BET测试比表面积PPT课件
合集下载
BET的原理和使用方法课件

等温线的形状密切联系着吸附质和吸附剂的本性,因此对等温线的研究可以获取有关吸附剂 和吸附质性质的信息。例如:由Ⅱ或Ⅳ型等温线可计算固体比表面积;Ⅳ型等温线是中等孔 (孔宽在2-50nm间)的特征表现,同时具有拐点B和滞后环,因而被用于中等范围孔的孔分 布计算。
5. 各类孔相应的测试方法
吸附剂孔径范围不同,表观性质不同,对应的测试方法亦不同。
Ⅱ型等温线:S型等温线
相应于发生在非多孔性固体表面或大孔固体上自由的单一多层可逆吸附过程。在低 P/P0处有拐点B,是等温线的第一个陡峭部,它指示单分子层的饱和吸附量,相当于单分 子层吸附的完成。随着相对压力的增加,开始形成第二层,在饱和蒸气压时,吸附层数 无限大。 这种类型的等温线,在吸附剂孔径大于20nm时常遇到。它的固体孔径尺寸无上限。在低 P/P0区,曲线凸向上或凸向下,反映了吸附质与吸附剂相互作用的强或弱。
Ⅴ型等温线(墨水瓶型)
较少见,且难以解释,虽然反映了吸附剂与吸附质之间作用微弱的Ⅲ型等温线特点,但 在高压区又表现出有孔充填。有时在较高P/P0区也存在毛细管凝聚和滞后环。
Ⅵ型等温线
又称阶梯型等温线。是一种特殊类型的等温线,反映的是固体均匀表面上谐式多层吸附的结 果(如氪在某些清净的金属表面上的吸附)。实际上固体的表面,尤其是催化剂表面,大都是 不均匀的,因此很难遇到此情况。
3. 吸附平衡
固体表面上的气体浓度由于吸附而增加时,称吸附过程(adsorption);反之,当气体 在固体表面上的浓度减少时,则为脱附过程(desorption)。
吸附速率与脱附速率相等时,表面上吸附的气体量维持不变,这种状态即为吸附平衡。 吸附平衡与压力、温度、吸附剂的性质、吸附质的性质等因素有关。一般而言,物理吸附 很快可以达到平衡,而化学吸附则很慢。
5. 各类孔相应的测试方法
吸附剂孔径范围不同,表观性质不同,对应的测试方法亦不同。
Ⅱ型等温线:S型等温线
相应于发生在非多孔性固体表面或大孔固体上自由的单一多层可逆吸附过程。在低 P/P0处有拐点B,是等温线的第一个陡峭部,它指示单分子层的饱和吸附量,相当于单分 子层吸附的完成。随着相对压力的增加,开始形成第二层,在饱和蒸气压时,吸附层数 无限大。 这种类型的等温线,在吸附剂孔径大于20nm时常遇到。它的固体孔径尺寸无上限。在低 P/P0区,曲线凸向上或凸向下,反映了吸附质与吸附剂相互作用的强或弱。
Ⅴ型等温线(墨水瓶型)
较少见,且难以解释,虽然反映了吸附剂与吸附质之间作用微弱的Ⅲ型等温线特点,但 在高压区又表现出有孔充填。有时在较高P/P0区也存在毛细管凝聚和滞后环。
Ⅵ型等温线
又称阶梯型等温线。是一种特殊类型的等温线,反映的是固体均匀表面上谐式多层吸附的结 果(如氪在某些清净的金属表面上的吸附)。实际上固体的表面,尤其是催化剂表面,大都是 不均匀的,因此很难遇到此情况。
3. 吸附平衡
固体表面上的气体浓度由于吸附而增加时,称吸附过程(adsorption);反之,当气体 在固体表面上的浓度减少时,则为脱附过程(desorption)。
吸附速率与脱附速率相等时,表面上吸附的气体量维持不变,这种状态即为吸附平衡。 吸附平衡与压力、温度、吸附剂的性质、吸附质的性质等因素有关。一般而言,物理吸附 很快可以达到平衡,而化学吸附则很慢。
流动吸附法测定比表面积BETPPT课件

2010439记忆材料传输材料传动材料识别材料膜材料热泵材料感应材料前瞻性未来材料智能材料动态响应材料手性药物202111储气材料美国能源部目标180vstpv35bar室温二氧化碳捕集材料甲烷储存材料分子筛活性炭活性炭分子筛mofsmofs112021一目的掌握气流的控制和流速计的使用方法二意义量化产品质量控制指标122021132021142021微孔152021162021吸附类型和作用力的关系172021物理吸附过程分子扩散单层吸附多层吸附吸附饱和182021分析方法192021样品脱气在适宜的加热温度下样品通过真空的应用或干燥惰性气体的流动除去吸附污染物的过程主要是水汽
.
33
实验装置
T. 钢瓶阀门;T1. 减压阀;T2. 调压阀;T3、T4. 微量调节阀;T5. 活塞;M. 高压氮气瓶; F. 净化器;J. 稳流管;W. 压力表;K1、K2. D08-1F流量显示仪;D1、D2. 三通阀;S. 皂 膜流速计;G1、G2. 预热管;A. 饱和器;B. 混合器;L. 样品管;C. 筛板; N、D. 磨口塞;P. 吸附仪(G1、G2和P均置于恒温水浴中,水浴高度以水面高过样品管 中的样品为准);K. 玻璃丝
热泵材料
感应材料
识别材料
传输材料
Kitagawa, Nat. Chem. 2009, 1, 696
.
Yaghi, Nat. Chem. 2010, 2, 439 10
一、背景
储气材料
美国能源部 目标
180 v(STP)/v 35 bar, 室温
MOFs
MOFs
分子筛
活性炭
活性炭
分子筛
甲烷储存材料
1.1
⑤ 气体分子在固体表面的凝结速度正比于该组分的气相分压;
.
33
实验装置
T. 钢瓶阀门;T1. 减压阀;T2. 调压阀;T3、T4. 微量调节阀;T5. 活塞;M. 高压氮气瓶; F. 净化器;J. 稳流管;W. 压力表;K1、K2. D08-1F流量显示仪;D1、D2. 三通阀;S. 皂 膜流速计;G1、G2. 预热管;A. 饱和器;B. 混合器;L. 样品管;C. 筛板; N、D. 磨口塞;P. 吸附仪(G1、G2和P均置于恒温水浴中,水浴高度以水面高过样品管 中的样品为准);K. 玻璃丝
热泵材料
感应材料
识别材料
传输材料
Kitagawa, Nat. Chem. 2009, 1, 696
.
Yaghi, Nat. Chem. 2010, 2, 439 10
一、背景
储气材料
美国能源部 目标
180 v(STP)/v 35 bar, 室温
MOFs
MOFs
分子筛
活性炭
活性炭
分子筛
甲烷储存材料
1.1
⑤ 气体分子在固体表面的凝结速度正比于该组分的气相分压;
BET法测多孔材料比表面ppt课件

89dhk方程?1983年霍尔特horvath和川添kawazoe二人提出了dhk方程910四仪器和药品10比表面和孔径分析仪1套电子天平1台lnf粉体若干11五实验步骤1用精度为万分之一的电子天平准确称取02g左右的干燥lnf粉末转移至吸附仪样品管中用少量真空油脂均匀涂抹玻璃磨口套上考克并旋紧阀门接入吸附仪的预处理脱气口
实验15 BET法测材料比表面
ppt课件.
1
一、实验目的
掌握BET法测定多孔材料(包括纳米粉体)比表面和孔径分布的方法。
二、实验内容
本实验包括固体物质的制备和比表面的测定两个方面的内容
ppt课件.
2
三、实验原理
比表面积是指单位质量固体物质具有的表面积值,包括外表面积和内表面积; 孔径分布是多孔材料的孔体积相对于孔径大小的分布;孔体积是单位质量固体物 质中一定孔径分布范围内的孔体积值。
等温吸脱附线是研究多孔材料表面和孔的基本数据。即对于给定的吸附剂 和吸附质,表现为在一定的温度下,吸附量(脱附量)与一系列相对压力之间的 关系。
一般来说,获得等温吸脱附线后,方能根据BET公式 计算出比表面积和孔径分布等。
ppt课件.
图15-1 Ⅰ型等温吸附曲线 3
静态氮气吸附法
• 最经典、最常用的测定等温吸脱附线的方法是静态氮气吸附法, 该法具有优异的可靠度和准确度,采用氮气为吸附质,因氮气是 化学惰性物质,在液氮温度下不易发生化学吸附,能够准确地给 出吸附剂物理表面的信息。
样品 LNF
产量/g
比表面积 微孔体积 平均孔径
/(m2/g) /(cm2/g)
/nm
ppt课件.
13
八、思考题
进行等温吸附线测试前,为何要对样品进行抽真空和加热处理?
实验15 BET法测材料比表面
ppt课件.
1
一、实验目的
掌握BET法测定多孔材料(包括纳米粉体)比表面和孔径分布的方法。
二、实验内容
本实验包括固体物质的制备和比表面的测定两个方面的内容
ppt课件.
2
三、实验原理
比表面积是指单位质量固体物质具有的表面积值,包括外表面积和内表面积; 孔径分布是多孔材料的孔体积相对于孔径大小的分布;孔体积是单位质量固体物 质中一定孔径分布范围内的孔体积值。
等温吸脱附线是研究多孔材料表面和孔的基本数据。即对于给定的吸附剂 和吸附质,表现为在一定的温度下,吸附量(脱附量)与一系列相对压力之间的 关系。
一般来说,获得等温吸脱附线后,方能根据BET公式 计算出比表面积和孔径分布等。
ppt课件.
图15-1 Ⅰ型等温吸附曲线 3
静态氮气吸附法
• 最经典、最常用的测定等温吸脱附线的方法是静态氮气吸附法, 该法具有优异的可靠度和准确度,采用氮气为吸附质,因氮气是 化学惰性物质,在液氮温度下不易发生化学吸附,能够准确地给 出吸附剂物理表面的信息。
样品 LNF
产量/g
比表面积 微孔体积 平均孔径
/(m2/g) /(cm2/g)
/nm
ppt课件.
13
八、思考题
进行等温吸附线测试前,为何要对样品进行抽真空和加热处理?
BET比表面积和孔径解析

5
根据直线旳斜率和截距,可求出形成单分子层旳吸 附量Vm=1/(斜率+截距)和常数C=斜率/截距+1.
BET吸附等温方程(1-12)――――单层饱和吸附量
vm:
1 vm = 斜率+截距
(1-13)
Am就设是每该一吸种附吸分附子分在子吸旳附平剂均表截面面上积占为据A旳m(n表m面2) 积,:此
Vm Sg = Am ×NA ×
比表面积和孔径计算
BET BJH
•吸附现象:
吸附作用指旳是一种物质旳原子或分子附着在另一种物 质表面上旳过程-----物质在界面上变浓旳过程。界面上旳 分子与相里面旳分子所受旳作用力不同而引起旳。
*气-固接触面来说,因为固体表面分子受力不均衡,就产生一种剩余 力场,这么就对气体分子产生吸附作用。 *吸附旳分子仍是在不断运动旳(例如振动)。 *气体分子能克服固体表面旳引力,会离开表面造成脱附。 *吸附与脱附之间能够建立动态平衡.
一般用比压(相对压力)p/p0表达压力,p 为气体旳真实压力,p0为气体在测量温度
下旳饱和蒸汽压.
Brunauer分类旳五种等温线类型
Ⅰ、Ⅱ、Ⅳ型曲线是凸形 Ⅲ、Ⅴ型是凹形
Ⅰ型等温线相当于朗格谬尔单层可逆吸附过程。 Ⅱ型等温线相当于发生在非孔或大孔固体上自由旳单一 多层可逆吸附过程,位于p/p0旳B点,是等温线旳第一种 陡峭部,它表达单分子层饱和吸附量。 Ⅲ型等温线不出现B点,表达吸附剂与吸附质之间旳作用 很弱.
*试验成果表白,多数催化剂旳吸附试验数据按BET作图时
旳直线范围一般是在p/p0之间。 *C常数与吸附质和表面之间作用力场旳强弱有关。给定不同 旳C值,并以v/vm对p/p0作图,就得到下图旳一组曲线。
常数c作参数,以吸附重量或 吸附体积(W/Wm或V/Vm) 对x=P/P0作图。 a)c﹥2 , II型吸附等温线; b)c﹤2, III型吸附等温线 BET公式合用比压范围: 0.05≤x≤0.35
根据直线旳斜率和截距,可求出形成单分子层旳吸 附量Vm=1/(斜率+截距)和常数C=斜率/截距+1.
BET吸附等温方程(1-12)――――单层饱和吸附量
vm:
1 vm = 斜率+截距
(1-13)
Am就设是每该一吸种附吸分附子分在子吸旳附平剂均表截面面上积占为据A旳m(n表m面2) 积,:此
Vm Sg = Am ×NA ×
比表面积和孔径计算
BET BJH
•吸附现象:
吸附作用指旳是一种物质旳原子或分子附着在另一种物 质表面上旳过程-----物质在界面上变浓旳过程。界面上旳 分子与相里面旳分子所受旳作用力不同而引起旳。
*气-固接触面来说,因为固体表面分子受力不均衡,就产生一种剩余 力场,这么就对气体分子产生吸附作用。 *吸附旳分子仍是在不断运动旳(例如振动)。 *气体分子能克服固体表面旳引力,会离开表面造成脱附。 *吸附与脱附之间能够建立动态平衡.
一般用比压(相对压力)p/p0表达压力,p 为气体旳真实压力,p0为气体在测量温度
下旳饱和蒸汽压.
Brunauer分类旳五种等温线类型
Ⅰ、Ⅱ、Ⅳ型曲线是凸形 Ⅲ、Ⅴ型是凹形
Ⅰ型等温线相当于朗格谬尔单层可逆吸附过程。 Ⅱ型等温线相当于发生在非孔或大孔固体上自由旳单一 多层可逆吸附过程,位于p/p0旳B点,是等温线旳第一种 陡峭部,它表达单分子层饱和吸附量。 Ⅲ型等温线不出现B点,表达吸附剂与吸附质之间旳作用 很弱.
*试验成果表白,多数催化剂旳吸附试验数据按BET作图时
旳直线范围一般是在p/p0之间。 *C常数与吸附质和表面之间作用力场旳强弱有关。给定不同 旳C值,并以v/vm对p/p0作图,就得到下图旳一组曲线。
常数c作参数,以吸附重量或 吸附体积(W/Wm或V/Vm) 对x=P/P0作图。 a)c﹥2 , II型吸附等温线; b)c﹤2, III型吸附等温线 BET公式合用比压范围: 0.05≤x≤0.35
BET比表面积和孔径课件

吸附量ν
相对压力p/p0
.
5
Ⅳ型等温线是一种特殊类型的等温线,反应的是固体 均匀表面上谐式多层吸附的结果。(有毛细凝聚现象 发生) Ⅴ型等温线很少遇到,而且难以解释,虽然反映了吸 附质与吸附剂之间作用微弱的Ⅲ型等温线特点,但在 高压区又表现出有孔充填(毛细凝聚现象)。
.
6
Ⅳ型、Ⅴ型曲线则有吸附滞后环
.
1
•吸附现象:
吸附作用指的是一种物质的原子或分子附着在另一种 物质表面上的过程-----物质在界面上变浓的过程。界面上 的分子与相里面的分子所受的作用力不同而引起的。
*气-固接触面来说,由于固体表面分子受力不均衡,就产生一个剩余 力场,这样就对气体分子产生吸附作用。 *吸附的分子仍是在不断运动的(例如振动)。 *气体分子能克服固体表面的引力,会离开表面造成脱附。 *吸附与脱附之间可以建立动态平衡.
多分子层吸附等温方程 ——BET吸附等温式
按照朗格谬尔p吸附= 等1温方程C- 的1推•导p方法同样可得到 BET吸附等温方程v:(po- p) vmC vmC po
(1-12)
式中 p0――吸附温度下吸附质的饱和蒸汽压;
vm——单分子层饱和吸附量;
C——BET方程C常数,其值为exp{(E1-E2)/RT},
通常用比压(相对压力)p/p0表示压力,p 为气体的真实压力,p0为气体在测量温度
下的饱和蒸汽压.
.
3
Brunauer分类的五种等温线类型
Ⅰ、Ⅱ、Ⅳ型曲线是凸形 Ⅲ、Ⅴ型是凹形
.
4
Ⅰ型等温线相当于朗格谬尔单层可逆吸附过程。 Ⅱ型等温线相当于发生在非孔或大孔固体上自由的单一 多层可逆吸附过程,位于p/p0=0.05-0.10的B点,是等温线 的第一个陡峭部,它表示单分子层饱和吸附量。 Ⅲ型等温线不出现B点,表示吸附剂与吸附质之间的作用 很弱.
BET测试比表面积

二、BET法的概念
BET:Brunauer、Emmett和Teller名字的缩写; BET 测试理论是根据这三位科学家提出的多分子层 吸附模型,并推导出单层吸附量 Vm 与多层吸附量 V 间的关系方程,即著名的 BET 方程; BET比表面积测试可用于测颗粒的比表面积、孔容、 孔径分布以及氮气吸附脱附曲线。对于研究颗粒的 性质有重要作用。
BET比表面积法原3 4 5
BET法的概念 BET法测定原理 小结
测试操作流程及制样
一、比表面积及其意义
比表面积:单位体积或单位质量上颗粒的总表面积。 比表面积的意义: 固体有一定的几何外形,借通常的仪器和计算 可求得其表面积。但粉末或多孔性物质表面积的测 定较困难,它们不仅具有不规则的外表面,还有复 杂的内表面。比表面积的测量,无论在科研还是工 业生产中都具有十分重要的意义。一般比表面积大、 活性大的多孔物,吸附能力强。
三. BET法测定原理
p 1 (C 1) p BET公式: V ( p0 p) Vm C Vm C p0
(9-1)
式中, P——氮气分压(Pa) P0——吸附温度下液氮的饱和蒸气压(Pa)
Vm——样品上形成单分子层需要的气体量(mL)
V——被吸附气体的总体积(mL) C——与吸附有关的常数。
四. 小结
1.比表面积在纳米材料研究方面有重要意义; 2.BET比表面积测试法的原理; 3.BET比表面积测试可用于测颗粒的比表面积、 孔容、孔径分布以及氮气吸附脱附曲线。
谢谢!
三. BET法测定原理
以氮气为吸附质,以氦气或氢气作载气, 两种气体按一定比例混合,达到指定的相对压 力,然后流过固体物质。当样品管放入液氮保 温时,样品即对混合气体中的氮气发生物理吸 附,而载气则不被吸附。这时屏幕上即出现吸 附峰。
BET比表面积课件

金埃谱科技是位于北京市海淀区的一家公司,专注于粒子世界的研究。他们推出的F-Sorb X400系列全自动比表面积及孔径分析仪能同时进行四个样品的分析,功能包括单点、多点BET比表面积、Langmuir比表面积等多种数据分析。该仪器的工作原理为氮吸附动态连续流动法,比表面积分析范围广泛。此外,文档还简要介绍了物理吸附理论,即一种物质的原子或分子附着在另一种物质表面上的过程,这涉及到吸附与脱附之间的动态平衡。在吸附理论中,吸附剂是具有吸附能力的固体物质,而吸附质是被吸附的物质,通常采用氮气。物理吸附是靠范德华力在吸附剂表面上吸附,这种力较弱,因此物理吸附分子的结构变化不大。然而,文档并未直接提供BET比表面积的具体公式,而是着重于介绍相关理论和应用设பைடு நூலகம்。
勃氏法测定比表面积PPT课件

第5页/共32页
五、原因分析
测
机
人
仪器状态差
操作人员技术水平差
视觉影响
操作人员
水柱晃动
气密性、 责任心不够
空隙率、
液面高度、
穿孔板透气孔 放置不牢靠
未严格按照 规章、制度
技能培训不够
温度波动大
测量结
果
电压不稳定
操作规程 不完善
检测规程 不完善
粉料密度
有误差
标准粉的标准值
湿度波动大
操作复杂
检测标准 不完善
二、 QC小组简介
1、小组概况
成立时间 小组类型
2011年3月3日 管理型
小组人数 平均年龄
10人 25
人员素质情况 质检员2人、试验员2人、初级试验员4人、班组长2人
活动情况
共20次
第1页/共32页
2、成员情况
序号 姓名 文化程度 小组职务
1 周志强 大学
组长
2 王明月 大学
副组长
3 赵鑫
大学
组员
表4
条件:试验室温度l7~18℃水 银的密度为l3.55 g/cm
一组
二组
水银质量 (g)
86.70
86.50
体积(㎝3)
1.934
1.919
比表面积(m2/㎏)
371
365
确认结论
要因
第11页/共32页
要因确认5:基准液面不稳定
பைடு நூலகம்确认方法
现场调查
确认标准
勃氏仪使用方法
确认人
李亚军
确认内容
在测比表面积时,压力计上的液面应保持在一定的
确认结论
要因
第15页/共32页
五、原因分析
测
机
人
仪器状态差
操作人员技术水平差
视觉影响
操作人员
水柱晃动
气密性、 责任心不够
空隙率、
液面高度、
穿孔板透气孔 放置不牢靠
未严格按照 规章、制度
技能培训不够
温度波动大
测量结
果
电压不稳定
操作规程 不完善
检测规程 不完善
粉料密度
有误差
标准粉的标准值
湿度波动大
操作复杂
检测标准 不完善
二、 QC小组简介
1、小组概况
成立时间 小组类型
2011年3月3日 管理型
小组人数 平均年龄
10人 25
人员素质情况 质检员2人、试验员2人、初级试验员4人、班组长2人
活动情况
共20次
第1页/共32页
2、成员情况
序号 姓名 文化程度 小组职务
1 周志强 大学
组长
2 王明月 大学
副组长
3 赵鑫
大学
组员
表4
条件:试验室温度l7~18℃水 银的密度为l3.55 g/cm
一组
二组
水银质量 (g)
86.70
86.50
体积(㎝3)
1.934
1.919
比表面积(m2/㎏)
371
365
确认结论
要因
第11页/共32页
要因确认5:基准液面不稳定
பைடு நூலகம்确认方法
现场调查
确认标准
勃氏仪使用方法
确认人
李亚军
确认内容
在测比表面积时,压力计上的液面应保持在一定的
确认结论
要因
第15页/共32页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三. BET法测定原理
以氮气为吸附质,以氦气或氢气作载气, 两种气体按一定比例混合,达到指定的相对压 力,然后流过固体物质。当样品管放入液氮保 温时,样品即对混合气体中的氮气发生物理吸 附,而载气则不被吸附。这时屏幕上即出现吸 附峰。
三. BET法测定原理
当液氮被取走时,样品管重新处于室温,吸附氮气 就脱附出来,在屏幕上出现脱附峰。最后在混合气 中注入已知体积的纯氮,得到一个校正峰。根据校 正峰和脱附峰的峰面积,即可算出在该相对压力下 样品的吸附量。改变氮气和载气的混合比,可以测 出几个氮的相对压力下的吸附量,从而可根据BET 公式计算比表面。
VmC
( p0 p) 对 p ,由此可得:
作图可得一直线,其斜率为
0
Vm
1 斜率截距
(9-2)
VmC
, 截距为
三. BET法测定原理
若已知每个被吸附分子的截面积,可求出被测样品的比
表面,即: Sg
VmNAAm1 224m0
018
(9-3)
式中,Sg——被测样品的比表面(㎡/g)
NA——阿佛加得罗常数
三. BET法测定原理
BET公式:V(p0 pp)Vm 1C(C Vm C 1)p p0
式中, P——氮气分压(Pa)
(9-1)
P0——吸附温度下液氮的饱和蒸气压(Pa)
Vm——样品上形成单分子层需要的气体量(mL)
V——被吸附气体的总体积(mL)
C——与吸附有关的常数。
p
p
(C 1)
以V 1
四. 小结
1.比表面积在纳米材料研究方面有重要意义; 2.BET比表面积测试法的原理; 3.BET比表面积测试可用于测颗粒的比表面积、 孔容、孔径分布以及氮气吸附
❖ BET:Brunauer、Emmett和Teller名字的缩写; ❖ BET 测试理论是根据这三位科学家提出的多分子层
吸附模型,并推导出单层吸附量 Vm 与多层吸附量 V 间的关系方程,即著名的 BET 方程; ❖ BET比表面积测试可用于测颗粒的比表面积、孔容、 孔径分布以及氮气吸附脱附曲线。对于研究颗粒的 性质有重要作用。
Am——被吸附气体分子的截面积(n㎡)
m——被测样品质量(g);
BET公式的适用范围为: p/p0=0.05~0.35, 这是因为比压小于 0.05时,压力大小建立不起多分子层吸附的平衡,甚至连单分 子层物理吸附也还未完全形成。在比压大于0.35时,由于毛细 管凝聚变得显著起来,因而破坏了吸附平衡。
BET比表面积法原理及分析
1 比表面积及其意义 2 BET法的概念 3 BET法测定原理 4 小结
5 测试操作流程及制样
一、比表面积及其意义
❖ 比表面积:单位体积或单位质量上颗粒的总表面积。 ❖ 比表面积的意义:
固体有一定的几何外形,借通常的仪器和计算 可求得其表面积。但粉末或多孔性物质表面积的测 定较困难,它们不仅具有不规则的外表面,还有复 杂的内表面。比表面积的测量,无论在科研还是工 业生产中都具有十分重要的意义。一般比表面积大、 活性大的多孔物,吸附能力强。