七年级第二次月考数学试题
七年级(上)第二次月考数学检测试卷(含答案)

七年级(上)第二次月考数学检测试卷(每小题3分,共30分) .在 8080080008.0 ,8 ,31.0 ,41, ,2 ,14.33--π(每两个8之间依次多1个0)这些数中,无理数的个数为( )A 、1个B 、2个C 、3个D 、4个 ,下列运算正确的是( )A 、2222=-xx B 、 2222555d c dc =+C 、xy xy xy =-45D 、532532m m m =+、将一元一次方程13321=--x 去分母,下列正确的是( )A 、1-(x -3)=1B 、3-2(x -3)=6C 、2-3(x -3)=6D 、3-2(x -3)=1下列近似数中,含有3个有效数字的是 ( ) A.5430 B.5.430×106C.0.5430D.5.43万.下列各式中去括号正确的是( )A 、22(22)22x x y x x y --+=-++B 、()m n mn m n mn -+-=-+-C 、(53)(2)22x x y x y x y --+-=-+D 、(3)3ab ab --+= 下列式子中: 12,b ,y x + ,032=-y ,ts 整式的个数为( )A 、2个B 、3个C 、4个D 、5个.下列说法中正确的是 ( . ) A.有理数与数轴上的点一一对应。
B.无限小数是无理数。
C.23-读作3-的平方 D.5的平方根是5±、哥哥今年15岁,弟弟今年9岁,x 年前哥哥的年龄是弟弟年龄的2倍,则列方程为( ) A、)9(215x x -=- B、)15(29x x -=- C、)9(215x x +=+ D、)15(29x x +=+ 9、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为 A .7B .3C .3-D .2-10,在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(•不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为A ·B 。
北师大版七年级数学(下)第二次月考试卷(含解析)

北师大版七年级数学(下)数学第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y62.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°(5题)(6题)(7题)6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS 7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.368.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()(8题)(10题)A.6B.5C.4D.39.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为米.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m =.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.14题15题16题15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为cm.16.(3分)如图,在△ABC中,AB=AC ,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF=.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y=.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD=;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC=8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y6【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.a10÷a5=a5,故本选项不合题意;D.(xy2)3=x3y6,正确.故选:D.【点评】本题主要考查了合并同类项、同底数幂的除法,幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.2.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油【分析】根据轴对称图形的概念求解.【解答】解:A、“中”可以看作是轴对称图形,故本选项符合题意;B、“国”不是轴对称图形,故本选项不合题意;C、“加”不是轴对称图形,故本选项不合题意;D、“油”不是轴对称图形,故本选项不合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、3+1<5,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+3<7,不能构成三角形,故C错误;D、2+3>4,能构成三角形,故D正确,故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等【分析】根据平行线的性质、有理数的乘方、对顶角相等、全等三角形的判定定理判断即可.【解答】解:A、两直线平行,同位角相等,∴同位角相等,是随机事件;B、如果a2=b2,那么a=b,是随机事件;C、对顶角相等,是必然事件;D、两边及其一角分别相等的两个三角形全等,是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选:B.【点评】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC =∠BAC.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.36【分析】易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.【解答】解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选:C.【点评】考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.8.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC =×4×2+AC×2=7,解得AC=3.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.9.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=9﹣8=1,则a﹣b=±1,故选:B.【点评】此题考查了平方根,以及完全平方公式,熟练掌握平方根定义及公式是解本题的关键.10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个【分析】由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,可判断①,由等腰直角三角形的性质可得∠CDE=∠CED=45°.CM⊥AE,可判断②,由全等三角形的性质可求∠AEB=∠CME=90°,可判断④,由线段和差关系可判断③,即可求解.【解答】解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,故①错误,∵△DCE为等腰直角三角形,CM平分∠DCE,∴∠CDE=∠CED=45°,CM⊥AE,故②正确,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°,∴∠AEB=∠CME=90°,∴CM∥BE,故④正确,∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故③正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△ACD≌△BCE是本题的关键.二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为1×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm可以表示为100×10﹣9=1×10﹣7米.故答案为:1×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.【分析】直接利用轴对称图形的性质结合概率公式得出答案.【解答】解:只有将②③④中的一个小正方形涂黑,图中的阴影部分才构成轴对称图形,故图中的阴影部分构成轴对称图形的概率为:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题关键.15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为34cm.【分析】根据线段垂直平分线的性质结合△ABD的周长可求AB+BC=24,进而可求解△ABC的周长.【解答】解:∵DE是边AC的垂直平分线,AE=5cm,∴AD=CD,AC=2AE=10,∵△ABD的周长为24cm,∴AB+BD+AD=AB+BD+CD=AB+BC=24(cm),∴C△ABC=AB+BC+AC=24+10=34(cm).故答案为34.【点评】本题主要考查线段垂直平分线的性质,灵活运用线段垂直平分线的性质是解题的关键.16.(3分)如图,在△ABC中,AB=AC,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF =104°.【分析】连接OB、OC,根据线段垂直平分线上的点到两端点的距离相等可得OA =OB,再由角平分线条件与等腰三角形的条件证明△OAB≌△OAC,得OA=OB =OC,得∠OBA=∠OAB=∠OAC=∠OCA,根据折叠性质得OF=CF,进而求得∠OCF,再由三角形内角和定理,求得∠OBC+∠OCB,进而由等腰三角形的性质求得∠OCB ,再由折叠性质求得结果.【解答】解:连接OB、OC,∵OD垂直平分AB,∴OA=OB,∴∠OAB=∠OBA,∵AO平分∠BAC,∴∠BAO=∠CAO,∵AB=AC,AO=AO,∴△OAB≌△OAC(SAS),∴OB=OC,∠ABO=∠ACO,∴OA=OB=OC,∴∠OBA=∠OAB=∠OAC=∠OCA,∵∠AFO=52°,∴∠OFC=180°﹣∠AFO=128°,由折叠知,OF=CF,∴∠OCF=∠COF=,∴∠OBA=∠OAB=∠OAC=∠OCA=26°,∴∠OBC+∠OCB=180°﹣4×26°=76°,∵OB=OC,∴∠OBC=∠OCB=38°,由折叠知,OE=CE,∠OEF=∠CEF,∴∠COE=∠OCE=38°,∴∠OEC=180°﹣2×38°=104°.故答案为:104°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,作辅助线,构造出等腰三角形是解题的关键.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y =.【分析】(1)先算积的乘方、再算乘法,最后算除法即可求解;(2)先根据负整数指数幂、零指数幂,平方差公式计算,再算加减法即可求解;(3)原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘多项式法则化简,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2)=4x4y2z2•3x2y÷(﹣15x2y2)=12x6y3z2÷(﹣15x2y2)=﹣x4yz2;(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202)=9+1﹣[(2020﹣1)×(2020+1)﹣20202]=9+1﹣(20202﹣1﹣20202)=9+1+1=11;(3)[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(10xy+8y2)÷2y=5x+4y,当x=﹣l,y =时,原式=﹣5+2=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).【分析】作线段AB的垂直平分线交AB于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.【分析】本题主要考查平行线的性质与判定,根据同旁内角互补两直线平行可判断DF∥AC,进而可得∠EDF=∠BFD,再利用平行线的判定可求解.【解答】解:DE∥BC.理由如下:∵∠EGF+∠BEC=180°,∴DF∥AC,∴∠BFD=∠C,∵∠EDF=∠C,∴∠EDF=∠BFD,∴DE∥BC.【点评】本题主要考查平行线的性质与判定,掌握平行线的性质与判定定理是解题的关键.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.【分析】用列表法列举出所有可能出现的结果,从中找出“两人抽取的牌面数字之和为3的倍数”的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中“两人抽取的牌面数字之和为3的倍数”的有5种,∴P(两人抽取的牌面数字之和为3的倍数)=,即小颖获胜的概率为.【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.【分析】(1)由剩余油量=55升﹣耗油量,可求解析式;(2)先求出55升油能行驶的路程,与往返的总路程比较,可求解.【解答】解:(1)由题意可得:y=55﹣0.6x;(2)当y=0时,0=55﹣0.6x,∴x =,∵<48×2,∴往返途中不加油,他们不能回到家.【点评】本题考查了一次函数关系式,根据数量关系列出函数关系式是解题的关键.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?【分析】(1)大正方形的面积减去4个小正方形的面积的差,即为无盖纸盒的表面展开图的面积S1;(2)利用矩形的面积公式即可计算该长方形的面积S2;(3)根据(1)(2)表示的面积相等即可得到结论.【解答】解:(1)无盖纸盒的表面展开图的面积S1=32﹣4n2=9﹣4n2;(2)长方形的长是:3+2n,宽是:3﹣2n,∴长方形的面积S2=(3+2n)(3﹣2n);(3)由题可得,9﹣4n2=(3+2n)(3﹣2n).【点评】本题主要考查了平方差公式的几何背景,表示出图形阴影部分面积是解题的关键.立体图形的侧面展开图体现了平面图形与立体图形的联系,立体图形问题可以转化为平面图形问题解决.23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD =63°;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC =8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.【分析】(1)依据三角形内角和定理以及折叠的性质,即可得到∠BAE的度数,进而得出∠DAE的度数;(2)依据平行线的性质以及折叠的性质,即可得到△CB'E≌△AD'F,依据全等三角形的性质即可得出D'F=B'E;(3)连接BB',依据折叠的性质以及三角形内角和定理,即可得到BB'⊥AC,N 是BC的中点,进而得出S四边形BMB'N=S△BCE,求得△BCE的面积,即可得出结论.【解答】解:(1)∵∠B=90°,∠ACB=36°,∴Rt△ABC中,∠BAC=54°,由折叠可得,∠BAE=∠BAC=27°,∵∠BAD=90°,∴∠DAE=90°﹣27°=63°,故答案为:63°;(2)证明:∵AD∥BC,∴∠ECB'=∠F AD',由折叠可得,∠B=∠AB'E=90°,∠D=∠CD'F=90°,AB=AB'=CD=CD',∴∠CB'E=∠AD'F=90°,CB'=AD',在△CB'E和△AD'F中,,∴△CB'E≌△AD'F(ASA),∴D'F=B'E;(3)如图3,连接BB',由折叠可得,BM=B'M,∴∠MBB'=∠MB'B,∵M是BE的中点,∴BM=ME,∴ME=MB',∴∠MEB'=∠MB'E,又∵∠MEB'+∠MB'E+∠MB'B+∠MBB'=180°,∴∠MB'E+∠MB'B=90°,即BB'⊥AC,∴∠BB'C=90°,∴∠BB'N+∠CB'N=90°,∠B'BN+∠B'CN=90°,由折叠可得,BN=B'N,∴∠BB'N=∠B'BN,∴∠CB'N=∠B'CN,∴NC=NB',∴BN=CN,即N是BC的中点,∴S△BB'N =S△BB'C,∵M是BE的中点,∴S△BB'M =S△BB'E,∴S四边形BMB'N =S△BCE,∵长方形ABCD中,AB=6,BC=8,对角线AC=10,∴AB×BC =AC×BB',即BB'===4.8,又∵CE=CB=8,BB'⊥AC,∴S△BCE =CE×BB'=×8×4.8=19.2,∴S四边形BMB'N =×19.2=9.6.【点评】本题主要考查了折叠问题,平行线的性质以及三角形内角和定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
七年级数学上册第二次月考测试题(04)

七年级数学上册第二次月考测试题(04)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,2的相反数是()A.2B.﹣2C.D.﹣2.(3分)据猫眼专业版显示,今年国庆档的献礼片《我和我的祖国》已经跻身中国电影票房榜前五名,自上映以来票房累计突破29.9亿元,将29.9亿用科学记数法可以表示为()A.0.299×1010B.2.99×109C.29.9×108D.2.99×1010 3.(3分)实数a,b,c在数轴上的位置如图所示,化简|﹣a﹣b|﹣|c|的结果是()A.﹣a﹣b+c B.﹣a﹣b﹣c C.a+b﹣c D.a+b+c4.(3分)下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为5.(3分)下列叙述中正确的是()A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若﹣,则x=﹣26.(3分)若|b﹣2|+(a+3)2=0,则(a+b)2019的值为()A.2019B.﹣1C.﹣2019D.17.(3分)已知无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,则m+n等于()A.5B.﹣5C.1D.﹣18.(3分)笔记本比水性笔的单价多2元,小刚买了5本笔记本和3支水性笔正好用去18元.如果设水性笔的单价为x元,那么下面所列方程正确的是()A.5x+3(x﹣2)=18B.5(x﹣2)+3x=18C.5x+3(x+2)=18D.5(x+2)+3x=189.(3分)已知关于x的方程2(x﹣1)+3k=4x+6的解为x=﹣1,则k的值为()A.1B.2C.3D.410.(3分)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确二.填空题(共5小题,满分15分,每小题3分)11.(3分)阅读理解:①根据幂的意义,a n表示n个a相乘;则a m+n=a m•a n;②a n=m,知道a和n可以求m,我们不妨思考;如果知道a,m,能否求n呢?对于a n=m,规定[a,m]=n,例如:62=36,所以[6,36]=2.记[5,x]=4m,[5,y﹣3]=4m+2;y与x之间的关系式为.12.(3分)方程3x2n﹣3+2=0是关于x的一元一次方程,则n=.13.(3分)若关于x的方程3x﹣7=2x+a的解与方程4x+3=﹣5的解互为倒数,则a的值为.14.(3分)2022年冬奥会将在北京召开,某场馆建设由甲乙两个工程队完成,甲单独做要30个月完成,乙单独做要60个月完成,则甲乙两队合作个月完成这项工程.15.(3分)在如图所示的运算流程中,若输入的数为8,则输出的数为.三.解答题(共8小题,满分75分)16.(16分)若规定这样一种新运算法则:a*b=a2﹣2ab.如3*(﹣2)=32﹣2×3×(﹣2)=21.(1)求2*(﹣3)的值;(2)若(﹣4)*x=﹣2﹣x,求x的值.17.(6分)代数式求值:x2y﹣xy﹣0.5x2y+0.5xy,其中x=3,y=﹣2.18.(6分)计算下列各题:(1)(﹣24)×();(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.(8分)定义:若整数k的值使关于x的方程+1=kx的解为整数,则称k为此方程的“友好系数”.(1)判断k1=0,k2=1是否为方程+1=kx的“友好系数”,写出判断过程;(2)方程+1=k“友好系数”的个数是有限个,还是无穷多?如果是有限个,求出此方程的所有“友好系数“;如果是无穷多,说明理由.20.(9分)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)公式①:(a+b+c)d=ad+bd+cd.公式②:(a+b)(c+d)=ac+ad+bc+bd.公式③:(a﹣b)2=a2﹣2ab+b2.公式④:(a+b)2=a2+2ab+b2.图1对应公式,图2对应公式,图3对应公式,图4对应公式.(2)《几何原本》中记载了一种利用几何图形验证平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出验证过程;(已知图中各四边形均为长方形)21.(9分)如图是一个数表,现用一个长方形在数表中任意框出4个数.(1)a,c的关系是:;(2)当a+b+c+d=32时,a=.(3)a,b,c,d的关系是:.22.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米小时,设客车行驶时间为t小时.(1)当t=5时,客车与乙城的距离为千米(用含a的代数式表示);(2)已知a=70,求客车与出租车首次相距100千米时客车的行驶时间(列方程解答).23.(11分)已知:数轴上A、B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣c2﹣3(a﹣c2)的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?。
人教版七年级数学下学期第二次数学月考试卷【含答题卡】

人教版七年级数学下学期第二次数学月考试卷(总分:150分,考试时间:120分钟)一、精心选一选(每小题4分,共40分)1.下列方程中,是二元一次方程的是( )A. B.C. D . 02=-y x 21=-y x 12=-y x 01=-xy 2.“与3的和不大于6”用不等式表示为( )a A. B. C. D .63<+a 63≤+a 63>+a 63≥+a 3.若,则下列不等式不成立的是( )b a <A . B . C . D .11+<+b a b a 22<b a -<-33b a <4.已知单项式 与是同类项,那么的值分别是( )322y xm -m n y x -,m n A . B . C . D .⎩⎨⎧-==13n m ⎩⎨⎧==13n m ⎩⎨⎧=-=13n m ⎩⎨⎧-=-=13n m 5.若,则的值分别为( )0)3(12=--+-+y x y x y x ,A . B . C . D .⎩⎨⎧-==12y x ⎩⎨⎧==12y x ⎩⎨⎧==21y x ⎩⎨⎧==03y x 6.二元一次方程的正整数解有( )个72=+y x A .1 B .2 C .3 D .47.若关于的不等式的解集是,则的取值范围是( )x 1)1(->-a x a 1>x a A . B . C . D .0<a 0>a 1<a 1>a 8.不等式的非负整数解有( )个x x -≤-5)1(3A .1 B .2 C .3 D .49.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )支笔A .3B .4C .5D .610.已知三年前,A 的年龄是B 的年龄的5倍,现在A 的年龄是B 的年龄的4倍,则A 现在的年龄是( ) 岁.A .48B .45C .12D .9二、认真填一填(每小题4分,共24分)11.把方程化为用含的代数式来表示:= .42=-y x x y y 12.写出一个解为的二元一次方程组: .⎩⎨⎧=-=21y x13.若关于的方程的解为负数,则的取值范围是 .x 23+=+x mx m 14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对 道题.15.在实数范围内定义新运算“△”,其规则是:△=a b ba -2已知不等式△的解集为,则 .x 1≥m 1-≥x =m 16.已知为整数且关于、的二元一次方程组有整数解,m x y ⎩⎨⎧=+=-7422y x my x 则= .m 三、耐心做一做(共86分)17.(12分)解方程组:(1) (2)⎩⎨⎧=--=533y x x y 233511x y x y +=⎧⎨-=⎩18.(8分)解不等式并在数轴上表示出其解集:63)2(2<-+x x 19.(8分)已知:且当时,;当时,;b kx y +=1-=x 2=y 2=x 7-=y 求:当时,的值;2-=x y 20.(8分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?21.(8分)当为何正整数时代数式的值不小于的值?x 41+x 1312--x 22.(8分)某物流公司要将300吨货物运往某地,现有A 、B 两种型号的车可供调用,已知A型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨货物一次性装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?23.(10分)若关于、的二元一次方程组的解满足,x y ⎩⎨⎧=++=-my x m x y 52322>+y x 求的取值范围m 24.(10分)若关于、的二元一次方程组与有相同的解,x y ⎩⎨⎧=+=+822by ax y x ⎩⎨⎧-=-=-41023ay bx y x 求的值2017)2(b a +25.(14分)某商场销售A、B两种型号的计算器,A型的计算器进价为30元/台,B型的计算器进价为40元/台,商场销售3台A型的计算器和2台B型的计算器,可获利润68元;销售2台A型的计算器和3台B型的计算器,可获利润72元;(1)求A、B两种型号的计算器在该商场的售价分别是多少元/台?(2)某天商场只有2120元的进货资金,王经理又想购进这两种型号的计算器共70台,请问:①王经理有哪几种进货方案?②王经理怎样进货可使商场销售完这70台计算器获得的利润最大?最大利润为多少?并说明理由。
2022-2023学年江苏省盐城市盐都区第一共同体七年级第二学期第二次月考数学试卷

盐城市盐都区第一共同体七年级第二学期5月份数学试题时间:100分钟分值:120分一、选择题(本大题共8小题,每小题3分,共24分)1.化简(a4)3的结果为····························································()A.a7B.a12C.a11D.a82. 下列各式从左到右的变形不属于...因式分解的是·····································()A.a2+2ab+b2=(a+b)2B.xy−4x+y−4=(x+1)(y−4)C.x2+6x−9=(x+3)(x−3)+6xD.x2+3x−10=(x+5)(x−2)3.已知某三角形三边长分别为4,x,11,其中x为正整数,则满足条件的x值的个数是····()A.6B.7C.8D.94.一块含45°角的直角三角板与一把直尺如图放置,若∠1=60°,则∠2度数是··········()A.85°B.75°C.60°D.45°第4题第5题第8题5.如图,下列结论不正确...的是······················································()A.若AD∥BC,则∠1=∠BB.若∠1=∠2,则AD∥BCC.若∠2=∠C,则AE∥CDD.若AE∥CD,则∠1+∠3=180°6.已知二元一次方程x+y=1,下列说法正确..的是····································()A.它有一组正整数解B.它只有有限组解C.它只有一组非负整数解D.它的整数解有无穷多组7.在△ABC中,∠A+∠B=141°,∠C+∠B=165°,则△ABC的形状是·····················()A.锐角三角形B.直角三角形C.钝角三角形D.不存在这样的三角形8. 如图,∠A0B=70°,点M,N分别在OA,OB上运动(不与点O重合〉,ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M, N的运动过程中,∠F的度数·······························()A.变大B.变小C.等于55°D.等于35°二、填空题(本大题共10小题,每小题2分,共20分)9.新冠病毒“奥密克戎”的直径约为0.00000011m,用科学记数法可表示为m.10.六边形的内角和是°.11.使等式a 0 = 1成立的条件是.12.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上).若∠B=55°,∠C=100°,则∠AB′A′的度数为 .13.已知a =−(0.2)2,b =−2−2,c =(−12)−2,则a ,b ,c 从小到大....的排序是 . 14.关于x 的不等式2ax+3x >2a+3的解集为x <1,则a 的取值范围是 . 15.已知 ax +by =16bx −ay =−12的一组解为 x =2y =4,则a 、b 分别为 .16.已知关于x 的不等式组 x −a >0 3−2x ≥−11 的整数解共有5个,则a 的取值范围是 .17.定义:对于任何数a ,符号[a ]表示不大于a 的最大整数.例:[5.7]=5,[5]=5,[﹣1.5]=﹣2.如果[554-x ]=﹣5,满足条件的所有整数x 是 . 18.如图,AB//CD ,则∠1+∠2+∠3+……+∠n-1+∠n= .三、解答题(本大题共10小题,共76分)19.(本题满分6分)计算: (1)()()11322π--+-- (2)()326323a a a a a -⋅+÷20.(本题满分6分)因式分解:(1)2436x - (2)x 3−2x 2y +xy 221.(本题满分6分)解不等式组()211113x x x x ⎧--≤⎪⎨+>-⎪⎩,并把解集在数轴上表示出来第12题第18题22.(本题满分6分)解方程组:(1)213417x yx y=-⎧⎨+=⎩(2)20325x yx y-=⎧⎨-=⎩23.(本题满分6分)先化简,再求值:(a−1)2−a(a+3)+2(a+2)(a−2),其中a=−2.24.(本题满分6分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫做格点. (1)画出△ABC先向右平移4个单位,再向上平移两个单位后得到的△A1B1C1;(2)画出△A1B1C1的高C1H;(3)连结AA1 、CC1,求四边形ACC1A1 的面积.25.(本题满分8分)如图,△ABC中,AD⊥BC于点D,EF⊥BC于点F,EF交AB于点G,交CA延长线于点E,AD平分∠BAC.求证:∠E=∠BGF.26.(本题满分10分)某电器超巿销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:((1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.27.(本题满分10分)【项目学习】“我们把多项式a2+2ab+b2及a2―2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解: a2+6a+8=a2+6a+32—32+8=(a+3 )2—1因为(a+3)2≥0,所以a2+6a+8≥—1,因此,当a=―3时,代数式α2+6a+8有最小值,最小值是-1.【问题解决】利用配方法解决下列问题:(1))当x= 时,代数式x2—2x一1有最小值,最小值为.(2)当x取何值时,代数式2x2+8x+12有最小值?最小值是多少?【拓展提高】(3)当x,y何值时,代数式5x2—4xy+y2+6x+25取得最小值,最小值为多少?(4)如图所示的第一个长方形边长分别是2α十5、3α十2,面积为S1;如图所示的第二个长方形边长分别是5a、a+5,面积为S2.试比较S1与S2的大小,并说明理由.28.(本题满分12分)已知∠MON=40°,0E平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C 不与点O重合),连接AB,连AC交射线OE于点D,设∠BAC=α.(1)如图1,若AB∥ON,①∠ABO的度数是° ;②当∠BAD=∠ABD时,∠0AC的度数是°;当∠BAD=∠BDA时,∠0AC的度数是°;( 2 )在一个四边形中,若存在一个内角是它的对角的2倍,我们称这样的四边形为“完美四边形”,如图2,若AB⊥OM,延长AB交射线ON于点F,当四边形DCFB为“完美四边形”时,求α的值.图1 图2 备用图。
初一数学第二次月考试卷

七 年 级 数 学 第 二 次 月 考 测 试 题 一、选择题(每题3分共30分) 1、 下列各数中,负数是 ( ) A —(—3) B —3- C (—3)2 D —(—3)3 2、单项式342h r π 的 ( ) A 系数是4, 次数是2 B 系数是3,次数是3 C 系数是34π,次数是3 D 系数是34,次数是4 3、在(—1)2,(—1)3,(—1)2007,(—1)2008中,值为1的有( ) A 1 个 B 2个 C 3个 D 4个 4、冬季某天我国三个城市的最高气温分别是—10 0C ,1 0C ,—7 0C 它们从高到低排列,正确的是( ) A —10 0C ,—7 0C ,1 0C B —7 0C , —10 0C ,1 0C C 1 0C ,—10 0C ,—7 0C D 1 0C , —7 0C , —10 0C 5、已知51=-a , 则a 的值为( ) A 6 B —4 C 6或—4 D —6或4 6、如图,数轴上A 、B 两点所表示的两数的( ) A 和为正数 B 积为正数 C 和为负数 D 积为负数 7、若-4a 2b 与3a m b n 是同类项,则( ) A m=2 n=0 B m=0 n=2 C m=2 n=1 D m=1 n=2 8、若a 2=(—2)2 则a 等于( ) A 2 B —2 C 4 D 2或—2 9某种细菌在培养过程中,每半小时分裂一次(由1个分裂为2个),那么这种细菌由1个分裂为32个要经过( ) A 2小时 B 3小时 C 2.5小时 D 5小时 10、有下列各组数:(1)—52与(—5)2 (2)—33与(—3)3 (3)—(—2)5与25 (4)0100与0200 (5)(—1)2008与(—1)2009其中相等的共有 ( ) A 1对 B 2对 C 3对 D 4对 二、填空题(每题3分共30分) 1、112-的相反数是________,112-的倒数是________ 112-的绝对值是________ 2、某天早晨气温为a 摄氏度,中午上升了b 摄氏度,晚上又下降了c 摄氏度,则晚上的气温是_____________摄氏度(上升记为+)。
福建省莆田市涵江区莆田锦江中学2023-2024学年七年级上册第二次月考数学试题(含解析)
A.402B.403C.404D.405(1)的值能否为79?若能,求a 的值;若不能,说明理由;(2)值能否为51,若能,求a 的值;若不能,说明理由;(3)若,求的最小值为 (直接写结果)22.列一元一次方程解决实际问题(两问均需用方程求解)第19届亚洲夏季运动会于2023年9月23日在杭州举行,通过不同色彩、不同纹饰向世界讲述“江南忆”的美丽故事.现有工厂生产吉祥物的盲盒,分为1S 12S S +12187S S =+12S S -【简单应用】如图1,点A 在数轴上所对应的数为,点B 表示的数为)则A 、B 两点间的距离________, A 、B 两点的中点M 5-AB =∴甲捐书本,乙捐书本,丙捐书为本.21.(1)不能,理由见解析;(2)能,的值为或;(3)【分析】本题考查了一元一次方程的应用,理解、的实际意义是解题关键.(1)设“T ”型阴影覆盖的最小数字为,则其他数字分别为、、,根据的值为79列方程,求出的值,再根据的实际意义分析,即可得到答案;(2)根据题意,将其他数字用、表示出来,然后根据值为51列方程,得到,再根据、的实际意义分析,即可得到答案;(3)根据,得到,再根据、的实际意义,找出满足条件的、的值,然后得出,即可求出最小值.【详解】(1)解:不能,理由如下:设“T ”型阴影覆盖的最小数字为,则其他数字分别为、、,,解得:,由月历可知,时,不能构成“T ”型阴影,即的值不能为79;(2)解:能,的值为或,理由如下:设“T ”型阴影覆盖的最小数字为,则“T ”型阴影覆盖的其他数字分别为、、,,设“田”型阴影覆盖的最小数字为b , “田”型阴影覆盖的其他数字分别为、、,,,整理得:,、都是正整数,当时,,满足条件;当时,,“田”型阴影条件不满足;当时,,满足条件;值能为51,此时的值为或;(3)解:由(2)可知,、、,585x =8136x =9153x =a 1513-a b a 1a +2a +8a +1S a a a b 12S S +6a b +=a b 12187S S =+40a b +=a b a b ()1245S S a b -=--a 1a +2a +8a +()()()112841179S a a a a a ∴=++++++=+=17a =17a =1S a 15a 1a +2a +8a +()()()1128411S a a a a a ∴=++++++=+1b +7b +8b +()()()2178416S b b b b b ∴=++++++=+12442751S S a b ∴+=++=6a b +=a b 1a =5b =2a =4b =5a =1b =12S S ∴+a 151411S a =+2416S b =+124427S S a b +=++,,,、都是正整数,满足条件的、的值为或或,,即当的值最小时,最小,当,时,有最小值,为,故答案为:22.(1)生产盲盒的工人人数为600人(2)该工厂应该安排250名工人生产,750名工人生产才能使每天生产的盲盒正好配套【分析】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.(1)设生产盲盒B 的工人人数为x 人,则生产盲盒A 的工人人数为人,根据该工厂共有1000名工人,列出一元一次方程,解方程即可;(2)设安排m 人生产盲盒A ,则安排人生产盲盒B ,根据盲盒大礼包由2个盲盒A 和3个盲盒B 组成.列出一元一次方程,解方程即可.【详解】(1)设生产的人数为人,则生产的人数为人,于是解得:(人)答:生产盲盒的工人人数为600人.(2)设安排人生产,则安排人生产于是解得:(人)答:该工厂应该安排250名工人生产,750名工人生产才能使每天生产的盲盒正好配套.23.(1)选择类卡(2)类卡通话200分钟,类卡通话350分钟12187S S =+ 4427187a b ∴++=40a b ∴+=a b ∴a b 1921a b =⎧⎨=⎩2020a b =⎧⎨=⎩2119a b =⎧⎨=⎩()()1241141644545S S a b a b a b -=+-+=--=-- a b -12S S -∴19=a 21b =12S S -()41921513⨯--=-13-A A B ()2200x -()1000m -B x A ()2200x -()22001000x x -+=400x =22002400200600x ∴-=⨯-=A m A ()1000m -B()3202101000m m ⨯=⨯-250m =10001000250750m ∴-=-=A B B A B(3)当通话时长小于50分钟时,选类卡;当通话时长等于50分钟时,选类卡或类卡皆可;当通话时长大于50分钟时,选类卡【分析】此题主要考查了一元一次方程的应用,根据题意分别表示出两种卡的费用是解题关键.(1)根据付费标准分别得出通话费用即可求解;(2)根据付费标准分别得出通话时间即可求解;(3)设他一个月通话时长为分钟,根据付费标准列出方程,求解即可.【详解】(1)解:由题意可得:类卡:(元),类卡:(元),∴他应该选择类卡.(2)由题意可得:类卡通话时间为:(分钟),类卡通话时间为:(分钟)答:类卡通话200分钟,类卡通话350分钟;(3)设他一个月通话时长为分钟,类卡付费关系式为:元,设通话分钟,类卡付费关系式为:元,则,解得:.所以,当通话时长小于50分钟时,选类卡;当通话时长等于50分钟时,选类卡或类卡皆可;当通话时长大于50分钟时,选类卡.24.(1)5;(2)35分;(3) 3场.【详解】解:(1)设这个球队胜x 场,则平(8-1-x )场,依题意可得3x+(8-1-x=17解得x=5;(2)打满14场最高得分17+(14-8)×3=35(分);(3)由题意可知,在以后的6场比赛中,只要得分不低于(12分)即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:(1)这支球队共胜了5场;(2)最高能得35分;(3)至少胜3场.【点睛】本题考查了一元一次不等式的运用,此类试题难度很大,考生解答此类问题时要求熟练把握一元一次不等式的基本性质运算.25.【小问1】9, 【小问2】或2A AB B x 0.6150.3x x =+A 1000.660⨯=B 1000.31545⨯+=B A 1200.6200÷=B ()120150.3350-÷=A B x A 0.6x x B ()150.3x +0.6150.3x x =+50x =A A B B 0.5-12-。
人教版七年级下学期第二次月考数学试卷(含答案解析)
人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点。
七年级上学期第二次月考数学 试卷及答案
七年级上学期第二次月考数学试卷一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.039473.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.44.(3分)0.1252008×(﹣8)2007的结果是()A.0.125 B.﹣0.125 C.1D.﹣15.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x38.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.59.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>010.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米211.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或212.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2007的值是.14.(3分)如图,该图形是立体图形的展开图.15.(3分)某商品原来价格为m元,先降价20%再提价a元后的价格为元.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要分钟就能追上乌龟.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).20.(5分)解方程:=﹣1.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.考点:倒数;相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:3的相反数是﹣3,3的相反数的倒数是﹣,故选:C.点评:本题考查了倒数,先求相反数再求倒数.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.03947考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:0.03957≈0.040(保留到千分位).故选B.点评:本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.3.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.4考点:正数和负数.分析:先把各式化简,然后根据负数的定义判断即可.解答:解:﹣(﹣3)=3,﹣|﹣3|﹣3,(﹣3)2=9,﹣32=﹣9;所以属于负数的有﹣|﹣3|,﹣32;故选B.点评:判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(3分)0.1252008×(﹣8)2007的结果是()A.0.125 B.﹣0.125 C.1D.﹣1考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的法则求解.解答:解:0.1252008×(﹣8)2007=0.125×[0.125×(﹣8)]2007=﹣0.125.故选B.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.5.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步考点:解一元一次方程.专题:计算题.分析:方程两边乘以3去分母,去括号,移项合并,把x系数化为1,求出解,错误不为始于第一步.解答:解:错误始于第一步,原因为:去括号错误,正确步骤为:3﹣(x﹣4)=12,即3﹣x+4=12,故选A点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克考点:一元一次方程的应用.分析:设乙买了x千克西瓜,先求出甲买西瓜的花费,然后根据题意列出买50kg以上西瓜所需花费的代数式,根据所付钱数相等,列方程求解.解答:解:设乙买了x千克西瓜,由题意得,48×1=1×0.8x,解得:x=60,即乙买了60千克西瓜.故选D.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x3考点:列代数式.分析:根据正方体的体积公式,用变化后的正方体体积减去原来的正方体体积即得答案.解答:解:根据题意,正方体的体积增加了(a+x)3﹣a3.故选C.点评:本题考查正方体的体积公式,是一道简单的基础题.8.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5考点:等式的性质.专题:应用题.分析:根据等式的性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立,可得答案.解答:解:一个球等于2.5个长方体,三个球等于个长方体;一个长方体等于正方体,个长方体等于5个正方体,即三个球体的重量等于5个正方体的重量,故选:D.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.9.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>0考点:实数大小比较;数轴.分析:由数轴上的数右边的数总是大于左边的数可以知道:a<0,0<b,|a|>|b|,利用a 到原点距离大于b到原点距离,再根据有理数的运算法则即可判断.解答:解:由图示知,a<0,0<b,|a|>b.A、根据a到原点距离大于b到原点距离得到:a<﹣b,故该选项错误;B、根据a到原点距离大于b到原点距离得到:|a|>|b|,故该选项错误;C、根据a<0,0<b得到:﹣ab>0,故该选项正确;D、根据a<0,0<b,得到:a﹣b<0,故该选项错误;故选:C.点评:此题主要考查的是利用在数轴上数比较大小,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.10.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米2考点:列代数式.分析:横档的长度为x米,则竖档的长度=(12﹣3x)÷2=6﹣1.5x,根据窗框的面积=长×宽求出答案.解答:解:竖档的长度=(12﹣3x)÷2=6﹣1.5x,∴窗框的面积=长×宽=x(6﹣1.5x)=x(6﹣x)米2.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.需注意,用字母表示数时,数字通常写在字母的前面,带分数的要写成假分数的形式.11.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或2考点:绝对值.分析:由于xy>0,分x<0,y<0;x>0,y>0;两种情况讨论计算即可求解.解答:解:∵xy>0,∴x<0,y<0时,+=﹣1﹣1=﹣2;x>0,y>0时,+=1+1=2.∴+的值为2或﹣2.故选:B.点评:考查了绝对值,本题需要分情况讨论,难度中等.12.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定考点:有理数的乘方.分析:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.解答:解:(﹣1)2n+1+(﹣1)2n=﹣1+1=0.故选B.点评:本题考查了有理数的乘方,涉及知识点是:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2007的值是7.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解答:解:∵|x﹣2|+(y﹣3)2=0,∴x﹣2=0,y﹣3=0,解得:x=2,y=3,则原式=8﹣1=7.故答案为:7点评:此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.14.(3分)如图,该图形是立体图形三棱柱的展开图.考点:几何体的展开图.分析:利用立体图形的展开图特征求解即可.解答:解:该图形是立体图形三棱柱的展开图.故答案为:三棱柱.点评:本题主要考查了几何体的展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.15.(3分)某商品原来价格为m元,先降价20%再提价a元后的价格为(0.8m+a)元.考点:列代数式.分析:降价后的价格是原价×(1﹣20%),即0.8m,再加上提价的a元即可求解.解答:解:(1﹣20%)m+a=0.8m+a(元).答:先降价20%再提价a元后的价格为(0.8m+a)元.故答案为:(0.8m+a).点评:考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.注意降价的基数是多少.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为256千米/小时.考点:一元一次方程的应用.分析:设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,根据提速前的时间与提速后的时间之间的等量关系建立方程求出其解就可以求出提速后的速度.解答:解:设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,由题意,得16x=(16﹣11)(x+176),x=80,提速后的速度为:x+176=256.答:列车提速后的速度为256千米/小时.故答案为:256千米/小时.点评:本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,设间接未知数的运用,在解答时根据时间之间的数量关系建立方程是解答本题的关键.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要10分钟就能追上乌龟.考点:一元一次方程的应用.专题:行程问题.分析:在追及路程问题中,注意等量关系:小白兔追上乌龟所走的路程=乌龟所走的路程+落后的路程.解答:解:设小白兔大概需要x分钟就能追上乌龟,根据题意可得101x=x+1000解得x=10那么小白兔大概需要10分钟就能追上乌龟.点评:在此题中注意单位要统一.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.考点:规律型:数字的变化类.专题:压轴题.分析:根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n个数为解答:解:∵n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;n=3时,分子:8=(﹣1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(﹣1)5•24,分母:9=2×4+1;…,∴第n个数为:故答案为:点评:本题主要考查通过分析数的变化总结归纳规律,解题的关键在于求出分子、分母与n的关系.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果.解答:解:(1)原式=﹣9×+×4×4+2=﹣3+8+2=7;(2)原式=﹣45﹣35+70=﹣10.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(5分)解方程:=﹣1.考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,把y系数化为1,即可求出解.解答:解:去分母得:8(y﹣1)=3(y+2)﹣12,去括号得:8y﹣8=3y+6﹣12,移项合并得:5y=2,解得:y=0.4.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.考点:解一元一次方程;代数式求值.专题:计算题.分析:由方程解的定义将x=代入方程求出m的值,原式去括号合并得到最简结果,将m的值代入计算即可求出值.解答:解:根据题意将x=代入方程得:=,去分母得:3﹣3m=2﹣4m,解得:m=﹣1,原式=﹣m2+m﹣2﹣m+1=﹣m2﹣1,当m=﹣1时,原式=﹣1﹣1=﹣2.点评:此题考查了解一元一次方程,以及代数式求值,求出m的值是解本题的关键.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.考点:作图-三视图.分析:主视图有3列,每列小正方形数目分别为2,1,1;左视图有2列,每列小正方形数目分别为1,2;俯视图有3列,每行小正方形数目分别为2,1,1.解答:解:如图所示:.点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.考点:扇形统计图;条形统计图.专题:压轴题;图表型.分析:(1)扇形统计图中,各部分的数量=总体×所占百分比,据此求得各中型号的数量;(2)由题意得,,求解即可.解答:解:(1)240×55%=132,240×(1﹣55%﹣25%)=48,240×25%=60.(2)由题意得,,16(2a﹣2)=12×8解之,得a=4,经检验a=4是原分式方程的解.2a﹣2=2×4﹣2=6.点评:命题立意:考查扇形统计图及综合应用能力.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?考点:一元一次方程的应用.分析:(1)设小玲每月上网x小时,利用A:费用=每分钟的费用×时间;B:费用=包月费+通信费,根据两种计费方式的收费相同列出方程,解方程即可;(2)如果一个月内上网的时间为65小时,根据两种收费方式分别计算费用,比较后即可回答问题.解答:解:(1)设小玲每月上网x小时,根据题意得(0.05+0.02)×60x=50+0.02×60x,解得x=.答:小玲每月上网小时;(2)如果一个月内上网的时间为65小时,选择A、计时制费用:(0.05+0.02)×60×65=273(元),选择B、月租制费用:50+0.02×60×65=128(元).所以一个月内上网的时间为65小时,采用月租制较为合算.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.考点:一元一次方程的应用.分析:(1)设这个公司要加工x件新产品,则红星厂单独加工这批产品需天,巨星厂单独加工这批产品需要天,根据题意找出等量关系:红星厂单独加工这批产品需要的天数﹣巨星厂单独加工这批产品需要的天数=20,根据此等量关系列出方程求解即可.(2)应分为三种情况讨论:①由红星厂单独加工;②由巨星厂单独加工;③由两场厂共同加工,分别比较三种情况下,所耗时间和花费金额,求出即省钱,又省时间的加工方案.解答:解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960.答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(120+5)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,即省钱,又省时间.点评:本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程.对于要求最符合要求类型的题目,应将所有方案,列出来求出符合题意的那一个即可.。
2024年粤人版七年级数学下册月考试卷465
2024年粤人版七年级数学下册月考试卷465考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏一、选择题(共7题,共14分)1、用一个平面去截一个正方体,截面不可能是()A. 四边形B. 五边形C. 六边形D. 七边形2、为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了20本练习簿和10支水笔,共花了36元.已知每支水笔的价格比每本练习簿的价格贵1.2元,如果设练习簿每本为x元,水笔每支为y元,那么下面列出的方程组中正确的是()A. {20x+10y=36x−y=1.2B. {20x+10y=36y−x=1.2C. {10x+20y=36x−y=1.2D. {10x+20y=36y−x=1.23、两条直线相交构成四个角;给出下列条件:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等;其中能判定这两条直线垂直的有()A. 4个B. 3个C. 2个D. 1个4、函数y=x−1+3中自变量x的取值范围是()A. x>1B. x≥1C. x≤1D. x≠15、下列命题是真命题的有()①若a2=b2则a=b②内错角相等;两直线平行.③若ab是有理数,则|a+b|=|a|+|b|④如果∠A=∠B那么∠A与∠B是对顶角.A. 1个B. 2个C. 3个D. 4个6、已知4a5b2和是同类项.则代数式12m-24的值是()A. -3B. -4C. -5D. -67、据杭州市统计局公布的第六次人口普查数据,本市常住人口870.04万人,其中870.04万人用科学记数法表示为()A. 8.7004×105人B. 8.7004×106人C. 8.7004×107人D. 0.87004×107人评卷人得分二、填空题(共7题,共14分)8、在函数y=中,自变量x的取值范围是____.9、已知-x m+3y6与3x5y2n是同类项,则m n的值是 ______ .10、某一电子昆虫落在数轴上的某点K0,从K0点开始跳动,第1次向左跳1个单位长度到K1,第2次由K1向右跳2个单位长度到K2,第3次由K2向左跳3个单位长度到K3,第4次由K3向右跳4个单位长度到K4依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K100表示的数恰好是2013,则电子昆虫的初始位置K0所表示的数是 ______ .11、已知和互为相反数,且x-y+4的平方根是它本身,则x=____,y=____.12、(2014秋•达州月考)使图中平面展开图折叠成正方体后,相对面上两个数互为相反数,则x=____,y=____.13、(2013春•西昌市校级月考)如图:想在河堤两岸搭建一座桥,图中搭建方式中,最短的是____,理由____.14、写出一个点的坐标,其积为-10,且在第二象限为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一年级第二次月考数学试题
题号 一 二 三 四 五 总分 得分
1、若4=a ,则a 2= ;
2、一个数的相反数是1.5,这个数的倒数为 ;
3、用科学计数法表示1234. 5为 ;
4、单项式3a 2b 与 -2a 2b 的差为 ;
5、单项式3
22y
x -的系数与次数之积为 ;
6、若│x+1│+(y -2008)2=0,则x y =__________;
7、把多项式3xy 2 -3x 2y -y 3+ x 3 按字母x 降幂排列为 ; 8、已知点A 、点B 都在数轴上,点A 表示的数为2,且AB=3,则点B 表示的数为 ; 9、夜晚的流星划过天空时留下一道明亮的光线,由此说明了 的数学事实;
汽车的雨刷在挡风玻璃上画出一个扇面,这说明 的数学事实;
10、要想把一根木条固定在墙上,至少需要两个钉子,这个事实说明 的数学原理是 。
11、如图,能用图中字母表示........
的射线有 条。
12、若线段AB=8cm ,点M 是AB 的中点,点N 是MB 的中点,点P 是AN 的中点,则PN= cm 。
13.在解方程36=-x 时,将x 的系数化为1得x= ,这步变形的依据是 ; 14、若方程3x+2a=9与3x+2=11的解相同,那么a= 。
15、若5x 1
-3m
y 2与是15x 3
-m
y n
-1
同类项,则m n = 。
16、已知三个连续偶数的和为60,则最大的那个为 。
17、一个三角形的三条边长之比为2∶4∶5,周长为22,则最长边为 . 18、若011
=+-m mx
是关于x 的一元一次方程,那么m= 。
19、现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍, 年后父亲的年龄是儿子年
龄的2倍。
20、已知关于x 的方程2x+1=ax+5的解为正整数,则整数a 的值为 ; 二、精心选一选:(每小题2分,共16分)
题号 1 2 3 4 5 6 7 8 得分
A 、2x+2=3x
B 、6x -2=1
C 、-0.2x= -0.4
D 、x 10
1
51=
2、下列结论错误的个数为
(1)若a=b ,则ac -3=bc -3; (2)若ax=ay ,则x=y ;
(3)若c b c a =,则a=b ; (4)若
0.30.232
2200.55
x x --==,则. A 、0个 B 、1个 C 、2个 D 、3个
3、该几何体的主视图、左视图、俯视图按顺序正确的一组为
4、如图所示,画出的直线、射线、线段中,一定能相交的是
5、A 市与B市之间的特快列车,途中要停靠两个站点,全程需设置不同车票( ) 种 A、4种 B、6种 C、10种 D、12种
6、将下列图形绕直线m 旋转一圈,可以得到右面立体图形的是
7、某商店在某一时间以每件150元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%.则卖出这两件衣服总的盈亏情况是
A 、赚了30元
B 、赔了20元
C 、赔了50元
D 、不赔不赚
8、某中学组织初一的同学春游,原计划租用45座客车若干辆,但有15人没有座位;如果租
班级 考号 姓名 ----------------------------------------密-----------------------封-------------------线---------------------------------------- 班级 考号 姓
名
-----------
-----------------------------密-----------------------------封----------------------------线----------------------------------------
用同样数量的60座客车,则多出一辆,且其余客车恰好座满。
设初一年级人数是x 人,由题意可列方程 A 、
1560
4560
x x -+= B 、45156060x x +=- C 、4515601x x +=- D 、451560(60)x x +=- 三、细心算一算:(每题4分,共16分) 1、计算: (-1)3×(-2)-(-22)-(-3)2÷(-1
2
1)2
2、先化简,再求值:()
c b b a a c b a a 212522322
2222--⎪
⎭
⎫ ⎝⎛----,其中,a=-1,b=32,c=0.
3、解方程 (1)0.50.10.50.110.20.6
x x -+-= (2)()1111
222322x x ⎡⎤+-=⎢⎥⎣⎦
四、用心画一画:(每题4分,共8分)
(1)直线m 经过点A ,不经过点B ,经过点B 的直线n 与直线m 相交于点C,连接AB ; (2)已知线段a 、b 、c ,用圆规和直尺作出线段2a+b -c (不写作法,保留作图痕迹)
五、请你露一手:( 用方程...
解决下列实际问题 )(每小题6分,共18分)
1、一项工程甲单独做5天完成,乙单独做10天完成,若乙先干一天后,由甲去支援,则他
们完成全部工程还需几天?
2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
3、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度是17.5千米/时,乙的速度是15千米/时,经过几小时,两人相距32.5千米?。