(完整版)等差等比数列知识点总结

(完整版)等差等比数列知识点总结
(完整版)等差等比数列知识点总结

1.等差数列:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即

d a a n n =--1(d 为常数)(2≥n );.

2.等差中项:

(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2

b

a A +=或

b a A +=2 (

2

{}

n a 是等差数列

)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a

3.等差数列的通项公式:

一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:

()d n a a n 11-+=

推广: d m n a a m n )(-+=. 从而m

n a a d m

n --=; 4.等差数列的前n 项和公式:

1()2n n n a a S +=

1(1)2n n na d -=+211

()22

d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法

(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列

)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a .

(3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法

定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有

2m n p a a a +=.

(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列

(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的

和,n S 是前n 项的和 1.当项数为偶数n 2时,

()

121135212

n n n n a a S a a a a na --+=+++???+==奇 ()

22246212

n n n n a a S a a a a na ++=+++???+=

=偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶

2、当项数为奇数12+n 时,则

21(21)(1)1n S S S n a S n a S n S S a S na S n +?=+=+=+?+??

??=?

?-==????

n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*1

2,n

n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:

()11110,0n n

n n a a a q q A B a q A B q

-==

=??≠?≠,首项:1a ;公比:q

推广:n m n m n n n m m a a a q q q a --=?=

?=3、等比中项:

(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =

A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)

(2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式:

(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q

S q

q

--=

=

-- 11''11n n n a a

q A A B A B A q q

=

-=-?=---(,,','A B A B 为常数)

5、等比数列的判定方法:

(1)用定义:对任意的n ,都有1

1(0){}n n n n n n

a a qa q q a a a ++==≠?或为常数,为等比数列

(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法:

依据定义:若

()()*1

2,n

n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质:

(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=???

(2)如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (3)若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -???,成等比数列 (4)在等比数列{}n a 中,当项数为*2()n n N ∈时,1S S q

=奇偶

随堂练习 一、选择题

1.2005是数列7,13,19,25,31,,L 中的第( )项. A. 332 B. 333 C. 334 D. 335 3.等差数列3,7,11,,---L 的一个通项公式为( )

A. 47n -

B. 47n --

C. 41n +

D. 41n -+

7.记等差数列的前n 项和为n s ,若24S =,420S =,则该数列的公差d =( ) A .2 B .3 C .6 D .7

10.已知等差数列{}n a 的前n 项和为S n ,若S 7=14,则35a a +的值为( )

A .2

B .4

C .7

D .8 1. 已知等比数列}{n a 中1n n a a +>,且37283,2a a a a +=?=,则11

7

a a =( ) A.

21

B. 23

C. 32

D. 2 2.已知等比数列}{n a 的公比为正数,且3a ·9a =22

5a ,2a =1,则1a = ( ) A.

2

1

B. 22

C. 2

D.2

3. 在等比数列}{n a 中,,8,1685=-=a a 则=11a ( )

A. 4-

B. 4±

C. 2- D .2±

10. 若{}n a 是等比数列,前n 项和21n n S =-,则2222

12

3n a a a a ++++=L ( ) A.2(21)n - B.21(21)3n - C.41n - D.1

(41)3

n -

二、填空题

13.等差数列{}n a 中,350a =,530a =,则7a = . 14.等差数列{}n a 中,3524a a +=,23a =,则6a = .

15.已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则

n a = .

11. 已知数列1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则

=+2

2

1b a a _______. 14. 在等比数列{}n a 中,12236,12,n a a a a S +=+=为数列{}n a 的前n 项和,则

22010log (2)S += .

三、解答题

17.已知(1)2f =,2()1

(1)()2

f n f n n N +++=∈,求(101)f .

18.等差数列{}n a 中,已知11

3

a =,254a a +=,33n a =,试求n 的值.

15. 已知等比数列,8

3

,12}{83==a a a n 满足记其前n 项和为.n S

(1)求数列}{n a 的通项公式n a ; (2)若.,93n S n 求=

16. 等比数列{}n a 的前n 项和为n S ,已知231,,S S S 成等差数列. (1)求{}n a 的公比q ; (2)若331=-a a ,求n S .

高考真题

一、选择题:

(2011年高考安徽卷文科7)若数列}{

n a 的通项公式是()()n a n =-13-2g ,则

a a a 1210++=L

(A ) 15 (B) 12 (C ) -12 (D) -15

(2011年高考全国卷文科6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,

224A n S S +-=,则k =

(A )8 (B )7 (C )6 (D )5

(2011年高考重庆卷文科1)在等差数列{}n a 中,

22a =,3104,a a =则=

A .12

B .14

C .16

D .18

(2013年安徽文)设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a =( ) A.6- B.4- C.2- D.2

(2013年新课标I 文)设首项为1,公比为错误!未找到引用源。的等比数列{}n a 的前n 项和为n S ,则( )

A.21n n S a =-

B.32n n S a =-

C.43n n S a =-

D.32n n S a =-

等差等比数列的性质总结

等差等比数列的性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S +=1(1)2n n na d -=+211()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间 项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

等差等比数列的证明例举

等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S k q k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+(等差) 2 12n n n a a a ++=?(等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1 n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 1121 33n n a a +=+ ,在考虑构造“1-”:112111111333n n n a a a +?? -=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列

等差、等比数列知识点总结

等差、等比数列知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、……仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1) 1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10 ) 1(9+=,求数列}{n a 的最大项。

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

等差、等比数列知识点总结

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、…… 仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1)1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10) 1(9+=,求数列}{n a 的最大项。

等差、等比数列以及数列求和专题(汇编)

§6.2 等差数列 一.课程目标 1.理解等差数列的概念; 2.掌握等差数列的通项公式与前n 项和公式; 3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题; 4.了解等差数列与一次函数的关系. 二.知识梳理 1.定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 2.通项公式 若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 3.前n 项和公式 等差数列的前n 项和公式:2 2111)() (n n a a n d n n na S +=-+=其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的常用性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和.

(1)通项公式的推广:*),()(N m n d m n a a m n ∈-+= (2)若m +n =p +q (m ,n ,p ,q ∈N *),则有q p n m a a a a +=+。特别的,当p n m 2=+时,p n m a a a 2=+ (3)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列. (4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (5)若}{},{n n b a 是等差数列,则}{n n qb pa +仍是等差数列. 4.与等差数列各项和相关的性质 (1)若}{n a 是等差数列,则}{n S n 也是等差数列, 其首项与}{n a 的首项相同,公差为}{n a 的公差的 2 1。 (2)数列m m m m m S S S S S 232--,,…也是等差数列. (3)关于非零等差数列奇数项与偶数项的性质。 a .若项数为n 2,则1 +==-n n a a S S nd S S 偶奇奇偶, 。 b .若项数为12-n ,则n a n n S )(1-=偶,n na S =奇,1 += =-n n S S a S S n 偶奇奇偶, 。 (4)若两个等差数列}{},{n n b a 的前n 项和分别为n n T S ,,则 1 21 2--=n n n n T S b a 5.等差数列的前n 项和公式与函数的关系: (1)n d a n d S )(2 212-+= ,数列{a n }是等差数列? S n =An 2+Bn (A ,B 为常数). (2)在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.

证明或判断等差(等比)数列的常用方法

证明或判断等差(等比)数列的常用方法 湖北省 王卫华 玉芳 翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢且听笔者一一道来. 一、利用等差(等比)数列的定义 在数列 {} n a 中,若 1n n a a d --=(d 为常数)或 1 n n a q a -=(q 为常数),则数列{}n a 为等差(等比)数列.这是证明数列{}n a 为等差(等比)数更最主要的方法.如: 例1.(2005北京卷)设数列{}n a 的首项114a a =≠,且11 214 n n n a n a a n +???=??+??为偶数为奇数 , 记211 1234 n n b a n -=-=,,,,…. (Ⅰ)求23a a ,;(Ⅱ)判断数列{}n b 是否为等比数列,并证明你的结论. 解:(Ⅰ)213211111 44228a a a a a a =+=+==+,; (Ⅱ)43113428a a a =+=+,所以54113 2416 a a a ==+, 所以1123351111111144424444b a a b a a b a a ????=- =-=-=-=-=- ? ????? ,,, 猜想:{}n b 是公比为 1 2 的等比数列. 证明如下:因为121221111111()424242 n n n n n b a a a b n *++-??=-=-=-=∈ ???N , 所以{}n b 是首项为14a - ,公比为1 2 的等比数列. 评析:此题并不知道数列{}n b 的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。

等差等比数列的性质总结

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: * 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 注:12132n n n a a a a a a --+=+=+=???,

等差等比数列练习题(含答案)

一、选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列 ( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列 {}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则 y c x a +的值为 ( ) (A ) 2 1 (B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项, y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列 {}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C ) z y x 1,1,1成等差数列 (D )z y x 1 ,1,1成等比数列 7、数列 {}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列 (A )4 (B )3 (C )2 (D )1 8、数列1 ?,16 1 7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212 112 +--+n n n 9、若两个等差数列 {}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足 5 524-+= n n B A n n ,则 13 5135b b a a ++的值为 ( ) (A ) 9 7 (B ) 7 8 (C ) 2019 (D )8 7 10、已知数列 {}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) (A )56 (B )58 (C )62 (D )60 11、已知数列 {}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列 的前n 项和为 ( )

等比数列性质及其应用知识点总结与典型例题(经典版)

等比数列知识点总结与典型例题 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或 为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若* (,,,) m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? 等差和等比数列比较:

等差、等比数列证明(补差1)

1. 等差、等比数列证明 例 1:已知数列前n 项和n s n n 22 +=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]121222 1-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 例2: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2=,求证:数列{}n c 是等差数列; 证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111 -+-?=-∴?=n n n n n a a b (),432321 22122111111 1=??=-=-=-∴-++++++n n n n n n n n n n n a a a a c c 又21 21 1==a c , {}n c ∴是首项为21,公差为43 的等差数列。

例3:设数列{}n a 的前n 项的和() +∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2()1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ()()()[] 12412142221+=+-+--++=-=-n n n n n S S a n n n ∴()[](),2121121=+-++=-+n n a a n n 对于任意2≥n 都成立,从而数列 432,,a a a 是等差数列。 注:由于212-=-a a ,故21=-+n n a a 不对任意N n ∈成立,因此,数列{}n a 不是等差数列。 例4:设数列{}n a 的首项11=a ,前n 项和n s 满足关系()t s t ts n n 33231=+--,求证{}n a 为等比数列。 证明如下:3≥n 时: ()t s t ts n n 33231=+-- ()t s t ts n n 332321=+--- 两式相减得:()()()0323211=-+-----n n n n s s t s s t 即:()03231=+--n n a t ta 所以:t t a a n n 3321+=- (这只能说明从第二项开始,后一项与前一项的比为定值,所以需要对第二项与第一项的比另外加以证明,以达到定义的完整性。) 又因为2=n 时: ()t s t ts 332312=+-

等差数列及等比数列的性质总结

等差数列与等比数列总结 一、等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示; 等差中项,如果2 b a A += ,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数; 等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-; 等差数列}{a n 的前n 项和公式:n S =2n )a a (n 1?+=d 2)1-n (n na 1?+ = 中12na n )2d -a (n )2d (=?+?; 【等差数列的性质】 1、d )1-n (a a m n += 【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+ 【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+ 3、md 成等差数列,公差为、a 、a 、a m 2k m k k ??++ 【说明】md a -a a -a m k m 2k k m k =??==+++ 4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ??成等差数列,公差为d n 2 【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+??+++??++=++, ) a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+??+++??++=++++??=,d n 2 5、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=?+

证明数列是等差或等比数列的方法

一、证明或判断数列为等差数列的方法 1.定义法 在数列{}n a 中,若d a a n n =--1(d 为常数),则数列{}n a 为等差数列 例:已知正项数列{}n a 的前n 项和为n S ,3 21=a ,且满足2 11322++=+n n n a S S (*N n ∈) 证明:数列{}n a 是等差数列 证明:由2 11322++=+n n n a S S 得2 1132)(2++=++n n n n a S a S 整理得12 1234++-=n n n a a S 则n n n a a S 23421-=- 两式相减得n n n n n a a a a a 2233412 2 1+--=++ n n n n a a a a 2233122 1+=-++ 因为{}n a 是正项数列,所以01>++n n a a 所以()231=-+n n a a ,即3 21=-+n n a a 所以{}n a 是首项为32,公差为3 2 的等差数列 2.等差中项法 212{}n n n n a a a a +++=?是等差数列 例:设数列{}n a 的前n 项和为n S ,已知11=a ,62=a ,113=a ,且 1(58)(52)123n n n S n S An B n +--+=+=,,,,,其中A 、B 为常数 (1)求A 与B 的值 (2)证明数列{}n a 是等差数列 解:(1)因为11=a ,62=a ,113=a ,所以1231718S S S ===,, 把1=n ,2=n 分别代入()()B An S n S n n n +=+--+25851 得B A +=?-?-1773 B A +=?-?2712182 解得:20-=A ,8-=B (2)由(1)知()()82025851--=+--+n S n S n n n 整理得()82028511--=---++n S S S S n n n n n

(完整版)高考等差等比数列知识点总结

高考数列知识点 等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:* 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212 n n n n a a S n a +++++= = + 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数) 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列 7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)求n S 的最值 法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性 *n N ∈。 法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和 即当,,001<>d a 由?? ?≤≥+0 1n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

等差等比数列的运用公式大全

第六讲:等差、等比数列的运用 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 m n p q +=+,则m n p q a a a a +=+; {}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; a d a a d -+,, n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= }n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当 100a d <>,,由1 0n n a a +≤??≥?可得n S 达到最小值时的n 值. 项数为偶数n 2的等差数列{} n a , 有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. 12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-,

等差数列与等比数列的证明方法

等差数列与等比数列的证明方法 证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。 一、 定义法 01.证明数列是等差数列的充要条件的方法: {}1()n n n a a d a +-=?常数是等差数列 {}2222()n n n a a d a +-=?常数是等差数列 {}3333()n n n a a d a +-=?常数是等差数列 02.证明数列是等差数列的充分条件的方法: {}1(2)n n n a a a d n --=≥?是等差数列 {}11(2)n n n n n a n a a a a +--=-≥?是等差数列 03.证明数列是等比数列的充要条件的方法: {}1 (00)n n n a q q a a +=≠≠?1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法: 1 n n a q a -=(n>2,q 为常数且≠0){}n a ?为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有 1 n n a q a -== (常数0≠);②

n *∈N 时,有 1 n n a q a +== (常数0≠) . 例1. 设数列12,,,,n a a a 中的每一项都不为0。 证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有 1223111 111n n n n a a a a a a a a +++++= 。 证明:先证必要性 设{}n a 为等差数列,公差为d ,则 当d =0时,显然命题成立 当d ≠0时, ∵ 111111n n n n a a d a a ++?? =- ??? 再证充分性: ∵ 122334 111 a a a a a a ++???1111n n n n a a a a ++++= ?? ………① ∴ 122334 111 a a a a a a ++???11212111n n n n n n a a a a a a ++++++++= ??? ………② ②﹣①得: 121211 11n n n n n n a a a a a a +++++=- ??? 两边同以11n n a a a +得:112(1)n n a n a na ++=+- ………③ 同理:11(1)n n a na n a +=-- ………④ ③—④得:122()n n n na n a a ++=+ 即:211n n n n a a a a +++-=- {}n a 为等差数列 例2. 设数列}{n a 的前n 项和为n S ,试证}{n a 为等差数列的充要条件是

等差、等比数列证明的几种情况

等差、等比数列证明的几种情况 在高中数学教材中,对等差,等比数列作了如下的定义:一个数列从第二项起,每一项与前一项的差等于一个常数d ,则这个数列叫等差数列,常数d 称为等差数列的公差。一个数列从第二项起,每一项与前一项的比等于一个常数q ,则这个数列叫等比数列,常数q 称为等比数列的公比。在涉及到用定义来说明一个数列为等差数列或等比数列时,很多时候往往容易忽略定义的完整性,现举一些例子来加以说明。 1、简单的证明 例 :已知数列前n 项和n s n n 22+=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]1212221-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 2、数列的通项经过适当的变形后的证明 例: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2= ,求证:数列{}n c 是等差数列;

证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111-+-?=-∴?=n n n n n a a b (),432321221221 1 11111=??=-=-= -∴-++++++n n n n n n n n n n n a a a a c c 又2 1 211== a c , {}n c ∴是首项为21,公差为4 3 的等差数列。 3、证明一个数列的部分是等差(等比)数列 例3:设数列{}n a 的前n 项的和()+∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2() 1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ( )()()[] 124121422 21+=+-+--++=-=-n n n n n S S a n n n

相关文档
最新文档