=),...,,(21它们的内积定义是:j nj jy xY X ∑=>=<1,(2)复数jy x z +=它的共轭jy x z -=*,复序列),...,,(21n z z z Z =,nn C w w w W ∈=),...,,(21,它们的内积定义为*=∑>=<j nj j w z W Z 1,在平方可积空间2L 中的函数)(),(t y t x 它们的内积定义为:dt t y t x t y t x ⎰∞∞-*>=<)()()(),( 2)(),(L t y t x ∈以)(),(t y t x 的互相关函数)(τxy R ,)(t x 的自相关函数)(τxx R 如下:>-=<-=⎰∞∞-*)(),()()()(τττt x t x dt t x t x R xx>-=<-=⎰∞∞-*)(),()()()(τττt y t x dt t y t x R xy我们把)(τ-t x 以及)(τ-t y 视为基函数,则内积可以理解为信号)(t x 与“基函数”关系紧密度或相似性的一种度量。

多环路稳定性分析

多环路稳定性分析

多环路稳定性分析环路稳定性分析通常开始于一个正在研究的装置的开环伯德图。

例如一个Buck或者Flyback变换器的功率部分,从这张图中,设计者可以根据频率范围的变化得出相位和增益的数据。

他的工作是辨别一个交叉频率受相位余量影响的补偿器的结构,最后一步需要研究整个的环路增益在补偿器之后的功率装置一旦环路关断给出补偿器的零点极点以确保稳定。

如果这个过程是单环路的话实现Flyback 变换器加权的工作过程将会变得更加复杂。

本篇文章引用了参考文献1的工作同时探索不同的方法来提供技术给多反馈通道的功率变换器。

TL431 多环路系统单独一个431可以作为一个多通道反馈系统图1根据参考文献2给出了1种双结构的431典型的连线图图1 传统结构的431连线结构观察变换器的直流电压从这张原理图中看出可以看出所谓的低速和高速通道。

TL431可以被称为一个可调的齐纳管或者是分流调整器。

例如由于负载的变化,输出电压变化,这个信息通过R 2/R 3变换然后传递到TL431的输入端,令可调的齐纳管送出或者多或者少的电流进入光耦LED 。

通过调整它的阈值电压进而工作,利用这个方法,一次侧的反馈信号也改变,同时指导控制器调整工作点。

如果输出电压变化太快,通过电阻R 2感应到频率超越了由C 1引入的临界极点。

这时候,对于这个反馈信号通道的ac 补偿就失效了:TL431不再改变工作点、 LED 的阈值电压也就被固定。

然而,尽管LED 的阈值电压被固定,但是通过R LED ,阳极一直在感应着输出电压的变化,这个电流变化是通过光耦影响反馈电压。

因此,即使你增大C 1,对于环路的增益也没有什么影响。

因为R LED 一直在感应着输出电压,这样一个系统的传递公式可以写成如下两个所示的形式:()()()12111s FB OUT V S G S V S R C ⎡⎤=+⎢⎥⎣⎦ (1)这里G 1(S)表达通过光耦CTR ,LED 和连接在电容C 2上的提拉电阻带来的中间频带的增益,从这个表达式中,实际上我们通过解决公式1,可以看出两个环路的出现:()()()()1121s FB OUT V S G S G S V S R C =+ (2)这样一个系统的环路增益可以通过切断环路反馈工作点来测量。

频谱重叠信号分离的循环平稳算法


(2)
式中 , m为整数 ; T0 为基本周期. 循环维纳滤波的频
域理论是以时均方误差来度量的 [ 1 ] . 采用时间平
均有利于应用自适应方式来实现频移滤波器 ,本文
也以时间平均作为研究的基础.
循环平稳理论中 ,循环自相关函数定义为 [ 2 ]
〈 〉 Rαx (τ) =
E
x
τ
t+
x3
τ
t-
e- j2παt
频移滤波器频移滤波器的原理和基本结构是根据循环维纳滤波理论得出的维纳滤波理论是对平稳时间序列的最佳时不变滤波而循环维纳滤波理论则是对循环平稳时间序列的最佳多周期时变ptvptv的输入输出关系为式中冲激响应函数htu用傅里叶序列表示为考虑到有限能量信号的情况对式10两边进行傅里叶变换得11通常线性时变滤波器处理复包络和复共轭的问题
2
2
(3)
式中 ,〈·〉和 E [·] 分别表示无限时间平均和统计
平均 ;τ为时间延迟 ;α为循环频率.
若一个复信号的循环自相关函数
α
Rx
(τ)
(α ≠
0) 存在且不为零 , 则这个信号是广义循环平稳信
号 (W SCS ) . 同理 ,循环共轭相关函数定义为
〈 〉 β
Rxx3
(τ)
=
τ
τ
E x t+ x t-
收稿日期 : 2004208204. 基金项目 : 国家自然科学基金资助项目 ( 60472053 ) 、江苏省自然
科学基金资助项目 (B K2003055) 、高等学校博士学科点 专项科研基金资助项目 ( 20030286017 ) 、教育部科学技 术研究重点资助项目 ( 02171) . 作者简介 : 刘 云 ( 1974—) ,女 , 博士 ; 沈连丰 (联系人 ) , 男 , 教授 , 博士生导师 , lfshen@ seu. edu. cn.

信号检测与估计理论(复习题解)

优缺点
最大似然估计法具有一致性和渐近无偏性等优点,但在小样本情况下可能存在偏差。此外,该方 法对模型的假设较为敏感,不同的模型假设可能导致不同的估计结果。
最小二乘法
01
原理
最小二乘法是一种基于误差平方和最小的参数估计方法, 它通过最小化预测值与观测值之间的误差平方和来估计模 型参数。
02 03
步骤
首先,构建包含未知参数的预测模型;然后,根据观测数 据计算预测值与观测值之间的误差平方和;接着,对误差 平方和求导并令其为零,得到参数的估计值;最后,通过 求解方程组得到参数的最小二乘估计值。
优缺点
最小二乘法具有计算简单、易于实现等优点,但在处理非 线性问题时可能效果不佳。此外,该方法对异常值和噪声 较为敏感,可能导致估计结果的偏差。
01
小波变换基本原理
小波变换是一种时频分析方法,通过伸缩和平移等运算对信号进行多尺
度细化分析,能够同时提供信号的时域和频域信息。
02
小波变换在信号去噪中的应用
小波变换具有良好的时频局部化特性,可以用于信号的去噪处理。通过
对小波系数进行阈值处理等操作,可以有效去除信号中的噪声成分。
03
小波变换在信号特征提取中的应用
3. 观察相关函数的峰值,判断是否超过预设门限。
实现步骤
2. 将待检测信号与本地参考信号进行相关运算。
优缺点:相关接收法不需要严格的信号同步,但要求参 考信号与待检测信号具有较高的相关性,且容易受到多 径效应和干扰的影响。
能量检测法
原理:能量检测法通过计算接收信号的能量来判断信号 是否存在。在噪声功率已知的情况下,可以通过比较接 收信号的能量与预设门限来判断信号是否存在。 1. 计算接收信号的能量。
经典参数估计方法

循环平稳过程以及信号处理理论

循环平稳过程以及信号处理理论绪论• 通信、遥测、雷达、声呐等系统中许多信号,其统计特征参数是时间变化的,这类信号称为循环平稳信号(cyclostationary signal)• 例如调制信号,雷达扫描信号,还有一些自然的,如水文数据,海洋数据,人体心电图等都具有循环平稳性质。

• W. A. Gardner*的谱相关理论是标志循环平稳信号处理理论的成熟,其数学工具是循环相关函数和循环谱相关函数。

• *W. A. Gardner, L. E. Franks, Characterization of cyclostationary random signal processes, IEEE Trans Information Theory, 21: 4-14, 1975.• F. Chapeau-Blondeau, X. Godivier; "Theory of stochastic resonance in signaltransmission by static nonlinear systems"; Physical Review E 55, 1478-1495 (1997).• X. Godivier, F. Chapeau-Blondeau; "Noise-assisted signal transmission by a nonlinearelectronic comparator: Experiment and Theory"; Signal Processing 56, 293-303 (1997).• F. Duan, F. Chapeau-Blondeau, D. Abbott; "Noise-enhanced SNR gain in parallel array ofbistable oscillators"; Electronics Letters 42, 1008-1009 (2006).2.1一般理论框架(动态静态系统都适合)强调我们的系统划分规则静态指无记忆系统,而动态指有记忆的系统。

循环平稳信号分析剖析


lim
1 j 2t x ( t ) e dt T T T / 2
T /2
x(t )e j 2t t
(4.2.7)
一阶循环统计量—循环均值
4.2.3 二阶循环统计量—循环自相关函数
对于零均值的非平稳复信号,时变自相关函数可以 写成
Rx (t; ) E{x(t ) x (t
引言
机械循环平稳信号具有以下特点:

(1) 正常无故障的机械信号一般是平稳随机信号,统计 量基本不随时间变化。
(2) 故障信号产生周期成分或调制现象,其统计量呈现 周期性变化,此时信号成为循环平稳信号。 (3) 统计量中的某些周期信息反映机械故障的发生。


因此研究循环平稳信号处理和特征信息的提取方法, 对机械故障诊断具有重要的意义。
j 2 t
dt (4.2.1)
一阶循环统计量
对于一个循环平稳的时间序列来说,它的循环频率 (包括零循环频率和非零循环频率)可能有多个, 所有循环频率的总体构成循环频率集 循环频率包括零值和非零值,其中零循环频率对应 信号的平稳部分,非零循环频率则描述了信号的循 环平稳特性。 循环基频 N N p ( x, ti ) p ( x, ti nT0 )
i 1 i i 1
i
nT0 )
(4.1.1)
N统计阶数,T0是基本循环平稳周期,n是一个给定的整数
循环平稳信号具有周期时变的矩和统计量,即 N N
E{ x (ti )} E{ x (ti nT0 )}
i 1 i 1
(4.1.2)
阶循环平稳过程的定义: 若随机过程 从一阶到 阶的各阶时变统计量都存 在,并且它们都是时间的周期函数(其中,每阶的 循环周期可能有多个,且各阶循环周期一般不同), 则称该随机过程为 阶循环平稳过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a(t /2)a(t /2)ejt 0 t
0
A
21
功率谱密度函数
由式(4.2.17)可以求出该仿真信号的循环谱密度 为
14Sa(f f0)14Sa(f f0) Sx(f ) 14ej2Sa(f )
0
=0;
=2f0; 其它
A
22
功率谱密度函数
给式(4.2.14)所示仿真信号叠加平稳遍历白噪声 n(t),各参数取值与上述计算二阶循环自相关函数 时的取值完全相同。循环谱如图4.2.4所示
A
27
4.3.1调频信号的解调分析
x ( t) A c2 o fz t ss [2 ifn n t)] (
A
28
4.3.2 多载波调频信号的解调
x ( t ) c o s ( 2 f c 1 t s i n ( 2 f 0 t ) ) c o s ( 2 f c 2 t s i n ( 2 f 0 t ) )
A
29
多载波调频信号的解调
A
30
4.3.3 多调制源调幅信号的解调
x ( t ) 1 c o s 2 f 0 1 t c o s 2 f 0 2 t c o s 2 f c t
A
31
A
32
4.3.4 多载波调幅信号的解调
x ( t ) [ 1 c o s ( 2 f 0 t ) ] c o s ( 2 f c 1 t ) [ 1 1 . 5 c o s ( 2 f 0 t ) ] c o s ( 2 f c 2 t ) n ( t )
lim 1 N(2N1)T0
N nN
TT00//22x(tnT0)ej2tdt
lim1
TT
T/2 x(t)ej2tdt
T/2
@x(t)ej2tt
(4.2.5) (4.2.6)
(4.2.7)
A
13
一阶循环统计量—循环均值
A
14
4.2.3 二阶循环统计量—循环自相关函数
对于零均值的非平稳复信号,时变自相关函数可以 写成
(4.1.1)
i1
i1
N统计阶数,T0是基本循环平稳周期,n是一个给定的整数
循环平稳信号具有周期时变的矩和统计量,即
N
N
E{ x(ti)}E{ x(tinT0)}
(4.1.2)
i1
i1
阶循环平稳过程的定义:
若随机过程 从一阶到 阶的各阶时变统计量都存
在,并且它们都是时间的周期函数(其中,每阶的 循环周期可能有多个,且各阶循环周期一般不同), 则称该随机过程为 阶循环平稳过程。
陈进、姜鸣等分析了高阶循环统计量理论在谐波恢 复、系统辨识、特征提取等中的应用,指出将高阶 循环统计量理论应用于机械设备的状态监测和故障 诊断领域具有重要意义
A
7
第四章 循环平稳信号分析
4.1 循环平稳信号的定义 4.2 信号的循环统计量 4.3 基于二阶循环统计量的仿真信号解调分析 4.4 循环平稳信号处理的工程应用
A
6
4.1 循环平稳信号的定义
具有周期变化的统计量称为循环统计量。 循环统计理论的研究迅速发展是在20世纪80年代 中期。
对二阶循环统计量研究最有影响的是 W.A.Gardner,他提出的谱相关理论和冗余概念。 近几年,随着高阶循环统计量这一数学工具诞生, 循环平稳信号的研究也从二阶发展到了高阶。
A
23
功率谱密度函数
循环谱切片图
A
24
功率谱密度函数
循环谱密度函在频率域内的信息和循环频率域内的 信息具有谱相关特性。 对于调幅信号,载波信息在频率域内的值与其自身 相等,而在循环频率域内的频率信息是其载波频率 的2倍。 而调制频率在频率域和循环频率域内的值没有变化。 利用循环频率与频率之间的相关特性,用切片图可 以将有用的信息提取出来并进而分析频率信息特征。
A
25
第四章 循环平稳信号分析
4.1 循环平稳信号的定义 4.2 信号的循环统计量 4.3 基于二阶循环统计量的仿真信号解调分析 4.4 循环平稳信号处理的工程应用
A
26
4.3 基于二阶循环统计量的仿真信号解调分析
4.3.1 调频信号的解调分析 4.3.2 多载波调频信号的解调 4.3.3 多调制源调幅信号的解调 4.3.4 多载波调幅信号的解调 4.3.5 循环相关解调法识别信号有用信息和混频信 息的规律
A
8
4.2 信号的循环统计量
4.2.1 一阶循环统计量 4.2.2 一阶循环统计量—循环均值 4.2.3 二阶循环统计量—循环自相关函数 4.2.4 功率谱密度函数
A
9
4.2.1 一阶循环统计量
循环统计方法是研究信号统计量的周期结构,它直 接对时变统计量进行非线性变换得到循环统计量, 并用循环频率——时间滞后平面分布图来描述信号, 抽取信号时变统计量中的周期信息。 循环统计量的一般表达式为
Sx (f) R x ()ej2fd
(4.2.17)
A
20
功率谱密度函数
为了更加清楚的说明循环谱密度的特性,取信号模 型
x (t) a (t)c o s (2f0 t)
其中, a(t)为零均值的平稳随机信号,满足条件
a(t) 0 t
a(t /2)a(t /2) 0 t
a(t)ej2t 0 t
A
4
第四章 循环平稳信号分析
4.1 循环平稳信号的定义 4.2 信号的循环统计量 4.3 基于二阶循环统计量的仿真信号解调分析 4.4 循环平稳信号处理的工程应用
A
5
4.1 循环平稳信号的定义
严格意义上的循环平稳信号是指时间序列具有周期
时变的联合概率密度函数
N
N
p(x,ti) p(x,tinT0)
A2 2
cos(2
f0 )
=0;
A
co
s
(
2
2
fc ) cos(2
f0 )
= f0;
R
x
(
)
A2 2
cos(2
fc )
1 4
e
j 2
1
A2 2
cos(2
fc )
= 2 f0; = 2 fc;
A 4
e j 2
cos(2
f0 )
= (2 fc f0 );
A2 16
T2
x(t)x*(t)ej2t t
(4.2.13)
A
16
二阶循环统计量—循环自相关函数
幅值调制信号为例对循环自相关函数的性能作仿真
分析
x ( t ) ( 1 A c o s ( 2 f 0 t ) ) c o s ( 2 f c t )
(4.2.14)
1 2
c
os(2
fc ) 1
R x(t;)R x (e j(2 /T 0 )m tR x (e j2 t
m
m
(4.2.10)
A
15
二阶循环统计量—循环自相关函数
式(4.2.10)中的傅里叶系数称为循环自相关函数
Rx ()T 10 T T 00//22Rx(t;)ej2tdt
将式(4.2.9)代入式(4.2.11)得
A
3
引言
机械循环平稳信号具有以下特点:
(1) 正常无故障的机械信号一般是平稳随机信号,统计 量基本不随时间变化。
(2) 故障信号产生周期成分或调制现象,其统计量呈现 周期性变化,此时信号成为循环平稳信号。
(3) 统计量中的某些周期信息反映机械故障的发生。
因此研究循环平稳信号处理和特征信息的提取方法, 对机械故障诊断具有重要的意义。
(2) 如果循环频率高频段的循环谱切片图的循环频率信息与 该图片相对应的频率信息具有相等的关系,则说明此循环 频率是单独的频率分量。在表示频率域信息的切片图中, 一般情况下,可以清楚地看到此单独的频率信息,没有调 制边频带出现。一般在表示循环频率域信息的切片图中, 可以看到边频带现象,这是低频信号对高频信号所产生的 混频效应。
某空气分离压缩机组(简称空分机)结构简图
高速轴转频213.00Hz, 啮合频率为
1倍=6815.75Hz, 2倍=13631.5Hz, 3倍=20447.25Hz
西安交通大学机械工程学院研究生学位课程
现代信号处理技术及应用
第四章 循环平稳信号分析
A
1
第四章 循环平稳信号分析
4.1 循环平稳信号的定义 4.2 信号的循环统计量 4.3 基于二阶循环统计量的仿真信号解调分析 4.4 循环平稳信号处理的工程应用
A
2
引言
在信号处理中,信号的统计量起着极其重要的作用, 最常用的统计量有均值(一阶统计量)、相关函数 与功率谱密度函数(二阶统计量),此外还有三阶、 四阶等高阶统计量。 在非平稳信号中有一个重要的子类,它们的统计量 随时间按周期或多周期规律变化,这类信号称为循 环平稳信号。 具有季节性规律变化的自然界信号都是典型的循环 平稳信号,例如水文数据、气象数据、海洋信号等。 雷达系统回波也是典型的循环平稳信号。
(4.2.11)
Rx (
)1 T0
TT 00//22N li m 2N 11nN Nx(tnT0)x*(tnT0)ej2tdt
1 N
lim N (2N1)T0nN
将上式改写成
TT 00//22x(tnT0)x*(tnT0(4).e 2 .1j22)tdt
Rx()T li m T1
T2 x(t)x*(t)ej2tdt
e
j 2
= (2 fc 2 f0 );
A
17
二阶循环统计量—循环自相关函数
A
18
二阶循环统计量—循环自相关函数
循环自相关函数三维图及其切片图
相关文档
最新文档