UV Raman spectroscopic study on the phase

合集下载

亚锡酸和硝酸铋反应

亚锡酸和硝酸铋反应

亚锡酸和硝酸铋反应一、简介亚锡酸和硝酸铋是两种重要的化学物质,它们的反应是化学领域中一个广泛研究的课题。

亚锡酸是一种无机化合物,化学式为H2SnO2,硝酸铋是一种强氧化剂,化学式为HNO3。

亚锡酸和硝酸铋反应的条件、产物及反应机理是本文将要讨论的内容。

二、反应条件亚锡酸和硝酸铋的反应需要一定的条件才能进行。

首先,反应需要在适当的温度下进行。

理论上,亚锡酸和硝酸铋可以在常温下反应,但在室温下反应速度较慢,因此通常加热反应体系以提高反应速率。

其次,反应需要在适当的pH值下进行。

亚锡酸在水溶液中呈酸性,而硝酸铋呈强酸性,因此反应体系的pH值应在酸性范围内。

最后,反应需要一定的时间来完成。

通常情况下,亚锡酸和硝酸铋在反应器中加热搅拌数小时即可反应完成。

三、反应机理亚锡酸和硝酸铋反应的机理尚不完全清楚,但根据已有研究,可以大致推测出反应的过程。

首先,硝酸铋在溶液中游离出Bi3+离子。

然后,亚锡酸中的Sn2+离子与Bi3+离子发生氧化还原反应。

反应的产物包括BiSnO4(亚锡酸铋)和其他可能的副产物。

四、反应产物亚锡酸和硝酸铋反应的主要产物是亚锡酸铋(BiSnO4)。

亚锡酸铋是一种无机化合物,颜色呈黄色至棕色,具有良好的化学稳定性和热稳定性。

另外,反应可能还会产生一些副产物,如水和一氧化氮等。

五、应用亚锡酸铋具有一系列重要的应用。

首先,它可以作为有机合成中的催化剂。

亚锡酸铋在一些有机反应中可以提高反应速率和产率,因此在有机合成领域得到广泛应用。

其次,亚锡酸铋还可以用于制备其他无机化合物,如氧化铋和硼酸铋等。

此外,亚锡酸铋还可以用于生产陶瓷材料、电子材料和光学材料等。

六、总结亚锡酸和硝酸铋反应是一个重要的化学反应,其条件、产物和机理都对该反应的研究具有重要意义。

通过合理调控反应条件,可以控制反应速率和产物的选择,从而实现各种应用。

亚锡酸铋作为一个重要的无机化合物,具有广泛的应用前景,未来的研究仍需要进一步深入。

山羊绒夹杂肤皮屑的组成及其结构

山羊绒夹杂肤皮屑的组成及其结构

山羊绒夹杂肤皮屑的组成及其结构陈晓盟;王树根;薛晨【摘要】山羊绒夹杂的肤皮屑会严重影响纺织品质量.采用胃蛋白酶法和还原法从山羊绒肤皮中提取了胶原蛋白和角蛋白,并对其进行表征.结果表明:洗净绒中肤皮屑组成及其质量分数为水分9.14%,脂肪8.72%,水溶物11.36%,粗蛋白60.13%,灰分10.65%,粗蛋白中胶原蛋白和角蛋白分别占蛋白质质量分数的30.98%和15.67%,是蛋白质的主要组成,其他蛋白种类有待于进一步研究.肤皮屑中胶原蛋白相对分子质量集中在49 ku,角蛋白分子质量在26 ~35 ku和49 ku区域.各组分在肤皮屑结构中分布情况不同,脂肪和胶原蛋白分布不均匀,角蛋白呈较均匀分布,水溶物对肤皮片状粘接起主要作用.研究结果为解决山羊绒染色肤皮点提供了理论参考.【期刊名称】《纺织学报》【年(卷),期】2015(036)006【总页数】6页(P24-29)【关键词】山羊绒;肤皮;胶原蛋白;角蛋白【作者】陈晓盟;王树根;薛晨【作者单位】生态纺织教育部重点实验室(江南大学),江苏无锡214122;生态纺织教育部重点实验室(江南大学),江苏无锡214122;新疆天山毛纺织股份有限公司,新疆乌鲁木齐830054【正文语种】中文【中图分类】TS135.2山羊绒纤维是珍贵的纺织原料,全世界70%的山羊绒产自中国。

由于采用抓绒得到原绒,原绒中含有粗毛、两型毛、肤皮屑、沙土和汗脂等杂质,虽然经过前处理加工后可去除大部分杂质,但无法完全去除肤皮屑,在山羊绒浅色品种染色时肤皮屑的存在会造成深色肤皮色点的出现,严重影响羊绒制品的外观质量。

虽然有研究报告试图采用生物酶法去除肤皮点,但效果还不理想[1]。

山羊绒与肤皮屑的组成及结构差异无疑是产生染色肤皮点的本质原因。

这个问题困扰行业已久,一直没有找到比较理想的解决方法。

山羊绒组成与结构研究的比较全面,但是几乎没有山羊绒肤皮组成与结构的报道,搞清楚山羊绒肤皮屑的结构与组成有助于为解决肤皮点问题提供理论支持和帮助。

Raman 光谱分析技术应用指南说明书

Raman 光谱分析技术应用指南说明书

IntroductionRaman spectroscopy is increasingly beingrecognized as an important analytical tool, particularly in pharmaceutical, biomedical and biological applications, as a result of its high chemical “fingerprint” information content.1-3 The advantages of Raman relative to IR spectroscopic methods include the relative insensitivity of Raman to water as well as its compatibility with optical microscopy and CCD camera detection methods.4 However, since Raman signal are relatively weak, Raman spectral features may be obscured by even trace quantities of fluorescent impurities.This application guide demonstrates a very simple method for reducing fluorescent impurities to produce high quality Raman spectra of analytes such as proteins.5 The effectiveness of this method derives from the fact that components in the solution tend to precipitate in different regions on the substrate. The entire process of deposition and Raman data collection requires only a few minutes.Raman InstrumentationThis application requires a Micro-Raman Instrument with a CCD detector equipped with a high magnification objective (e.g. 100X). Materials and Reagents•Tienta SpectRIM TM Slide•Myoglobin (MW 17,200)•Phosphorylase B (MW = 97,200)•Water (18.2 MΩ cm-1)•Micropipette capable of delivering 1 –10 uL of liquidPreparation of Protein Solution sPrepare a convenient volume of the proteins by dissolving 1.03 mf/mL of Myoglobin (60 uM) and 0.32mg/mL Phosphorylase B (3.3 uM) in waterNote: Care should be taken to avoid fluorescent contaminants from water, glassware, and other laboratory equipment. ProcedureFor a reference spectrum deposit a small amountof powder on the metal surface (substrate) of theTienta SpectRIM TM Slide. Take a Ramanspectrum.On a separate SpectRIM TM Slide, deposit a 4-uLvolume of the 60 uM Myoglobin solution and the 3.3 uM Phosphorylase B solution. Depositthe drops at least ½ inch or 1 cm apart. Allowthe sample to dry approximately 20 minutes. Aclear ring should form (see figure 1). No spectralchanges should be observed in the Ramanspectra after drying periods as long as severalweeks.Position the slide with the deposited sample onthe microscope stage. Focus on an area of theouter ring and collect the Raman Spectrum.Take spectra from inside the ring forcomparison. No protein should be found insidethe ring.Note: A low illumination power should be usedto avoid burning the samples.Results and Discu ssionFigure 1 shows the white light images ofmyoglobin on the substrate after solventevaporation. The deposition volume is 4 uL, andthe concentration of the deposited solution is 60 uM.Figure 1. White light optical image of a portion of the myoglobin ring.200 umFigure 2 shows the Raman spectra obtained from a compressed pellet of myoglobin power and a dried solution of myoglobin deposited on the Tienta substrate.0501001502002505007009001100130015001700Raman Shift (cm-1)C o u n t s p e r S e c o n dPowderDepositFigure 2. Raman Microscope spectra of myoglobin powder and deposit of 60 uM solution on the Tienta SpectRIM TM Slide. A laser power of 0.25mW, at the sample and an integration time of 200 s were used to collect both spectra.Figure 3 shows the Raman spectra obtained from phosphorylase B powder and a dried solution of phosphorylase B deposited on the Tienta SpectRIM TM Slide.0204060801001205007009001100130015001700Raman Shift (cm-1)C o u n t s p e r S e c o n dPowderDepositFigure 3. Both spectra were recorded on a JY LabRAM with a 100x objective, 1800 gr/mmgrating, 632.8 nm laser, 8 mw @ sample with an integration time of 100sec.The spectra of as-received protein powders, often sit on a high fluorescence background. In this application guide the fluorescence of two such protein powders was reduced by simply dissolving the protein in water and then depositing the solution on the TientaSpectRIM TM Slide prior to taking the Raman spectra.Results may vary depending on instrumentation, illumination wavelength integration time and the thickness and purity of the sample.References1) K. Kajiwara, F. Franks, P. Echlin, A. L.Greer, Pharm. Res. 16, 1441(1999). 2) T. C. Bakker Schut, G. J. Puppels, Y M.Kraan, J. Greve, L L.Van der Mass, C. G. Figdor, Intern. J. Cancer. 74, 20(1997). 3) A. Carden, R. M. Rajachar, M. D. Morris,Kohn, D. H. Calcified Tissue, Intern. 72, 166(2003).4) D. L. Gerrald, J. Birnie, Anal. Chem. 64,502R (1992).5) D. Zhang, Y. Xie, M. F. Mrozek, C. Ortiz, V.J. Davisson, D. Ben-Amotz, Anal. Chem. 75, 5703(2003).This Application Guide was produced jointly by Tienta Sciences, Inc., Jobin Yvon, Inc. and Dr. Dor Ben -Amotz of Purdue University.____________________________________________________________________________Tienta Sciences, Inc . 351 West 10th St. Indianapolis, Indiana 46202Phone: (317) 278-8185 A New Era in ProteinFax: (317) 278-8190 Discovery ToolsCopyright Tienta Sciences, Inc. 2004Part Number AG002_01 2/26//2004。

raman spectroscopy拉曼光谱

raman spectroscopy拉曼光谱

Energy
3 2 1
Rayleigh (elastic) Scattering
4
Raman (inelastic) Scattering
0
S0
difference in energy
Some Vibrations in Benzene
Kekule Chubby Checker Breathing
– Polarization results in nuclear displacement q q0 cos 2n Rt
8
Classical Raman Physics • For small distortions, polarizability is linearly proportional to the displacement


Anti-Stokes Raman
9
Stokes Raman
Photo-Molecular Interactions
100
Scattering Rayleigh
3
Intensity
ቤተ መጻሕፍቲ ባይዱ
80 60 40 20 Anti-Stokes 0 -2000
Stokes
2 1
0
n1
-1000 0 1000 Raman Shift (cm-1)
Intensity (CCD Counts)
5 4 3 2 1
x 10
4
0 400
600
800
5
1000 1200 1400 -1 Raman Shift (cm )
1600
1800
Evolution of Raman Spectroscopy

常温高压下石膏在水中溶解及相变现象的研究

常温高压下石膏在水中溶解及相变现象的研究

常温高压下石膏在水中溶解及相变现象的研究王世霞;郑海飞【摘要】研究常温下200~1100 MPa压力范围内石膏的Raman光谱,原位观测了随压力升高,石膏在水中的溶解现象,其过程中伴随着石膏的相变.结果表明:压力小于407 MPa时,石膏的形态无明显变化;随着压力的升高,石膏开始溶解,溶解至一定程度,石膏发生了向半水石膏转化的相变;相变完成后,半水石膏继续溶解至消失.石膏这一溶解相变过程表明,在地球内部与压力相应的深部区域内,也可能会发生矿物的溶解相变.【期刊名称】《高压物理学报》【年(卷),期】2008(022)004【总页数】5页(P429-433)【关键词】高压;石膏;溶解;相变【作者】王世霞;郑海飞【作者单位】北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京,100871;北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京,100871【正文语种】中文【中图分类】P578.7;O521.211 引言矿物在水中的溶解度随各类因素变化的问题,一直是地球化学领域研究的热点[1-2]。

石膏是浅部地壳重要的矿物,常温常压下微溶于水,溶解度为2 g/L。

然而,当其溶解于水后,其形态、体积都将会发生不同程度的变化。

由于石膏在常温下以固体形式存在,以往研究多集中于探索温度、氧逸度、酸碱度等因素对其溶解度的贡献[3-8],而少有对不同压力下石膏溶解度变化的研究。

Raman光谱是研究物质内部结构变化的重要手段[9-10],但是国内外对石膏在高压下的Raman光谱的研究多侧重谱峰的变化[11-15],对石膏内部结构和相变的研究很有限。

本研究结合拉曼光谱分析和原位观察,得出石膏在水中的溶解度随压力变化的关系,并观察到了伴随加压溶解的石膏相变现象。

2 实验方法图1 金刚石压腔示意图Fig.1 Sketch of diamond anvil cell实验采用的高压装置类似于Mao-Bell金刚石压腔[16],其内部结构如图1所示,顶砧是碳化硅材料。

各专业检索常用英语集锦

各专业检索常用英语集锦

生物和环境1. 神经的凋亡Apoptosisi of Neuron2. 肌动蛋白myosin的构象及作用机制The Structure and Function of Myosin3. 钇激光器的发射特性Yb Llaser Radiation Character4. 胰酶分泌素的分泌机制The Secreting Mechanism of Cholecystokinin5. 钙离子在信号传导中的作用The Function of Calcium in Signal Transduction6. 1,5-二磷酸核酮糖羧化酶的进化过程The Evolution of Rubisco7. 质谱技术在生物学中的应用Application of Mass Spectrometry in Biology8. PHB的微生物合成The Synthesis of PHB in Bacteria9. HIV-1 的研究Research on HIV-110.STA T信号通路在人体免疫系统的作用The Function of STA T s (Signal Transducers and Activators of Transcription)Involving the Human Immunological System11.水处理中的反渗透膜Reverse Osmosis in Water Treatment12.水体富营养化研究Research on Water Eutrophication13.饮用水处理和生产Drinking Water Treatment and Production14.废水中重金属的去除Removal of Heavy Metal in Waste Water15.膜分离技术在废水处理中的应用Membrane T echnology in the Use of Waste Water Treatment16.废塑料的生物降解Biodegradation of Wasted Plastics17.有机化合物的生物降解能力的确定方法The Method for the Determination of the Biodegradability of Organic Compounds 18.TiO2光催化氧化技术在环境工程中应用Application of Titanium Dioxide Photocatalysis in Environmental Engineering 19.包装材料的回收利用Reuse (Recycle) of Packaging Materials20.水处理中氮的去除The Removal of Nitrogen in Water-treatment21.污水的生物处理Biological Treatment of Waste Water22.催化还原法去除废气中的氮氧化物(NOx)The Catalytic Processes to Reduce Nitrogen Oxide in Waste Gases23.大气质量模型Atmosphere Environmental Quality Model24.挥发性有机物的测量The Measurement of the V olatile Organic Chemicals25.UASB在废水处理中的应用Application of UASB (Upflow Anaerobic Sludge Blanket) Reactor for the Treatment of Waste Water26.纺织工业废水中染料的去除The Removal of the Dyes from Waste Water of T extile Industry27.复合PCR技术在基因重组中的应用Multiplex PCR in Genetic Rearrangement28.含多环芳香烃废水对环境的污染The Pollution of Waste Water Containing Polycyclic Aromatic Hydrocarbons29.高效生物反应器的发展Development of High Performance Biotreator30.应用高效液相色谱纯化生物分子Purification of Biomolecules by HPLC (High-performance Liquid Chromatography) 31.蓝藻中的膜脂成分分析Analysis of Membrane Lipids in Cyanobacteria32.b-amyloid 在老年痴呆症中对神经的作用Function of b-amyloid on Neuron in Alzheimer's Disease33.小鼠胚胎干细胞的培养Cultivation of Embryonic Stem Cells in Mice34.基质金属蛋白酶的抑制Inhibition of Matrix Metalloproteinase (MMP)35.生物医用亲合吸附剂的研究进展Progress in biomedical affinity adsorbent36.面向环境的土壤磷素测定与表征方法研究进展Review on environmental oriented soil phosphorus testing procedure andinterpreting method37.海水养殖对沿岸生态环境影响的研究进展Review on effects of mariculture on coastal environment38.造纸清洁生产的研究进展Recent studies on cleaning production in paper industry39.深度氧化技术处理有机废水的研究进展Progress on treatment of organic wastewater by advances oxidation processes 40.折流式厌氧反应器(ABR)的研究进展Research advances in anaerobic baffled reactor (ABR)41.膜生物反应器中膜污染研究进展Study progress on the fouling of membrane in membrane bioreactor42.用于水和废水处理的混凝剂和絮凝剂的研究进展Progress on development and application of coagulants and flocculent in water and wastewater treatment43.二氢异香豆素类天然物的研究进展Development of studies on 3,4-dihydroisocoumarins in nature44.天然二萜酚类化合物研究进展Recent advances in the research on natural phenolic diterpenoids45.大气污染化学研究进展Progress in atmospheric chemistry of air pollution46.砷形态分析方法研究进展Development of methods for arsenic speciation47.复合污染的研究进展Advance in the study on compounded pollutions48.生物处理含氯代脂肪烃废水的研究进展Progress in research on the biological treatment of wastewater containingchlorinated aliphatics49.重金属生物吸附剂的应用研究现状Application conditions of heavy metal biosorbent50.两液相培养中有机溶剂对细胞毒性的研究进展Advances in studies on effects of toxicity of organic solvents on cells化学和化工1. 纳米材料的进展及其在塑料中的应用rogress and application of nano-materials in plastics2. 聚硅氯化铝(PASC)混凝剂的混凝特性The Coagulation Property of Polyaluminum Silicate Chlorate (PASC)3. 碳纳米管的制备与研究Preparations and studies of carbon nanotubes4. 纳米材料的制备及其发展动态Synthesis and development of nanosized materials5. 铁(III)核苷酸配位化合物与转铁蛋白的相互作用The interaction between ferric nucleotide coordination compounds and transferrin 6. 原位时间分辨拉曼光谱研究电化学氧化还原和吸附过程In-situ time resolved Raman spectroscopic studied on electrochemical oxidation-reduction and adsorption7. 苯胺电化学聚合机理的研究Study on the mechanism of electrochemical polymerization of aniline8. 沸石新材料研究进展Evolution of novel zeolite materials9. 聚合物共混相容性研究进展Research progress in compatibility of polymer blends10.聚酰亚胺LB膜研究进展Recent advances in polymide langmuir-blodgett films11.聚胺酯液晶研究进展The advances in LC-polyurethanes12.热塑性IPN研究进展及相结构理论Advances in thermoplastic IPN and morphological studies13.酞菁类聚合物功能材料研究进展Progresses in functional materials of phthalocyanine polymers14.有机硒化学研究进展Study progress in organoselenium chemisty15.杯芳烃研究进展Research progress in calixarene chemistry16.木素生物降解的研究进展Research progresses on lignin biodegradation17.甲烷直接催化转化制取芳烃的研究进展Progress research on direct catalytic conversion of methane to aromatics 18.铝基复合材料连接研究进展Advance in joining aluminum metal matrix composites19.现代天然香料提取技术的研究进展New development of the extraction from natural fragrance and flavour20.电泳涂料的研究进展Progress of study on electrodeposition coatings21.防静电涂料研究进展Research progress in antistatic coatings22.壳聚糖开发与应用研究进展Progress in research on the application and production of chitosan23.塑料薄膜防雾化技术的研究进展Research progress of anti-fogging technologies for plastics films24.膜反应器在催化反应中的研究进展Progress in study of films reactors for catalytical reactions25.表面活性剂对结晶过程影响的研究进展The development of studies on the influence of surfactants on crystallization 26.液晶复合分离膜及其研究进展Advances in liquid crystal composite membrane for separation27.高倍吸水树脂研究进展Recent progress in super adsorbent resin28.聚合物光折变的研究进展Progress of the study on photorefractivity in polymers29.微生物聚酯的合成和应用研究进展Progress on the biosynthesis and application of microbial polyesters30.可降解塑料的研究进展Progress in study on degradable plastics31.金属氢研究进展Progress on metallic hydrogen research32.软磁性材料的最新进展Recent advances in hard and soft magnetic materials33.光敏聚酰亚胺的研究进展Development of studies on photosensitive polyimides34.高分子卟啉及其金属配合物的研究进展Advances in polymers of porphyrins and their complexes35.水性聚胺酯研究进展Recent development of waterborne polyurethanes36.C60的研究进展及其在含能材料方面的应用前景Application prospect of C60 in energetic materials37.滤膜溶解富集方法研究进展Progress in investigation of concentration by means of soluble-membrane filter 38.人工晶体研究进展及应用前景The research progress and application prospects of synthetic crystals39.钛硅催化材料的研究进展Development of titanium silicon catalytic materials40.环烯烃聚合物的合成和应用研究进展Progress of polymerization and copolymerization with ethylene of cyclooelfines 41.多孔炭的纳米结构及其解析Nanostructure and analysis of porous carbons42.羰化法合成a-芳基丙酸研究进展Progress in preparation of a-arylpropionic acids through catalytic carbonation 44.组织工程相关生物材料表面工程的研究进展Advances in research on surface engineering of biomaterials for tissueengineering45.表面波在表面活性剂流变学研究中的应用Surface rheological properties of surfactant studied by surface wave technique 46.水溶性高分子聚集行为荧光非辐射能量转移研究进展Development of Fluorescence Nonradiative Energy Transfer in the Research for Aggregation of Water-Soluble Polymers47.两相催化体系中长链烯烃氢甲酰化反应研究进展Advance in the Hydroformylation of Higher Olefin in Two-Phase Catalystic System 48.聚合物膜燃料电池用电催化剂研究进展Progress in the Study of Electrocatalyst for PEMFC49.纳米器件制备的新方法--微接触印刷术New nano-fabrication Method-Microcontact Printing50.智能型水凝胶结构及响应机理的研究进展Recent Development of the Research on the Structure Effects and ResponsiveMechanism of Intelligent Hydrogels51.甲醇蒸馏distillation of methanol电类1. Amplifiers 放大器2. Asynchronous transfer mode(A TM) 异步传输模式3. Aritificial reality 虚拟现实4. Bayesian classification 贝叶斯分类器5. Biped robot 两足机器人6. Cable modem 有线调制解调器7. CDMA mobile communication system 码分多址移动通信系统8. Chaotic neural network 混沌神经网络9. Code optimization 代码优化10. Communication switching 通信交换11. Computer aided design 计算机辅助设计12. Compiler optimisation techniques 编译优化技术13. Computer game design 计算机游戏设计14. Computer graphics 计算机图形学15. Computer network 计算机网络16. Computer simulation 计算机仿真17. Computer vision 计算机视觉18. Continuous speech recognition 连续语音识别19. Corner Detect Operator 边角检测算子20. Database application 数据库应用21. Design of operation system 操作系统设计22. Digital filter 数字滤波器23. Digital image processing 数字图像处理24. Digital integrated circuits 数字集成电路25. Digital satellite communication system 数字卫星通信系统26. Digital signal processing 数字信号处理27. Digital television technology 数字电视技术28. Discrete system simulator programming 离散系统仿真编程29. Distributed interactive learning environment 分布式交互性学习环境30. EDA 数字系统设计自动化31. Electrical vehicles 电动交通工具32. Electricity control system 电力控制系统33. Electromagenetic wave radiation 电磁波辐射34. Face recognition 人脸识别35. Family Automation 家庭自动化36. Fibre bragg gratings 光纤布拉格光栅37. FIR digital filters 有限冲击响应数字滤波器38. Firewall technology 防火墙技术39. Fuzzy control 模糊控制40. Genetic algorithm 遗传算法41. HDTV 高清晰度电视42. High capacity floppy disk 高密度软盘43. High quality speech communication 高质量语音通信44. Image compression 图像压缩45. Image processing and recognition 图像处理和识别46. Image registration 图像配准47. Information retrieval 信息检索48. Intelligent robot 智能机器人49. Intelligent transportation 智能交通50. Internet protocol 因特网协议51. ISDN 综合业务数字网52. Knowledge discovery and data mining 知识发现和数据挖掘53. LAN, MAN and W AN 局域网,城域网和广域网54. Large scale integrated circuits 大规模集成电路55. Laser diode 激光二极管56. Laser measurement 激光测量57. Liner programming 线性规划58. Liner system stability analysis 线性系统稳定性分析59. Local area network security 局域网安全60. Magnetic material and devices 磁介质与设备61. Mass storage systems 海量存储技术62. Microwave devices 微波器件63. Mobile communication systems 移动通信系统64. MOS circuits MOS电路65. Motion control of robot 机器人运动控制66. Multimedia network 多媒体网络67. Network computing and knowledge acquisition 网络计算和知识获取68. Network routing protocol test 网络路由协议测试69. Neural network 神经网络70. Non-linear control 非线性控制71. Optical communication 光通信72. Optical fiber amplifiers 光纤放大器73. Optical hologram storage 光全息存储74. Optical modification 光调制75. Optical sensors 光传感器76. Optical switches 光开关77. Optical waveguides 光波导78. Packet switching technology in networks 网络中的分组交换技术79. Parallel algorithms 并行算法80. Pattern recognition 模式识别81. Photoelectric devices 光电子器件82. Process identificaion 过程辨识83. Programmable DSP chips 可编程数字信号处理芯片84. Programmable logic device 可编程逻辑器件85. Radar antennas 雷达天线86. Radar theory and systems 雷达理论和系统87. RISC architecture 简单指令处理器结构88. Satellite broadcasting 卫星广播89. Self calibration of camera 摄像机自适应校准90. Semiconductor laser 半导体激光器91. Semiconductor quantum well superlattices 半导体量子阱超晶格92. Signal detection and analysis 信号检测和分析93. Signal processing 信号处理94. Software engineering 软件工程95. Solid lasers 固体激光器96. Sound synthesiser 声音合成器97. Speech processing 语音处理98. System architecture design 系统结构设计99. Telecommunication receiving equipment 通信接收设备100. Theory of remote sensing by radar 雷达遥感理论101. Time division multiple access 时分多路访问102. Unix operating system Unix操作系统103. Video encoding and decoding 视频编解码104. Video telecommunication system 视频通信系统105. Wavelength division multiplexing 波分复用106. Wavelet transform 小波变换机械、自动化、物理、力学1. 无电压力传感器Nonelectric Pressure Sensors2. 金属腐蚀Metal Corrosion3. 印刷电路板的设计与制造The Design and Manufactory of Printed Circuit Board4. 分布式操作系统Distributed Operating Systems5. 金属材料的微结构和纳米结构Micro and Nanostructures of metal materials6. 宇宙背景辐射Backgroud Cosmic Radiations7. 非线性规划中的库恩-塔克条件kuhn-Tucker condition in Non-liner Programming8. 气体激光器Gas Laser9. 能量的来源及转化Energy resources and conversion10. 微纳米摩擦学Micro/nano-tribology11. 噪声控制Noise Control12. 空间观测技术Astronomical observation techniques13. 原子钟Atomic Clocks14. 半导体的磁性研究Research for Magnetic of Semiconductors15. 光学图形处理Optical Image Processing16. 液体/气体激光器加工Liquid/Gas Laser Machining17. 太阳能应用Solar Energy Application18. 流动系统中的混沌现象Chaos in Flowing Systems19. 半导体材料及仪器Semiconductor material and devices20. 电场测量研究Electric Field Measurement21. 系统及控制理论Systems and Control Theory22. 机械参量的测试Mechanical variables Measurement23. 光纤Optical Fibres24. 机动目标跟踪Tracking of Maneuvering T argets25. 航天技术Aerospace T echnology26. 导弹跟踪控制系统Missile Tracking System27. 液晶显示器件Liquid Crystal Displays28. CMOS 门电路CMOS Gate Circuits29. 图象采样与处理Image Sampling and Processing30. 光逻辑器件Optical Logic Device31. 信号发生器Signal Generator32. 蛋白质晶体测量Measurement of Protein Crystal Growth33. 有线电视Cables T elevision34. 震动与控制系统Vibration and Control System35. 高压输电系统的安全性研究Stability of High-voltage Power TransmissionSystem36. 电荷Electric Charge37. 电子显微镜及电子光学应用Electron Microscopes an Optics Applications38. 辐射的影响The Effect of Radiation39. 电化学传感器测试装置Electronchemical Sensors T esting Equipment40. 爱因斯坦-麦克斯韦场Einstein-Maxwell Fields41. 柔性角度传感器在生物力学中的应用Biomechanical Application of Flesible Angular Sensor42. 压电材料及应用装置Piezoelectric Materials and Devices43. 超导材料及其应用Superconducting Materials and The Applications of Them44. 光学干涉Optical Interferometry45. 表面测量Surface Measurement46. 等离子体中的电磁波Electromagnetic Waves in Plasma47. 半导体激光器Semiconductor lasers48. 数字人脸辨识Digital Face Recognition49. 光波导Optical Waveguides Theory50. 机械波检测技术Mechanical Waves T esting technology51. 激光调制技术Laser beam Modulation T echnology52. 只读内存Read-only Memory53. 光学显微镜Optical Microscopy54. 光纤位移测量传感器F-O displacement sensors55. 激光扫描Laser Scanners56. 量子论与量子场论Quantum Theory and Quantum Field Theory57. 流体机械Fluid Mechanics58. 地球引力Earth Gravity59. 自动控制系统Automatic Control System60. 静电线性加速器Electrostatic and Linear Accelerators61. 专家系统与网络接口Expert Systems and Network Interface62. 计算机辅助制造Computer aided Manufacture63. 全息存储Holography Storage64. 核能在中国的前景The Future of Nuclear Energy in China65. 机器人运动学和动力学分析The Kinematics an Dynamics of Robots66. 合成材料制品Composite Materials Preparations67. 光的吸收Light Absorption68. 自适应控制系统Self-adjusting Control Systems69. 通信与信息系统Communication and Information Systems70. 数字信号处理芯片Digital Signal Processing Chips71. 虚拟制造Virtual Manufacturing72. 雷达遥感Remote Sensing by Radar73. 晶格理论与点阵统计学Lattice Theory and Statistics74. 面向对象程序设计Object-Oriented Program Development75. 单片机应用及其外围设备The Applications of SCP and Outer Equipment76. 生物医学工程Biomedical Engineering77. 彩色电视设备Color T elevision78. 陶瓷-金属复合材料Ceramics-metallisation Composite Metallisation79. 电子信号的检测与处理Electronic Signal Detection and Processing80. X射线望远镜X- ray T elescope81. 基于网络的分时控制系统Time-varying Control System Based on Network82. 收音机信号传输Radio Broadcasting83. 单壁炭纳米管合成Single-Walled Carbon Nanotube Synthesis84. 无损检测Nondestructive T esting85. 汽车工业Automobile Industry86. 半导体材料与身体健康Semiconductor Materials and Health Physics87. 热辐射Heat Radiation88. 网络拓扑学Network T opology89. 微波的应用The Application of Microwave90. 局域网的设计The Design of Local Area Networks91. 金属元素表面结构Surface Structure of Metallic Elements92. 多媒体系统网络集成Network Synthesis of Multimedia Systems93. 铁氧体微波吸收材料Ferrite Microwave Absorbing Materials94. 炭纤维增强塑料复合材料Carbon Fiber Reinforced Plastic Composite95. 超导材料Superconducting Materials96. 远程定位水质控制Remote and On-site System for Water Quality Control97. 太阳能电力系统Solar Energy Power System98. 卫星接收系统Satellite Broadcasting and Relay System99. 时空对称性与守恒定律Symmetry of Space-time and Conservation Laws 100.邮件系统的体系及应用Application and Schemas for Mailbox System。

CanLi(李灿)

1960年生,男,中国科学院大连化学物理研究所和日本东京工业大学联合培养理学博士。

曾先后在比利时新鲁汶大学、美国西北大学、英国利物浦大学、日本东京大学和美国里海大学进行博士后及短期访问教授的工作。

现任中国科学院大连化学物理研究所研究员、催化基础国家重点实验室主任,中国化学会催化委员会主任、中国物理学会光散射委员会主任、国际催化学会理事会主席、英国皇家化学会Fellow。

2003年当选中国科学院院士、2005年当选第三世界科学院院士、2008年当选欧洲人文和自然科学院外籍院士。

主要从事催化材料、催化反应和催化光谱表征方面的研究。

在进行甲烷活化,烯烃环氧化的绿色催化研究,燃料超深度脱硫,固体表面和纳米孔中多相手性催化研究,以及催化新材料合成和原位光谱表征研究等。

近年来,主要致力于太阳能光催化分解水和重整生物质和污染物制氢以及太阳能光伏电池材料研究。

在国内外学术刊物发表正式论文400余篇,其中300余篇发表在国际学术刊物上, 总引次数超过4000余次。

在国际Elsevier Science B.V. 系列中主编论文集一本。

申请中国发明专利60余件(30余件已授权)。

国际学术会议邀请报告和大会特邀报告60余次,此外在国内外著名大学讲学和国际会议上作学术报告200余次。

2004年在法国巴黎举行的第13届国际催化大会上(2100人) 做60分钟大会特邀报告。

主持多次国际会议。

已培养硕士、博士和博士后70余名。

获得国家发明二等奖、中国科学院自然科学二等奖、香港求是科技基金杰出青年学者奖、中国青年科学家奖等。

2005年获得何梁何利科学技术进步奖、中国科学院杰出科技成就奖。

因李灿院士在催化研究领域的突出成就,2004年荣获国际催化奖。

国际催化奖是国际催化领域的最高荣誉(每四年一次,每次奖励一人)。

任 “Journal of Catalysis”,“Journal of Physical Chemistry C”, “Journal of Molecular Catalysis A”,“Chemistry: An Asian Journal”, “Journal of Raman Spectroscopy”等13种国际刊物编委/顾问委员。

中国河南独山玉和菲律宾独山玉中主要矿物的谱学特征

第23卷第2期2021年3月宝石和宝石学杂志(中英文)Journal of Gems1GemmologyVol23No2Mar52021中国河南独山玉和菲律宾独山玉中主要矿物的谱学特征王璐,狄敬如(中国地质大学珠宝学院,湖北武汉430074)摘要:对菲律宾吕宋岛独山玉和中国河南独山玉样品进行电子探针、拉曼光谱和红外光谱测试分析。

电子探针结果显示,中国河南独山玉样品中斜长石为连续Na—Ca类质同像系列,而菲律宾独山玉样品中的斜长石主要为钙长石;菲律宾独山玉样品为黝帘石,而中国河南独山玉样品中-黝帘石更多,两个产地样品中含有的透辉石在主要化学成分上一致%拉曼光谱结果显示,中国河南独山玉样品的拉曼吸收光谱为多种长石的混合图谱,而菲律宾独山玉样品中只出现了钙长石的特征吸收峰;两个产地样品中含有的黝帘石和透辉石的拉曼谱峰一致,但其形状、峰值大小和位置都有不同。

红外光谱结果显示,菲律宾独山玉样品中所含长石的红外光谱与标准红外光谱一致,中国河南独山玉样品因类质同象,红外光谱发生改变;中国河南独山玉样品中黝帘石在600〜400cm-1范围的红外光谱谱峰比菲律宾独山玉样品中教量多,且谱峰更加明显;两个产地样品中透辉石在600〜300cm-1范围内的振动频率相同,在1100〜850cm-1范围内的红外光谱略有不同。

通过对其主要矿物y成和谱峰特征的研究,可以为两个产地独山玉的鉴别提供一定的依g%关键词:独山玉;电子探针;拉曼光谱;红外光谱;中国河南;菲律宾中图分类号:TS93文献标识码:A文章编号:20969120(2021)02003808 DOI:10.15964/ki.027jgg.2021.02.005Spectroscopic Study on the Main Mineral of Dushan Yu from Henan Province,China and the PhilippinesWANG Lu#DIJingru(Gemmological Institute,China University of Geosciences,Wuhan430074,China)Abstract:Dushan Yu from Luzon Island of the Philippines and Dushan Yu from Henan Prov­ince,Chinawereanalyzedbyelectronprobemicroanalysis,Ramanspectroscopyandin,rared spectroscopy.The EPMA resultsshowedthattheplagioclasein Dushan Yu,rom Henan Province,China,iscontinuous Na-Caisomorphicseries,whiletheplagioclasein Dushan Yu from the Philippines is m ainly anorthite.The Dushan Yu from the Philippine is&-zoisite,whiletheDushanYufrom Chinacontainmore%-zoisite.Themajorchemicalcom-positionsofdiopsideinDushan Yufromthetwooriginsareconsistent.ThetestingresultsshowedthattheRamanabsorptionspectrumofDushanYufrom HenanProvince,China,isa收稿日期:2020-03-08基金项目:中国地质大学(武汉)珠宝检测技术创新中心幵放基金,文章编号CIGTXM-S201727作者简介:王璐(1992—),女,硕士,主要从事宝石学研究工作$通讯作者:狄敬如(1964—),女,副教授,主要从事宝石鉴定与研究工作$E-mail:1016106644@第2期王璐等:中国河南独山玉和菲律宾独山玉中主要矿物的谱学特征39mixture of many kinds of feldspars # while only the characteristic absorption peak of anorthiteappears in Dushan Yu from the Philippines. The Raman peaks of zoisite and diopside in thesamplesfromYheYwooriginsareconsisYenY #howeverYheirshapes #peaksizesandposiYions aredi f erent.ThetestingresultsshowedthattheinfraredspectrumoffeldsparinDushanYufromthePhilippinesisconsistentwiththestandardspectrum #whiletheinfraredspectrumof Dushan Yufrom HenanProvince #China #haschangedduetotheisomorphism.Theinfrared spectrumpeakofzoisiteinDushanYufrom HenanProvince #China #ismoreintherangeof600—400cm —1thanthatinDushanYufromthePhilippines #andthespectrumpeakismore obvious.Thevibrationfrequencyofdiopsideinsamplesfromtwooriginsisthesameintherangeof600—300cm —1#buttheinfraredspectrumisslightlydi f erentintherangeof1100 —850cm —1.Throughtheanalysisofthemainmineralcomponentsandspectralpeakcharac-teristics #acertainbasisfortheidentificationofDushanYufrom HenanProvince #Chinaand thePhilippinescanbeprovided.Key words : Dushan Yu ; EPMA ; Raman spectrum ; infrared spectrum ; Henan Province ,China ; Philippines市场上岀现的产岀于菲律宾吕宋岛的独山 玉和中国河南独山玉有些不同。

常用杀虫剂辛硫磷、阿维毒死稗的光谱特征研究

Hans Journal of Agricultural Sciences 农业科学, 2019, 9(6), 502-510Published Online June 2019 in Hans. /journal/hjashttps:///10.12677/hjas.2019.96075Spectroscopic Studies on the AqueousSolution of Commonly Used InsecticidePhoxim and Avermectin ChlorpyrifosFangyuan Li1, Xinyue Zhao1, Kun Wang1, Lexin Wang2*1Information and Computing Science Class 2016, Heilongjiang Bayi Agricultural University, Daqing Heilongjiang 2College of Science, Heilongjiang Bayi Agricultural University, Daqing HeilongjiangReceived: June 6th, 2019; accepted: June 21st, 2019; published: June 28th, 2019AbstractFluorescence spectra and fluorescence spectra of three-dimensional technology is utilized to study the insecticide (phoxim, avermectin chlorpyrifos) spectral characteristics of an aqueous solution of the absorption spectra. The result shows that the phoxim characteristic absorption peak is at 275 nm and the avermectin chlorpyrifos characteristic absorption peak is at 335 nm under the same ex-perimental conditions. Fluorescence spectroscopy and phoxim, avermectin chlorpyrifos aqueous solution of three-dimensional fluorescence spectrum have significant differences. There are two fluorescent areas of phoxim in λex\λem = 245 nm - 285 nm\270 nm - 310 nm, the excitation wave-length is 265 nm and the peak position is 292 nm. In λex\λem = 245 nm - 300 nm\310 nm - 380 nm and the best excitation wavelength is at 275 nm, there are two fluorescence peaks, the peak posi-tions are 322 nm and 334 nm; Fluorescent area distribution of avermectin chlorpyrifos is mainly in λex\λem = 310 nm - 370 nm\360 nm - 510 nm. Both of two peaks positions are at 422 nm and 424 nm, respectively, the corresponding excitation wavelength is 335 nm and 355 nm. This study ana-lyzed the qualitative detection of insecticide to provide a reference for the experiment.KeywordsPhoxim, Avermectin Chlorpyrifos, Absorption Spectrum, Fluorescence Spectra, Three-Dimensional Fluorescence Spectra常用杀虫剂辛硫磷、阿维毒死稗的光谱特征研究李方圆1,赵新月1,王昆1,王乐新2*1黑龙江八一农垦大学理学院信息与计算科学2016级,黑龙江大庆2黑龙江八一农垦大学理学院,黑龙江大庆*通讯作者。

三磷酸腺苷的手性拉曼光谱研究

三磷酸腺苷的手性拉曼光谱研究王鹏;贾国卿;张莹;冯兆池;李灿【摘要】三磷酸腺苷(Adenosine 5'-TriphosPhate,ATP)是一种核苷酸的衍生物,在生命过程中扮演着重要的角色,既是能量分子,同时也是生物助水溶剂.由于其重要的生物学意义,ATP水溶液结构的研究一直受到广泛的关注.本文利用本课题组自主搭建的457 nm短波长手性拉曼光谱仪(Raman Optical Activity,ROA)对ATP在酸性(pH=2.0)和中性(pH=7.0)水溶液中的手性结构进行了研究.通过Raman和ROA谱图的分析,发现在不同的pH条件下,Raman光谱表现出了明显的差异,但在相应的ROA谱图中,光谱轮廓具有极大相似性,主要的差别反应在950~1150 cm-1光谱区域,说明pH值的改变,主要影响了环外磷酸基团和呋喃糖环之间的相互作用方式.【期刊名称】《光散射学报》【年(卷),期】2018(030)004【总页数】5页(P362-366)【关键词】手性拉曼光谱;457 nm;三磷酸腺苷【作者】王鹏;贾国卿;张莹;冯兆池;李灿【作者单位】中国科学院大连化学物理研究所,催化基础国家重点实验室,大连116023;中国科学院大学,北京100049;中国科学院大连化学物理研究所,催化基础国家重点实验室,大连116023;中国科学院大连化学物理研究所,催化基础国家重点实验室,大连116023;中国科学院大连化学物理研究所,催化基础国家重点实验室,大连116023;中国科学院大连化学物理研究所,催化基础国家重点实验室,大连116023【正文语种】中文【中图分类】O657.31 引言手性拉曼光谱(Raman Optical Activity,ROA)是基于拉曼光谱的一种手性检测技术,主要测量右旋圆偏振光、左旋圆偏振光与手性分子相互作用后的拉曼散射的微小差别,或等效测量通过手性样品的拉曼散射光信号中的右、左旋圆偏振成分的差值[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Received 2 July 2001; Accepted 14 February 2002
The phase evolution of zirconia (ZrO2 ), sulfated zirconia (SO4 2− /ZrO2 ) and yttrium oxide incorporated zirconia (Y2 O3 –ZrO2 ) from the tetrahedral phase to the monoclinic phase was studied using UV Raman spectroscopy, visible Raman spectroscopy and x-ray diffraction (XRD). It is clearly observed that there are discrepancies between the results from the UV Raman spectra, visible Raman spectra and XRD patterns. The phase change from tetragonal to monoclinic is always earlier or at lower calcination temperatures as observed by UV Raman spectroscopy than by visible Raman spectroscopy and XRD. UV Raman spectroscopy is found to be more sensitive at the surface region while visible Raman spectroscopy and XRD supply the information mainly from the bulk. The inconsistency in the results from the three techniques suggests that the phase transformation of zirconia starts from its surface region and then gradually develops into its bulk. For SO4 2− /ZrO2 and Y2 O3 –ZrO2 , the transformation from the tetragonal to the monoclinic phase is significantly retarded owing to the presence of the sulfated groups and the yttrium oxide. Particularly, the tetragonal phase of Y2 O3 –ZrO2 can be maintained up to 800 ◦ C although its phase at the surface region changed into monoclinic at 500 ◦ C. Copyright 2002 John Wiley & Sons, Ltd.
spectroscopy opens up the possibility of characterizing those catalysts which are difficult to study by conventional visible Raman spectroscopy. For UV Raman spectroscopy, not only is fluorescence avoided, but also the sensitivity can be improved.14 The Raman scattering intensity can be enhanced when the excitation laser is shifted from the visible (for conventional Raman) or near-infrared (for Fourier transform Raman) to the UV region because the Raman scattering is proportional to 1/ 4 (where is the wavelength of the scattering light, approximately that of the excitation laser). Furthermore, the Raman scattering can be greatly enhanced by the resonance Raman effect when the UV laser falls in the region of the electronic absorption of the samples. Zirconia is an important material, being widely used as a catalyst and catalyst support and also as a ceramic.15 – 20 Zirconia exhibits three different phases: monoclinic (mZrO2 ), tetragonal (t-ZrO2 ) and cubic (c-ZrO2 ). t-ZrO2 is a metastable phase of ZrO2 at low temperatures and it changes into m-ZrO2 at elevated temperatures.16,21,22 Metastable t-ZrO2 can be obtained by thermal treatment of suitable starting materials (zirconium salts, zirconium alkoxides or zirconium hydroxide).15,16,22,23 Stabilized t-ZrO2 is important for ceramics and sulfated zirconia catalysts. However, the phase transformation from the metastable tetragonal phase to the monoclinic phase of crystalline ZrO2 prevents its applications over a broad temperature range. Many studies24 – 30 have addressed the factors that affect
INTRODUCTION
Raman spectroscopy has been used in catalysis studies since the 1970s and it was expected that Raman spectroscopy would develop info one of the most useful techniques for the characterization of catalytic materials and catalytic reactions.1 – 5 Although Raman spectroscopy has a number of potential applications in catalysis research, it is not as widely used in catalytic studies as was expected. The main limitations are its relatively low sensitivity and fluorescence interference.6 Fluorescence interference could be avoided by shifting the excitation laser from the visible region usual for conventional Raman spectroscopy to the UV region (below 300 nm) without fluorescence interference. Since 1995, we have carried out the UV Raman spectroscopic studies of catalysts7 and studied sulfated zirconia,8 coked catalysts,9,10 zeolites and alumina-supported oxides11 – 13 that all have a strong fluorescence background in their visible Raman spectra, but are free of fluorescence interference in the UV Raman spectra. Hence UV Raman
JOURNAL OF RAMAN SPECTROSCOPY J. Raman Spectrosc. 2002; 33: 301–308 Published online in Wiley InterScience (). DOI: 10.1002/jrs.863
Ł Correspondence to: Can Li, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. E-mail: canli@, Home Page: Contract/grant sponsor: National Science Foundation of China; Contract/grant numbers: 29625305; 20073045. Contract/grant sponsor: State Key Project for Basic Research, Ministry of Science and Technology; Contract/grant number: G1999022407.
相关文档
最新文档