第二节 幂的乘方优秀学案
幂的乘方导学案 (2)

由例1,例3你能发现幂的乘方公式中的字母可以表示什么吗?
组内互动与解疑
当堂检验(课上多媒体展示题目)
组间互测与指导
交流与提高(课上多媒体展示题目)
目
标
达
成
情
况
学习目标
课前
课后
理解幂的乘方法则的由来
掌握幂的乘方法则
了解同底数幂的乘法与幂的乘方的区别与联系
能熟练地运用幂的乘方法则进行计算
§15.1.2幂的乘方导学案
学习目标:理解幂的乘方法则的由来;掌握幂的乘方法则;了解同底数幂的乘法与幂的乘方的区别与联系;能熟练地运用幂的乘方法则进行计算,并能利用它解决简单的实际问题。
学习重点:幂的乘方法则及其简单应用。
学习难点:理解幂的乘方法则的推导过程。
学习过程:
学习内容
导学设计
学习笔记
复习准备
1、写出同底数幂的乘法法则
2、下面的计算对不对?如果不对应该怎样改正?
(1) (2) (4)
(5) (6)
3、计算:
知
识
探
究
与
分
享
1.试一试:读出式子
2.
?
3.根据乘方的意义及同底数幂的乘法法则计算.
(1) =
(2) =
(3) ==(m是正整数)
4、(1)观察第3题中每个小题的原式与结果,你有什么发现?
能利用它解决简单的实际问题
(2)根据你的发现猜想 (m,n是正整数)的结果。
(3)证明你的猜想,并写出每一步的依据.
5、能否将你发现的规律用一句话或一个公式表示出来?如果能,请写出来.
知
识
运
用
与
拓
幂的乘方 优秀教案

幂的乘方●教学内容人教版《数学》八年级(上)P96-97页内容,对于本章的幂运算,学生只在前一节学了同底数幂的乘法,这节课是14.1.2幂的乘方,两课时。
●教学目标1、了解幂的乘方的运算性质,会进行幂的乘方运算。
2、能利用幂的乘方的运算性质灵活解决问题。
●教学重难点及突破重点了解幂的乘方的运算性质,会进行幂的乘方的计算。
难点幂的乘方与同底数幂的乘法运算性质的区别;培养学生逻辑推理、数学运算的数学核心素养,发展学生有条理表达的能力。
突破1、利用课堂作业纸一步步引导学生合理的推导论证出幂的运算法则,对幂的运算性质深入地理解;2、用类比的方法让学生感受、理解公式的联系与区别;用小组合作探讨交流的方式,让学生反复探讨纠错练习,以达到对所学幂运算的熟练运用。
●教学准备多媒体、PPT课件、课堂作业纸(每个学生一张)。
●教学设计一、导入(PPT演示)1、计算:×= = (依据), = ,++= = (依据)。
2、一个棱长为4的正方体,它的体积为(用代数式表示),一个棱长为的正方体,它的体积为(用代数式表示),3、()的意义是即()= ×× =()。
二、探究(一)、幂的乘方的性质(PPT演示)课本96页“探究”(分小组做课堂作业纸的探究部分)计算:1、()乘方的意义××同底数幂的乘法法则();(乘方的运算)(同底数幂的乘法运算)2、()××()();3、()=××=()(m为正整数)。
一般地,对于任意底数a与任意正整数m ,n , 依据∵()= (乘方的意义)= (同底数幂的乘法)=()。
(乘法的意义)∴()=(m,n都是正整数)(投影展示学生正确作品)小组总结后板书课题及1、幂的乘方公式:()=(m,n都是正整数)注:指数m,n都是正整数,底数a可以为任何实数也可以为代数式。
2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
学案4:14.1.2幂的乘方

14.1.2幂的乘方教学目标:1.理解幂的乘方的运算法则,能灵活运用法则进行计算,并能解决一些实际问题.2.在双向运用幂的乘方运算法则的过程中,培养学生思维的灵活性;3.在探索“幂的乘方的法则”的过程中,让学生体会从特殊到一般的数学归纳思想,初步培养学生应用“转化”的数学思想方法的能力.教学重点:能灵活运用幂的乘方法则进行计算.教学难点:幂的乘方与同底数幂的乘法运算的区别,提高推理能力和有条理的表达能力. 教法:自主学习与小组合作探究教学过程:一、创设情境,导入新课问题一:我们知道:a a a a a =a 5,那么 类似地a 5a 5a 5a 5a 5可以写成(a 5)5,⑴上述表达式(a 5)5是一种什么形式?(幂的乘方)⑵你能根据乘方的意义和同底数幂的乘法法则计算出它的结果吗?二、观察猜想,归纳总结问题二:1.试试看:(1)根据乘方的意义及同底数幂的乘法填空:① ②(a m )2=________×_________ =__________; ③ = ④ = .【答案】①6 ②a m a m a 2m③32×32×32 6 ④a 3 ×a 3 ×a 3×a 3 122. 类比探究:当为正整数时,观察上面式子左右两端,你发现它们各自有什么样的特点?它们之间有怎样的运算规律?请你概括出来.3.总结法则 (a m )n =_a mn __(m ,n 都是正整数)幂的乘方,__底数__不变,_指数相加_.()();22223323=⨯=()=323()3()=43a ()a n m ,()()()().a aa a a a m m m m m m n m ==•••=++ 个个三、理解运用,巩固提高问题三:1.计算(1) (2); (3)(4) (5)(6) (7)【答案】(1)1015 (2)b 12 (3)a 30 (4)3x 12(5)a 20 (6)(x +y )18 (7)(m -n )2n +3归纳小结:同底数幂的乘法与幂的乘方的区别:相同点都是 底数 不变;不同点,前者是指数 相加 ,后者是指数 相乘 .2.(1)已知求的值.(2)已知求的值.【答案】(1)17 (2)27四、深入探究,活学活用问题四:1.我们知道31=3,它的个位数字是3;32=9它的个位数字是9;33=27它的个位数字是7;34=81它的个位数字是1,……再继续下去看一看,你发现了什么?你能很快说出32012的个位数字是几吗?2. 逆用法则: (1) (2)== (3)五、深入学习,巩固提高1.下列各式中,计算正确的是( )A. B. C. D.2.下列计算正确的是( )A .x 2+x 2=2x 2B .x 2x 2=2x 4C .(a 3)3=a 10D .(a m )n =(a n )m 3.可写成( )A .B .C .D . 4.(a 2)3a 4 等于( )A .a 9B .a 10C .a 12D . a 14 5.填空: ; ;若 .();1053()43b ()().3553a a •()()()24432232x x x x •+•()()()()335210254a a a a a -•-•--+()[]()[]4332y x y x +•+()()()[]22n n m m n n m -•--,2832235x =⨯x ,32=n x ()23n x )()(a a a m n n m mn ==)()()(64(23(_____)(_____)(____)(___)12a a a a a ====)()((_____)(______)a a a n m mn ==)((__)a m )((___)a n 39(____)3=()633a a =1644a a a =•()1243a a =743a a a =+13+m x ()13+m x ()13+m x ()x x m •3x x m •3()=34x ()=•523x x ()==•y a a a y 则,11356.(1)若求代数式的值.(2)的值.参考答案:五、深入学习,巩固提高1.C ;2.A ;3.C ;4.B ;5. x 12,x 11,2;6.(1)432;(2)4. ,210,310==y x y x 4310+()n n 求,39162=。
幂的运算—幂的乘方教案设计

幂的运算—幂的乘方教案设计幂的运算—幂的乘方教案设计「篇一」幂的运算的小结与思考教案课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2。
②(-x3)=-(-x)3。
③(x-y)2=(y-x)2。
④(x-y)3=(y-x)3。
⑤x-a-b=x-(a+b)。
⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25。
所以103m+2n=103m102n=6425=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1。
y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<1324>=2,则<210>=______.解 210=(24)222=1624。
<210>=<64>=4例5 1993+9319的个位数字是A.2 B.4 C.6 D.8解1993+9319的个位数字等于993+319的`个位数字.∵ 993=(92)469=81469.319=(34)433=81427.993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
《幂的乘方》参考学案

幂的乘方学习目标:1、经历探索幂的乘方运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2、了解幂的乘方运算性质,并能解决一些实际问题。
学习重点:会进行幂的乘方的运算。
学习难点:幂的乘方法则的总结及运用。
学习过程:一、自主学习1、回顾同底数幂的乘法a m·a n=a m+n(m、n都是正整数)2、自主探索,感知新知64表示_______个___________相乘.(62)4表示_________个__________相乘.a3表示_________个___________相乘.(a2)3表示_________个________相乘.3、推广形式,得到结论①.(a m)n表示_______个________相乘=________×________×…×_______×_______=__________即(a m)n= ______________(其中m、n都是正整数)②.通过上面的探索活动,发现了什么?幂的乘方,底数_______,指数__________.二、运用新知例:计算:(1)(103)5(2)-(a2)7(3)[(-6)3]4三、巩固新知【基础练习】1.下面各式中正确的是().A.(22)3=25B.m7+m7=2m7C.x5·x=x5D.x4·x2=x82.(x4)5=().A.x9B.x45C.x20D.以上答案都不对3.(a+b)m+1·(a+b)n=().A.(a+b)m(m+1)B.(a+b)2m+1 C.(a+b)(m+1)m D.以上答案都不对4.-a2·a+2a·a2=().A.a3B.-2a6C.3a3D.-a65、判断题,错误的予以改正。
(1)a5+a5=2a10 ()(2)(s3)3=x6 ()(3)(-3)2·(-3)4=(-3)6=-36 ()(4)[(m-n)3]4-[(m-n)2]6=0 ()【提高练习】1、计算.(1)[(x2)3]7 (2)[(a-b)m] n(3)(x3)4·x2(4)(a4)3-(a3)4(5)2(x2)n-(x n)22、若(x2)n=x8,则m=_________.3、若[(x3)m]2=x12,则m=_________。
幂的乘方导学案(公开课)

美华中学数学科初二上学期 “幂的乘方”导学案学生姓名_____ 教师评价学习目标:知识与技能 :1、经历探索幂的乘方性质,进一步体会幂的乘方。
2、了解幂的乘方运算性质,并能利用性质进行计算和解决一些实际问题。
过程与方法:通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力。
情感态度与价值观:培养学生独立思考、主动探索的良好学习习惯。
学习重点:幂的乘方运算性质。
学习难点:幂的乘方的逆运算及性质的灵活运用。
导学过程:一、复习自测计算 ⑴33a a += (2)32a a ⋅ = (3)3342a a a a +=二、自主探究、合作总结1、做一做:(1)()232 =____×____ = _______ (根据同底数幂的乘法法则)=()2_____ (2)()34a =___×___×___ = _______ (根据同底数幂的乘法法则)=()a _____ (3) ()a n 2=_____×_____=____________(根据=•a a n m )= ()a ______(4) ()4m a =_____________________ =___________________=()a______ ( )(5)()a m n =________________________________________(幂的意义) ( )=a _________________________________________________(同底数幂的乘法法则)=____________________________________(乘法的意义)2、通过以上计算,你有什么发现?小结新知:幂的乘方,_________________________,_____________________________。
符号表述:()a m n =__________(m 、n 为正整数)3、想一想:()a m n 与()a n m相等吗?答: ,因为 三、展示提升(一)能力频道能力频道1:灵活使用公式的能力:计算:⑴ ()1035= ⑵ ()a 44= ⑶ ()[]32a -= ⑷ ()=--x 43小结:易错点:第(3)题 ;第(4)题能力频道2:区分几种运算的能力(区分合并同类项、同底数幂的乘法、幂的乘方) 下面计算是否正确?如有错误请改正。
人教版八年级数学上册《幂的乘方》教案2
《幂的乘方》教案教学目标1.理解幂的乘方的运算法则,能灵活运用法则进行计算,并能解决一些实际问题.2.在双向运用幂的乘方运算法则的过程中,培养学生思维的灵活性.3.在探索“幂的乘方的法则”的过程中,让学生体会从特殊到一般的数学归纳思想,初步培养学生应用“转化”的数学思想方法的能力.教学重难点能灵活运用幂的乘方法则进行计算,区分幂的乘方与同底数幂的乘法运算,提高推理能力.教学过程一、创设情境,导入新课问题一:我们知道,5aa a a a a =,那么类似地()5555555a a a a a a =. (1)上述表达式()55a 是一种什么形式?(幂的乘方). (2)你能根据乘方的意义和同底数幂的乘法法则计算出它的结果吗?二、观察猜想,归纳总结问题二:1.探究:根据乘方的意义及同底数幂的乘法填空,观察计算结果,你能发现什么规律?(1)()()3222233⨯⨯ =333=;(2)()()32222a a a a a ==; (3)()()3m m m m a a a a a ==;2.类比探究:当m ,n 为正整数时,()()()().a a a a a a m m m m m m n m ==∙∙∙=++个个观察上面式子左右两端,你发现他们各自有什么样的特点?他们之间有怎样的运算规律?请你概括出来:________________________________.3.总结法则:我们总结出:()n m mn a a =(m ,n 都是正整数).即幂的乘方,底数不变,指数相乘.三、理解运用,巩固提高例2.计算(1)()5310;(2)()44a;(3)()2m a;(4)()34x-.同学们自己完成,请同学在黑板上板书自己的过程.归纳小结:同底数幂的乘法与幂的乘方的区别:相同点都是_________不变;不同点,前者是指数______________,后者是指数________________.四、随堂练习课本第97页的练习第1、2题.五、课堂小结引导学生对本课所学的知识进行梳理.六、课后作业课本第104页习题14.1的第1题中的(3)、(4)小题、第2题中的(1)、(2)小题.。
幂的乘方教案2人教版(优秀教案)
课题:整式的乘法(第课时)——幂的乘方一、教课目的. 经历幂的乘方法例的形成过程,会进行幂的乘方运算.. 培育归纳归纳能力和运算能力.二、教课要点和难点. 要点:幂的乘方运算.. 难点:归纳归纳幂的乘方法例.三、教课过程(一)基本训练,稳固旧知. 填空:同底数幂相乘,底数,指数,即·(,都是正整数).. 判断正误:对的画“√”,错的画“×”.();()()·;()()·;()()·;()()·.(). 直接写出结果:()×()×()·()·()·()×()××()···(二)创建情境,导入新课师:上节课我们说过,为了学习整式的乘除,我们需要学习一些准备知识. 上节课我们学习了准备知识之一:同底数幂相乘,本节课我们要学习准备知识之二:幂的乘方(板书课题:幂的乘方).(三)试试指导,讲解新课师:什么是幂的乘方?(板书:(), 并指准)是一个幂,这个式子表示这个幂的次方,也就是幂的乘方 .:怎么做的乘方呢?(指 () )我是看个例子 . :(指准 () )的次方是一个,个的次方是什么意思?生:⋯⋯(多几位同学表见解):(指 () )个式子表示个相乘(板:=××). 大家看一看,想想,是否是么回事?(稍停片晌):(指准式子)××又等于什么?生: . (板:=):(指准式子)通上边的算,我获得() =.:下边我再来看一个的乘方的例子.:(板: () ,并指准)是一个,个的次方是什么意思?(稍停)它表示个相乘(板:=···) .:(指准式子)利用同底数相乘的法,···又等于什么?生: . (板:=):(指准式子)通上边的算,我又获得() =.:从两个例子,了的乘方的律?(等到有一部分学生手):的乘方有什么律?把你的见解在小里沟通沟通.(生小沟通,巡听):来一的乘方的律?生:⋯⋯(多几名同学表见解,要鼓舞学生用自己的言归纳):(指准 () =⋯⋯=)的乘方,底数不,指数相乘.:(指准 () =⋯⋯=)的乘方,底数不,指数相乘.(出示下边的板)的乘方,底数不,指数相乘.:(指板)个就是的乘方的法,大家把个法两遍:(指板)个法能够用公式来表示. (板: () )依据法. (生)() 等于什么?生: . (板:):(指准式子)在个公式中,,都是正整数(板:(,都是正整数)).:下边我来看一道例(出示例)例算:()() ; ()();()();()().(先生,解要扣法,解格式如本第所示)(四)探,回授. 直接写出果:()() ()()()() ()(). 填空:()·;()();();()();()·;().(五)指,授新:下边我再来看一道例.(出示例)例算:()() · () ;()()();(逐渐生)(六)探,回授. 算:()() · ()()()()(七)小,部署作:本我学了的乘方法,的乘方法是什么?生:(答)的乘方,底数不,指数相乘.(作:)四、板的乘方() =⋯⋯=例例() =⋯⋯=的乘方⋯⋯()(都是正整数)学习是一件增加知识的工作,在茫茫的学海中,也许我们困苦过,在困难的竞争中,也许我们疲惫过,在失败的暗影中,也许我们绝望过。
幂的乘方 教案
幂的乘方教案教案标题:幂的乘方教案目标:1. 理解幂的概念和乘方的定义。
2. 掌握幂的乘方的计算方法。
3. 能够在实际问题中应用幂的乘方概念和计算方法。
教案步骤:引入(5分钟):1. 利用一个简单的问题引起学生对幂的兴趣,例如:“如果一个正方形的边长是3厘米,你能计算出它的面积吗?”2. 引导学生思考如何用数学符号表示“3的平方”和“3的立方”,并与实际问题联系起来。
概念讲解(15分钟):1. 介绍幂的概念,解释底数和指数的含义。
2. 解释幂的乘方的定义,例如a的m次方等于连乘m个a。
3. 通过具体的数值例子,展示幂的乘方的计算方法,包括相同底数幂相乘、幂的乘方等等。
示例演练(20分钟):1. 给学生提供一些简单的幂的乘方计算练习题,让他们在纸上进行计算。
2. 鼓励学生互相交流和讨论解题方法,帮助他们更好地理解和掌握幂的乘方的计算方法。
拓展应用(15分钟):1. 提供一些实际问题,要求学生运用幂的乘方的概念和计算方法解决问题,例如计算某个图形的面积或体积。
2. 引导学生思考如何将实际问题转化为数学表达式,并利用幂的乘方进行计算。
总结(5分钟):1. 回顾幂的概念和乘方的定义。
2. 强调幂的乘方在数学和实际问题中的应用。
3. 鼓励学生继续练习和应用幂的乘方的计算方法。
教案评估:1. 在课堂上观察学生对幂的乘方概念和计算方法的理解和运用情况。
2. 布置一些习题作业,检验学生对幂的乘方的掌握程度。
3. 收集学生在实际问题中应用幂的乘方的解决方法和结果,评估他们的应用能力。
教学资源:1. 幂的乘方的定义和计算方法的讲义或教材。
2. 幂的乘方的练习题和实际问题。
3. 计算器或电子设备(可选)。
教学延伸:1. 鼓励学生进一步探索幂的乘方的性质和规律,例如幂的乘方的乘法法则和幂的乘方的除法法则。
2. 引导学生研究负指数和零指数的含义和计算方法,扩展幂的乘方的概念。
3. 引导学生应用幂的乘方的概念和计算方法解决更复杂的实际问题,如金融计算、科学计算等。
省一等奖 《幂的乘方》学案
本节课是本单元中,对知识的理解和贯彻最重要的一堂课。
在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。
但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。
对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。
对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。
而教案作为这一行为的载体,巨大作用是不言而喻的。
本节课的准备环节,就充分地说明了这个道理。
14.1.2 幂的乘方1.理解幂的乘方法则.2.运用幂的乘方法则计算.阅读教材P96-97“探究及例2”,理解幂的乘方法则,独立完成下列问题:知识准备乘方的意义:52中,底数是5,指数是2,表示有2个5相乘;(52)3的意义是:有3个52相乘.(1)根据幂的意义解答:(52)3=52×52×52(根据幂的意义)=52+2+2(根据同底数幂的乘法法则)=52×3(a m)2=a m·a m=a2m(根据am·an=am+n)(a m)n=个nmmm aaa⋅⋯⋅⋅(幂的意义)=个na mmm+⋯++(同底数幂相乘的法则)=a mn(乘法的意义)(2)总结法则:(a m)n=a mn(m,n都是正整数).幂的乘方,底数不变,指数相乘.通常我们在解决新问题时可将之转化为已知的问题来解决.自学反馈计算:(1)(103)3; (2)(x2)3;(3)-(x m)5; (4)(a2)3·a5.解:(1)109;(2)x6;(3)-x5m;(4)a11.遇到乘方与乘法的混算应先乘方再乘法.活动1 学生独立完成例1 计算:(1)[(-x)3]4; (2)(-24)3; (3)(-23)4; (4)(-a5)2+(-a2)5.解:(1)原式=(-x)12=x12;(2)原式=-212;(3)原式=212;(4)原式=a10-a10=0.弄清楚底数才能避免符号错误,混合运算时首先确定运算顺序.例2 若92n=38,求n的值.解:依题意,得(32)2n=38,即34n=38.∴4n=8.∴n=2.可将等式两边化成底数或指数相同的数,再比较.例3 已知a x=3,a y=4(x,y为整数),求a3x+2y的值.解:a3x+2y=a3x·a2y=(a x)3·(a y)2=33×42=27×16=432.利用a mn=(a m)n=(a n)m,可对式子进行灵活变形,从而使问题得到解决.活动2 跟踪训练1.计算:(1)(-x3)5; (2)a6·(a2)3·(a4)2; (3)[(x-y)3]2; (4)x2x4+(x2)3.解:(1)-x15;(2)a20;(3)(x-y)6;(4)2x6.第(3)小题要将(x-y)看作一个整体,在计算中先确定运算顺序再计算.2.填空:108=(104)2;b27=(b3)9;(y m)3=(y3)m;p2n+2=(p n+1)2.3.若x m x2m=3,求x9m的值.解:27.要将x3m看作一个整体.活动3 课堂小结1.审题时,要注意整体与部分之间的关系.2.公式(a m)n=a mn的逆用:a mn=(a m)n=(a n)m.教学至此,敬请使用学案当堂训练部分.[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。