利用分数与比的转化解答应用题(题目)

合集下载

分数应用题转化成比的应用来解答

分数应用题转化成比的应用来解答

分数应用题转化成比的应用来解答分数应用题转化成比的应用来解答导语:在数学中,我们经常会遇到分数应用题,如何转化成比的应用来解答是一个常见而重要的技巧。

本文将从简单到复杂,由浅入深地探讨这个主题,以帮助读者全面、深刻和灵活地理解分数与比的关系。

一、什么是分数和比?1. 分数:分数是用于表示整体被分割成若干等份的数。

分数由分子和分母两部分组成,分子表示等份中的某一部分,而分母表示整体被分割的份数。

1/2表示将一个整体平均分成2份,其中的1份为我们所关注的部分。

2. 比:比是用于表示两个数的大小关系的一种数学方式。

比的形式常用a:b表示,表示两个数a与b的关系。

2:3表示第一个数是第二个数大小的2/3。

二、如何将分数应用题转化成比的应用来解答?1. 思路:将分数应用题转化成比的应用来解答,关键在于找到等价关系和比例关系。

根据题目的要求和给定的信息,可以将分数转化成比,从而使问题变得更加清晰和直观。

2. 方法:以下是一些常见的转化方法:(1) 找到等份:根据题目的描述,确定整体被分割的等份数。

记作分母。

(2) 计算分子:根据题目的要求,确定我们所关注的等份数。

记作分子。

(3) 将分数转化成比:将找到的等份数和关注的等份数按照比的形式表示出来。

有一个圆被等分为6份,如果我们关注其中的3份,那么分数1/2可以转化为比例关系3:6。

(4) 解决问题:根据转化后的比例关系,根据题目要求进行计算和解答。

三、应用示例:从简单到复杂1. 示例一:一个圆被等分为8份,计算其中5份所占的比例。

(1) 确定等份数:整体被分割的等份数为8。

(2) 计算分子:我们关注的等份数为5。

(3) 转化成比:将5和8按照比的形式表示出来,得到比例关系5:8。

(4) 解答:5份在整体中所占的比例为5:8。

2. 示例二:某商品原价为120元,现在打折销售,以5折的优惠价格出售,计算打折后的价格与原价的比例。

(1) 确定等份数:整体是原价,分割为1等份。

50道分数应用题及答案

50道分数应用题及答案

1、体育用品有90个乒乓球,如果每两个装一盒,能正好装完吗?如果每五个装一盒,能正好装完吗?为什么?90÷2=45盒90÷5=18盒答:如果每两个装一盒,能正好装完如果每五个装一盒,也能正好装完.因为90能整除五.2、体育店有57个皮球,每三个装在一个盒子里,能正好装完吗?57÷3+19盒答:能正好装完.3、甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完?10000÷(115+135)=40分答:40分钟可以打完.4、五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?13X14=192人答:五年级参加植树的人至少有192人.下面几道题目虽然属于应用题,但跟方程有关.我都是用方程解答的.5、两辆汽车从一个地方相背而行.一车每小时行31千米,一车每小时行44千米.经过多少分钟后两车相距300千米?方程、解、两车X时后相遇.31X+44X=30075X=300X=44小时=240分钟答:经过240分钟后两车相距300千米.6、两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?解、设X天后挖通隧道3X+4X=1197X=119X=17答:经过17天挖通隧道.7、学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?解、设舞蹈队有X人6X+X=1407X=140X=20人答:舞蹈队有20人.8、兄弟两个人同时从家里到体育馆,路长1300米.哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?1300X2=2600米2600÷(180+80) =2600÷260 =10分答:这时哥哥走了10分钟.9、六一儿童节,王老师买了360块饼干,480块糖,400个水果,制作精美小礼包,分给小朋友作为礼物,至多可做几个小礼包?360+480+400=1240个答:至多可做1240个小礼包.10、淘气买了40个气球,请同学来家比吹气球.为了能把气球平分,淘气应该请几个同学来比吹气球?淘气不参加.40÷2=20人40÷4=10人40÷5=8人40÷8=5人40÷@0=4人40÷20=2人答:请同学的方法有6种,分别是、20人,10人,5人,8人,4人,2人.11、一块梯形的玉米地,上底15米,下底24米,高18米.每平方米平均种玉米9株,这块地一共可种多少株玉米?(15+24)X18÷2=351平方米351X9=3195株答:这块地可种玉米3159株.12、某班学生人数在100人以内,列队时,每排5人,4人,3人都刚好多一人,这班有多少人?5X4X3=60人60+1=61人答:这班有61人.13、王月有一盒巧克力糖,每次7粒,5粒,3粒的数都余1粒,这盒巧克力糖至少有多少粒?7X5X3=105粒105+1=106粒答:这盒巧克力糖至少有106粒.14、晨光小区有一段长15米,宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖,请你算一算、需要几块这样的方砖?如果每块方砖3元,那么铺这段甬道需要多少元?15米=150分米1.2米=12分米30厘米=3分米150X12=1800平方分米3X3=9平方分米1800÷9=200块200X3=600元答:需要200块这样的方砖,需要600元.15、有两块面积相等的平行四边形实验田,一块底边长70米,高45米,另一块底边长90米,高是多少米?70X45=3150平方米3150÷90=35米答:高是35米.16、一批钢管叠成一堆,最下层有10根,每上1层少放1根,最上1层放了5根.这批钢管有多少根?10-5+1=6层(10+5)X6÷2=15X6÷2=90÷2=45根答:这批钢管有45根.17筑路队要修一条长180千米的路,原来每天修6千米,修了15天以后加快速度,每天修7.5千米,修完这条路还要多少天?(180-6×15)÷7.5=12(天)18、建筑工地需要沙子106吨,先用小汽车运15次,每次运2.4吨.剩下的改用大车运,每次运5吨,还要几次运完?(106-2.4×15)÷5=14(次)19、张立买来《寓言故事》和《英语幽默》各4本,共付20元,找回7.6元,每本《寓言故事》1.6元,每本《英语幽默》多少元?(20-7.6)÷4-1.6=1.5(元)20、人民公园原来有30条船,每天收入540元.现在比原来多15条船,现在每天收入多少元?540÷30×(30+15)=810(元)21电视机厂原计划36天生产彩电1680台,前16天完成了一半.剩下的打算6天完成,平均每天生产多少台?1680÷2÷6=140(台)22、某厂有一批煤,原计划每天烧5吨,可以烧45天.实际每天少烧0.5吨,这批煤可以烧多少天?5×45÷(5-0.5)=50(天)23、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳.照这样计算,剩下的塑料绳还可以做多少根?(150-7.5)÷(7.5÷3)=57(根)24、修一条水渠,原计划每天修0.48千米,30天修完.实际每天多修0.02千米,实际修了多少天?0.48×30÷(0.48+0.02)=28.8(天)25、王老师看一本书,如果每天看32页,15天看完.现在每天看40页,可以提前几天看完?15-32×15÷40=3(天)26、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)260÷4×2.4+260=416(千米)260÷4×(4+2.4)=416(千米)27石河农场先派8台收割机参加收割晚稻,前2天收割19.2公顷,后来增加到13台收割机,用同样的速度又割4天,他们一共割多少公顷?19.2÷2÷8×4×13+19.2=81.6(公顷)28、甲乙两地相距600千米,一列客车和一列货车同时从甲开往乙,客车比货车早到4小时,客车到乙地时,货车行了400千米.客车行完全程要用多长时间? 600÷[(600-400)÷4]-4=8(小时)或4÷(600÷400-1)=8(小时)29甲乙两地,相距500千米,甲每小时行30千米,乙每小时行20千米,问同时出发,几小时相遇?500÷(30+20)=1030、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱.如果3个纸箱加2个木箱装的鞋同样多.每个纸箱和每个木箱各装鞋多少双?解、12个纸箱相当木箱的个数、2×(12÷3)=2×4=8(个)一个木箱装鞋的双数、1800÷(8+4)=18000÷12=150(双)一个纸箱装鞋的双数、150×2÷3=100(双)答:每个纸箱可装鞋100双,每个木箱可装鞋150双.31、甲乙两车同时从AB两地相对开出.甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时.求AB两地相距多少千米?AB距离=(4.5×5)/(5/11)=49.5千米32、一辆客车和一辆货车分别从甲乙两地同时相向开出.货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇.甲乙两地相距多少千米?客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9—1/4=7/36 那么全程=28/(7/36)=144千米33、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米.现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点.求乙绕城一周所需要的时间?甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7 那么4小时就是行全程的4/7 所以乙行一周用的时间=4/(4/7)=7小时34、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?甲走完1/4后余下1—1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8 那么甲乙的路程比=7/8:7/10=5:4 所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1—1/5)=800米35、甲,乙两辆汽车同时从A,B两地相对开出,相向而行.甲车每小时行75千米,乙车行完全程需7小时.两车开出3小时后相距15千米,A,B两地相距多少千米?一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7 甲3小时行75×3=225千米AB距离=(225+15)/(1—3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225—15)/(1—3/7)=210/(4/7)=367.5千米36、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20 甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1—9/20=11/20 甲乙的速度和=1/20+1/30=1/12 那么再有(11/20)/(1/12)=6.6分钟相遇37、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?路程差=36×2=72千米速度差=48—36=12千米/小时乙车需要72/12=6小时追上甲38、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20—18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5—0.5=4.5千米/小时39、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400—100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时40、甲每小时行驶9千米,乙每小时行驶7千米.两者在相距6千米的两地同时向背而行,几小时后相距150千米?速度和=9+7=16千米/小时那么经过(150—6)/16=144/16=9小时相距150千米41、小明和小华都是早上7:30从家里出发去上学,小明每分钟走120米,小华每分钟走80米,小明到达学校5分钟后发现忘了钢笔,就回家拿钢笔,7:55分和小华在路上相遇。

经典六年级比例及分数应用题练习(超经典)

经典六年级比例及分数应用题练习(超经典)

圣匀新教育中心比例的应用练习题姓名___年级___得分___1 小华看一本书,每天看15页,4天后还剩全书的没看,这本故事书是多少页?2 小华看一本故事书,第一天看了全书的还多21页,第二天看了全书的少6页,还剩下172页,这本故事书一共有多少页?3 惠华百货商场运到一批春秋西服,按原(出厂)价加上运费、营业费和利润出售.运费是原价的,营业费和利润一共是原价的,已知售价是123元,求出厂价多少元?4 菜园里西红柿获得丰收,收下全部的时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?5 建筑工地需要一批水泥,从仓库第一次运走全部的,第二次运走余下的,第三次运走(前二次运后)又余下的,这时还剩下15吨水泥没运走.这批水泥共是多少吨?6 某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如其速率比小偷快一倍,比汽车慢,则追上小偷要多少秒?7 A有若干本书,B借走一半加一本,剩下的书,C借走一半加两本,再剩下的书,D借走一半加3本,最后A还有2本书,问A原有多少本书.参考答案:1. 分析:每天看15页,4天看了15×4=60页.解题的关键是要找出这60页相当于全书页数的几分之几,还剩下全书的没看,已经看了的是全书的,60页与全书的直接对应,全书的页数就可以顺利求出.解:①看了多少页,15×4=60(页)②看了全书的几分之几?③这本书有多少页?(页)综合算式:(页)答:这本故事书是150页.2. 分析:要想求这本书共有多少页,需要找条件里的多21页,少6页,剩下172页所对应的百分率.也就是说,要从这三个量里找出一个能明确占全书的几分之几的量.画线段图:解:= 264(页).答:这本故事书共有264页.3. 分析:设出厂价(原价)是“1”,那么售价是原价的,它相当于123元,如上图可以得出解答:= 108(元).答:春秋西服每套出厂价是108元.4. 解法1:分析:可以从“收下全部的”着手,其余部分必然是.总千克数的是6筐,依据这个对应关系,总筐数就是筐.收下全部的就是筐.根据题目中的条件筐比3筐多筐,这个筐正好是24千克,“量与百分率”的关系已经直接对应,求每筐的千克数的条件完全具备.解:其余部分是总千克数的几分之几:.西红柿总数共装了多少筐:(筐).收下全部的应装多少筐:(筐).筐比3筐多多少筐:(筐).每筐是多少千克:(千克).共收西红柿多少千克:(千克).综合算式:=(千克).答:共收西红柿384千克.解法2:(以下列式由学生自己理解)(千克).答:共收西红柿384千克.5.分析:上图中有3个相对各自讨论范围内的单位“1”(“全部”、“余下”、“又余下”).依据逆向思路可以得出,最后剩下的15吨对应的是“又余下”的,因为求出“又余下”的吨数60吨(即“又余下”含义中的1个单位是60吨).这60吨对应的恰是“余下”的,这样可以求“余下”的吨数90吨(即“余下”含义中的1个单位是90吨).这90吨恰是“全部”的.至此这批水泥的全部吨数可以求出.列式:= 150(吨).6. 分析与解答这是一个追及问题,因此求追上所花时间必须求出相距距离及它们速度差.相距距离是因为车上之人与小偷反向走了10秒钟产生的.而速度差是易求的.设小偷速度为,某人追赶速度为,由于人比汽车慢,所以汽车速度为,即是,所以相距距离是,所以追上所花时间是(秒).答:追上小偷要110秒.7. 解法1:列方程求解,设A原有本书,分析:B借走了:,C借走了:即,D借走了:,最后A剩下了:,由条件知:,,(本).答:A原有50本书.解法2:用倒推法解.分析:A剩下的2本应是C借走后剩下的一半差3本,所以C借走后还剩下即10本,这10本又是B借走后剩下的一半差2本,所以B借走后剩下即是24本,这24本是A原有书的一半差1本,这样A原有书为即A 原有书50本.综合算式:.答:A原有50本书.正、反比例的意义2 一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?3 一块合金内铜和锌的比是2:3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?4 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?5 洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?6 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?参考答案:1.分析以上每题都是两种相关联的量,一种量变化,另一种量也随着变化,那么怎样来确定这两种量成哪种比例或不成比例呢?关键是能否把两个相关的变量、用或用来表示,其中是定量.如果不能写出这两种形式,或只能写出加减法关系,那么这两种量就不成比例.例如①,速度一定,路程与时间成正比例.④制造每个零件用的时间×零件数=总时间,总时间一定,制造每个零件用的时间与要制造的零件总数成反比例.③路程一定,已走的路程和未走的路程是加减法关系,不成比例.解:成正比例的有:1、7、8、 15成反比例的有:2、4、5、6、9、 11、 14不成比例的有:3、10、12、13.2.分析要求此人走完全程用了多少时间,必须根据已知条件先求出此人走上坡路用了多少时间,必须知道走上坡路的速度(题中每小时行3千米)和上坡路的路程,已知全程60千米,又知道上坡、平路、下坡三段路程比是1:2:3,就可以求出上坡路的路程.解:上坡路的路程:(千米).走上坡路用的时间:(小时).上坡路所用时间与全程所用时间比:.走完全程所用时间:(小时).答:此人走完全程共用小时.3.分析要求新合金内铜和锌的比,必须分别求出新合金内铜和锌各自的重量.应该注意到铜和锌的比是2:3时,合金的重量不是36克,而是(36-6)克.铜的重量始终没有变.解:铜和锌的比是2:3时,合金重量:36-6=30(克).铜的重量:(克).新合金中锌的重量: 36-12=24(克).新合金内铜和锌的比:12:24=1:2.答:新合金内铜和锌的比是1:2.4.分析师傅加工一个零件用5分钟,每分钟可加工个零件,徒弟加工一个零件用9分钟,每分钟可加工零件个,师徒两人效率的比是,由于两人的工作时间是一定的,根据=工作时间(一定),工作量与工作效率成正比例.解法1:设师傅加工个,徒弟加工个.,,,,.(个).答:师傅加工108个,徒弟加工60个.解法2:由于师、徒两人工作效率的比是,那么他们工作量的比也是,因此师傅工作量是徒弟工作量的(倍),徒弟的工作量为1倍量.=60(个),(徒弟)(个),(师傅)解法3:师傅每分钟加工个,徒弟每分钟加工个,用相遇问题思考方法可求出两人各用了多少分钟.然后用师、徒每分钟各自的效率,分别乘以540就是各自加工零件的个数.(分钟).(个),(师傅)(个),(徒弟)解法4:按比例分配做:∵,∴(个),(师傅)(个),(徒弟)5.分析这是一道比例应用题,工效和工时是变量,不变量是计划生产5天后剩下的台数.从工效看,有原来的效率1600÷20=80台/天,又有提高后的效率80×(1+25%)=100台/天,从时间看,有原来计划的天数,要求效率提高后还需要的天数.根据工效和工时成反比例的关系,得:提高后的效率×所需天数=剩下的台数.解法1:设完成计划还需天.答:完成计划还需12天.解法2:此题还可以转化成正比例.根据实际效率是原来效率的倍,把原来效率看成“1”,实际和原来效率的比是.因为工效和工时成反比例,所以实际与原来所需时间的比是4:5,如果设实际还需要天,原来计划的天数是20-5=15天,根据实际与原来时间的比等于实际天数与原来天数的比,可以用正比例解答.设完成计划还需天.,,.解法3:(按工程问题解)设完成计划还需天..6.画出图便于解题:解法1:BC的长:182÷13=14(厘米),BD的长:14+13=27(厘米),从图中看出AB长就是原长方形的宽,AD与AB的比是14:5,AB与BD的比是5:(14-5)=5:9,AB的长是(厘米),AD的长是(厘米),原长方形面积是42×15=630(平方厘米).答:原长方形面积是630平方厘米.解法2:设原长方形长为,宽为.由图分析得方程,,则原长方形面积(平方厘米).比例的意义和基本性质(二)1一项工程,甲乙两队合作需12无完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?2 师徒二人合作生产一批零件,6天可以完成任务.师傅先做5天后,因事外出,由徒弟接着做3天.共完成任务的.如果每人单独做这批零件各需几天?3一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?4一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?5筑路队预计30天修一条公路.先由18人修12天只完成全部工程的.如果想提前6天完工,还需增加多少人?6蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小时.排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水,进水,排水…的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确到分钟)7一件工作,甲5小时先完成了,乙6小时又完成了剩下任务的一半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?8甲、乙二人植树.单独植完这批树甲比乙所需要的时间多,如果二人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵?9加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,然后乙再做12天,还剩下这批零件的没有完成.已知甲每天比乙多加工3个零件,求这批零件共多少个?10 一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?参考答案:1.分析设这项工程为1个单位,则甲、乙合作的工效为,乙、丙合作的工效为,甲、丙合作的工效为.因此甲、乙、丙三队合作的工效的两倍为,所以甲、乙、丙三队合作的工效为.因此三队合作完成这项工程的时间为(天).解:(天).答:甲、乙、丙三队合作需10天完成.说明:我们通常把工量“一项工程”看成一个单位.这样,工效就用工时的倒数来表示.如例1中甲乙两队合作的工时为 12天,那么工效就为,它表示甲乙两队一天完成全部工程的.2.分析设一批零件为单位“1”.其中6天完成任务,用表示师徒的工效和.要求每人单独做各需几天,首先要求出各自的工效,关键在于把师傅先做5天,接着徒弟做3天转化为师徒二人合作3天,师傅再做2天.解:师傅工效:;徒弟工效:;师傅单独做需几天:(天);徒弟单独做需几天:(天).答:如果单独做,师傅需10天,徒弟需15天.3.分析解答工程问题时,除了用一般的算术方法解答外,还可以根据题目的条件,找到等量关系,列方程解题.解:设甲做了天.那么,甲完成工作量,乙做的天数,已完成工作量,因此,,两边同乘36,得到:,答:甲做了4天.4.分析设一件工作为单位“1”.甲做6小时,乙再做12小时完成或者甲先做8小时,乙再做6小时都可完成,用图表示它们的关系如下:由图不难看出甲2小时工作量=乙6小时工作量,∴甲1小时工作量=乙3小时工作量.可用代换方法求解问题.解:若由乙单独做共需几小时:6×3+12=30(小时).若由甲单独做需几小时: 8+4÷3=10(小时).甲先做3小时后乙接着做还需几小时:(10-3)×3=21(小时).答:乙还需21小时完成.5.分析由18人修12天完成了全部工程的,可通过18×12求出用一天完成工作量共需要的总人数,也可通过18×12求出用一人完成工作量共需要的总天数.所以由求出1人1天完成全部工程的几分之几(即一人的工效).解:①1人1天完成全部工程的几分之几(即一人的工效):.②剩余工作量若要提前6天完成共需多少人:=36(人).③需增加几人: 36-18=18(人).答:还要增加18人.6.分析与解答①在解答“水管注水”问题时,会出现一个进水管,一个出水管的情况.若进水管、出水管同时开放,则积满水的时间=1÷(进水管工效-出水管工效),排空水的时间=1÷(出水管工效-进水管工效).②这道应用题是分析推理与计算相结合的题目.根据已知条件推出水池中的水每2小时减少.水池中有半池水即,经过6小时后还剩.如果按进水,排水的顺序进行,则又应进水1小时,这时水池内共有水.如果按每小时的流速排出需要经过(小时),共用的时间为(小时)=7小时54分刚好排完.7.分析这道题是工程问题与分数应用题的复合题.解题时先要分别求出甲、乙工作效率,再把余下的工作量转化为占单位“1”(总工作量)的几分之几?解:甲工作效率:,乙工作效率:,余下部分甲、乙合作需要几小时:(小时)答:还需要小时才能完成任务.8.分析求这批树一共多少棵,必须找出与36棵所对应的甲、乙工效差.已知甲比乙所用的时间多,可以求出甲与乙所用的时间比为4:3.当工作总量一定的情况下,工效与工时成反比例,甲与乙的工时比为,所以甲与乙的工效比是3:4.这个间接条件一旦揭示出来,问题就得到解决了.解:设己所用时间为“1”,甲的时间是乙的(倍),则甲与乙的时间比是4:3.工作总量一定,工作效率和工作时间成反比例,所以甲与乙的工效比是时间比的反比,为3:4.共植树多少棵:(棵).答:这批树一共252棵.9.分析欲求这批零件共多少个,由题中条件只需知道甲、乙二人每天共做多少个即可,然后这就转化为求甲、乙两人单独做各需多少天,有了这个结论后,只需算出3个零件相当于总数的几分之几即可.由条件知甲做16天,乙做12天共完成工程的,也即相当于甲乙二人合做12天,另外加上甲又做4天共完成这批零件的;又知道甲乙二人合做24天可以完成,因此甲单独做所用天数可求出,那么乙单独做所用天数也就迎刃而解.解:甲、乙合作12天,完成了总工程的几分之几?.甲1天能完成全工程的几分之几?.乙1天可完成全工程的几分之几?.这批零件共多少个?(个).答:这批零件共360个.10.分析要求共用多少小时?可以设想把这些小时重新分配.甲做1小时,乙做1小时,它们相当于合作1小时,也即是每2小时,相当于合做1小时.这样先大致算一下一共进行了多少个这样的2小时,余下部分问题就好解决了.解:①若甲、乙两人合作共需多少小时?(小时).②甲、乙两人各单独做7小时后,还剩多少?.③余下的由甲独做需多少小时?(小时).④共用了多少小时?(小时).答:共用了小时.比例的意义和基本性质(一)一、填空1、表示()的式子叫做比例.2、比例的基本性质是().3、在比例5∶10=3∶6中,()和()是外项,()和()是内项.4、写出比值是2的两个比:()∶(),()和();组成比例是().5、把3×6=2×9改写成比例是().二、判断1、因为5a=6b,所以a∶b=6∶5.()2、在比例中,两个外项积等于两个内项积.()三、选择1、下面两个比不能组成比例的是()A 10∶12=35∶42B 20∶10= 60∶20C 4∶3=60∶45D 35 :7 =15∶32、能与0.14∶0.1组成比例的是()A 0.8∶0.25B 28∶20C 0.5∶0.75D 14∶1参考答案:一、填空1、两个比相等2、两个内项积等于两个外项积3、5 和6 10和34、2∶1 4∶2 2∶1=4∶25、3∶2=9∶6二、判断1、√2、√三、选择1、B2、B。

百分数、分数和比的复合应用题

百分数、分数和比的复合应用题

有关百分数、分数和比的复合型应用题【第一部分】知识点分布1.百分数、分数和比的简单应用题。

2.有关百分数、分数和比的复合型应用题的解法。

3.区分标准量、比较量和所占分率;会用画线段图的方法分析题意。

【第二部分】1.分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。

2.标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。

3.比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。

【第三部分】例题精讲例1 小明看一本故事书,第一天看了全书的51,第二天看了全书的25%,他发现第二天比第一天多看了8页,你知道这本故事书有多少页吗?(画线段图分析,列方程及算式求解)例2 小英读一本书,上午读了10%,下午比上午多读6页,这时已读的页数和未读的页数比是1:3,这本书共有多少页? (画线段图分析,列方程及算式求解)例3 甲、乙两个书架,甲书架有120本书,从甲书架拿24本到乙书架,则乙书架的32正好是甲书架的75%,乙书架原来有多少本书?(画线段图分析,列方程及算式求解)例4 春晖小学的老师们带领学生外出春游,参加春游的老师占15%,其余的是学生。

在学生中男、女生人数的比是9:8,女生有160人。

那么,外出春游的师生一共有多少人?例5 一批光碟,第一天卖出总数的25%,第二天卖出450张,第三天卖出的是前两天卖出的总和的31,最后剩下200张,求光碟的总数原有多少?【第三部分】经典练习1.为支援地震灾区,某厂要赶制一批帐篷,第一天完成总量的31,第二天做了400顶,这时还剩下总量的40%没有完成。

这批帐篷一共有多少顶?还剩下多少顶没有完成?2.张师傅加工一批机器零件,第一天加工了50个,第二天又加工了这批零件的25%,这时已加工的个数和未加工的个数比是1:2,这批零件共有多少个?3.小芳读一本书,第一天读了全书的30%,第二天比第一天少读了20页,这时还有一半没读完,这本书有多少页?【第四部分】能力提升1.工程队运一批粮食,第一天运走20%,第二天比第一天少运15吨,这时剩下的粮食占总数的85,这批粮食共多少吨?2.三天运完一堆煤,第一天运走了总数的30%,第二天运的比第一天多240吨,第二天和第三天所运的煤的吨数的比是9:5.这堆煤共有多少吨?【温馨提示】1.做有关百分数、分数和比的复合型应用题时,关键是分析并理解清楚题意,关于这类问题的题意分析,用画线段图的方法比较直观,将题目中的已知条件表示在线段图上,再分析出各部分之间的关系。

小学六年级分数比例应用题大全

小学六年级分数比例应用题大全

1比和比例练习题一、 填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。

甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。

2. 某班男生人数与女生人数的比是43,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。

女生人数是总人数的比是( )。

3. 一本书,小明计划每天看72,这本书计划( )看完。

4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)()(。

5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。

6. 一个正方形的周长是58米,它的面积是( )平方米。

7. 89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。

8. 甲数的32等于乙数的52,甲数与乙数的比是( )。

9. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。

10. 甲数比乙数多41,甲数与乙数比是( )。

乙数比甲数少)()(。

11. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的()。

在 4 :7 =48 :84中,4和84是比例的( ),7和48是比例的()。

12.4 :5 = 24÷()= ():1513.一种盐水是由盐和水按1 :30 的重量配制而成的。

其中,盐的重量占盐水的(—),水的重量占盐水的(—)。

图上距离3厘米表示实际距离180千米,这幅图的比例尺是()。

一幅地图的比例尺是图上6厘米表示实际距离()千米。

实际距离150千米在图上要画()厘米。

14.12的约数有(),选择其中的四个约数,把它们组成一个比例是()。

写出两个比值是8的比()、()。

15.加工零件的总个数一定,每小时加工的零件个数的加工的时间()比例;订数学书的本数与所需要的钱数()比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数()比例。

难算的分数(比和比例)应用题(一)

难算的分数(比和比例)应用题(一)

难算的分数(比和比例)应用题(一)1、一条路已修了500米,是未修的2/5,求这条路一共有多长?解答:已修的是未修的2/5,那就是说是已修的是全长的2/7。

列式为:500÷2/7=1750(米)答:略。

2、一桶油用去1/5后连桶重14千克,用去1/3后连桶重12千克,求桶重多少千克?油重多少千克?分析与解答:用去油1/5后连桶重14千克,用去1/3后连桶重12千克,那就是说这桶油的1/3比1/5多2千克,也就是说1/3—1/5=2/15就是2千克。

那么这桶油重可以列式求出来:(14-12)÷(1/3—1/5)=2÷2/15=15(千克)那么桶重就是14-15×(1—1/5)=2(千克)或者12-15×(1—1/3)=2(千克)答:略。

3、修一条水渠,已修了4天,平均每天修35米,已修的比剩下的少全长的30%,这条水渠全长多少米?分析与解答:已修四天,每天修35米,则已修的是35×4=140米。

已修的比剩下的少全长的30%,那就是说,如果去掉这30%,剩下的和已修的刚好相等。

于是就有:(100%—30%)÷2=35%,这35%就是已修的。

到这儿就很好算了。

列式:35×4÷[(100%—30%)÷2]=140÷35%=400 (米)列方程为:解:设这条路全长为X米,则X—35×4—35×4=30%X 或(X—30%X)÷2=35×4答:略。

4、师傅和徒弟合做200个零件,师傅做的1/4比徒弟做的1/5多14个,求徒弟做了多少个?分析:师傅做的1/4比徒弟做的1/5多14个,那就是说,师傅做的4/4比徒弟做的4/5多14×4=56(个)。

这样题就变成了“师傅和徒弟合做200个零件,师傅做的比徒弟做的4/5多56个,求徒弟做了多少个?”这已是一个和倍问题了。

毕业复习应用题(分数、百分数、比和比例、方程)基础+培优

毕业复习应用题(分数、百分数、比和比例、方程)基础+培优

小升初毕业复习分数,比与比例题型汇总独家原创最新最全命中分数基础题题型一:单位一不变1、笑笑读一本故事书,第一天读了全书的40%,第二天读了全书的41,两天共读了52页,这本故事书有多少页?2、工程队修一条路,第一天修了全长的51,第二天修了全长的25%,还剩下154千米没修,这条路全长多少千米?3、水泥厂仓库里有水泥500吨,甲车队一次可以运走总数的12%,乙车队一次可以运走总数 20%。

如果让两个车队一起来运,一次共运走多少吨水泥?题型二:单位一改变4、一本小说,小明第一天看了全书的31,第二天看了剩下的32,还剩下全书的几分之几没看?5、张明看一本120页的故事书,第一天看了全书的41,第二天看了余下的52,第三天应从第几页看起?6、修路队在一条公路上施工。

第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?题型三:比一个数几分之几多(少)几7、某工厂二月份比元月份增产110,三月份比二月份减产110.问三月份比元月份增产了还是减产了,增加或减少了百分之几?8、一件商品先涨价15,然后再降价15,问现在的价格和原价格比较升高、降低还是不变,升高、降低了百分之几?9、小李看了一本书,第一天看了全书的121还少5页,第二天看了全书的151还多3页,还剩206页,这本书共有多少页?10、一筐鸡蛋,第一次取出全部的一半多2个,第二次取出余下的一半少2个,篮子里还剩20个,篮子里原来有鸡蛋多少个?题型四:甲比乙多(少)几分之几11、(2017一中系)甲数比乙数多54,乙数比甲数少()() 12、水结成冰时,冰的体积比水增加 111,当冰化成水时,水的体积比冰减少题型五:总量为不变量。

13、某校六年级有甲、乙两个班,甲班人数是乙班的75,如果从乙班调3人到甲班,甲班人数是乙班人数的54,甲、乙两班原来有多少人?14、有两筐梨。

乙筐是甲筐的35 ,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的79 。

六年级分数与比的应用题(供参考)

六年级分数与比的应用题(供参考)

六年级数学分数与比的应用题一、分率转化的应用题例1:电器商城运来一批电冰箱,第一周卖出全数的52,第二周卖出剩下的21,第三周比的第一周少卖31,这时还剩30台。

商城运进的这批彩电共多少台?例2:某班共有学生51人。

男生人数的43等于女生人数的32,这个班男、女生人数各有多少人?例3:小高和墨莫一路玩儿游戏牌,刚开始时,小高手里的牌数是墨莫手里牌数的53,玩了若干局后,小高赢了墨莫的20张牌,此时小高手里的牌数变成是墨莫手里牌数的57,请问:小高此时一共有多少张牌?2,拿走白子的一半和15个例4:棋盘上有黑白两色旗子。

其中白子占总数的53,那么棋盘上原有棋子多少个?黑子后,发现这时白子是黑子的4二、总量不变,部份量发生调整应用题例1:甲乙两仓化肥的比是7:5,甲仓运出26吨到乙仓,这时甲乙两仓化肥比是3:4,甲乙两仓原来化肥各多少吨?例2:小兰,小红的图书比是5:3,小兰给小红15本后,两人图书本数相同,两人原来各有多少本图书?例3:有三箱水果共重60千克,若是从第一,二箱各拿出3千克放入第三箱中,则三箱重量比是1:2:3,求三箱水果原来各重多少千克?三、强化训练一、一个车间有两个小组,第一小组与第二小组的人数比是5:3,若是第一小组有14人调到第二小组,则第一小组与第二小组人数比就变成1:2,原来两个小组各有多少人?二、盒子里有黑棋子和白棋子,两种棋子的个数比是5:6,若是掏出8个黑棋子,放入8个白棋子,那么黑棋子和白棋子个数的比就是4:7,盒子里原来有多少个黑棋子?多少个白棋子?3、一个车间,女工和男工人数的比是3:2,若是增加15名男工,减少15名女工,那么女工和男工人数比就是2:3,这个车间原来有女工和男工各多少名?4、工地上有甲、乙两堆沙子,两堆沙子的质量比是3:4,若是从甲堆运出8吨放入乙堆,那么两堆沙子的质量比是1:3,甲、乙两堆沙子原来各有多少吨?五、有两只桶共装油44千克,若第一桶里倒出51,第二桶里倒进千克,则两桶内的油相等,原来每只桶各装油多少千克?六、某小学学生中83是男生,男生比女生少328人,该小学共有学生多少人?7、张明看一本故事书,天天看30页,3天后还剩全书的85没有看,这本故事书共有多少页?八、一聪聪和笑笑共搜集邮票171枚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数与比的应用题
一:填空题
1、甲、乙、丙三人共有图书108本,乙比甲多18本,乙与丙的本数的比是
5∶4。

甲、乙、丙三人的本数的比是()。

2、加工同样数量的零件,甲的工作效率是乙的
6
5,甲比乙多用了12分钟,乙用了()分钟。

3、甲、乙两人抄同样一份稿件,甲所用的时间是乙的
4
3,甲每小时比乙多抄了600个字,乙每小时抄了()个字。

4、A、B两地想距360千米,甲、乙两车从A、B两地同时相向开出,甲车速
度是乙车的
7
5,相遇时甲车比乙车少行了()千米。

5、一个长方形,长和宽比是3∶1,长比宽多8厘米,这个长方形的面积是()平方厘米。

6、师徒两人共同加工一批零件,师徒两人工作效率的比是5∶2,完成任务时,徒弟比师傅少做21个零件,这批零件共有多少个?
7、四个数依次相差1
8
,它们的比是1∶5∶9∶13,这四个数的和是()。

8、四个数依次相差1
80
,它们的比是1∶3∶5∶7,这四个数的和是()。

9、甲、乙两人共集邮票108张,甲集的张数是乙的5
7
,甲集邮票()张。

10、甲、乙两人共集邮票108张,甲集的张数比乙多2
5
,乙集邮票()张。

二:解答题
1、某工厂有工人1260人,其中男职工人数比女职工多4
5
,工厂有男职工多少:
2、甲、乙两车从AB两地出发相对而行,在距中点15千米处相遇,甲车与乙车
的速度的比是7 : 4。

AB两地相距多少千米?
3、某工厂有甲乙丙三个车间,共有工人642人,其中甲车间的工人数比乙车间
的工人多2
5
,比丙车间的工人数少
1
5
,三个车间各多少人?
4、体育商店购进篮球、排球、足球共650只,篮球只数与足球只数的比是5 :
6,排球只数是足球的1
3
,篮球、排球、足球分别购进了多少只?
5、有120个皮球,全部分给甲、乙两班使用,甲班分得的1
3
与乙班分得的
1
2

等,甲班分得皮球多少个?
6、小华看一本故事书,第一天看了30页,第二天看了42页。

已看的页数与未
看的页数的比是2 :3,这本书共有多少页?
7、甲、乙两人同时从A、B两地相向而行,甲用4小时走到中点时,乙走了全
程的60%,比甲多走了4千米。

乙的速度是每小时多少千米?
8、解放路小学四、五、六年级学生共栽树576棵,五年级栽树棵数是六年级的
4 5,四年级栽树棵数是五年级栽树棵数的
3
4。

三个年级各栽树多少棵?
9、有黑白两种棋子,黑子颗数的4
5
,等于白子颗数的
5
6
,黑子的颗数比白子
多42颗,两种棋子各有多少颗?。

相关文档
最新文档